A product Line of Diodes Incorporated
(4) PERICOM

High-Speed USB2.0 1:2 Multiplexer/DeMultiplexer Switch with Signal Enable

Features

$\rightarrow \mathrm{V}_{\mathrm{DD}}$ Operation at 2.5 V and 3.3 V
$\rightarrow \mathrm{V}_{\mathrm{I} / \mathrm{O}}$ Accepts Signals up to 5.5 V
\rightarrow 1.8-V Compatible Control-Pin Inputs
\rightarrow Low-Power Mode When $\overline{\mathrm{OE}}$ Is Disabled $(2 \mu \mathrm{~A})$
\rightarrow ron $=6 \Omega$ Maximum
$\rightarrow \Delta \mathrm{r}_{\mathrm{ON}}=0.2 \Omega$ Typical
$\rightarrow \mathrm{Cio}(\mathrm{on})=4 \mathrm{pF}$ Typical
\rightarrow Support Over Voltage Protection
\rightarrow Low Power Consumption (50μ A Maximum)
\rightarrow ESD Performance

- IO Pins
- 12KV HBM
- 1KV CDM
- VDD, GND, S, $\overline{\mathrm{OE}}$ Pins
- 4KV HBM
- 1KV CDM
\rightarrow High Bandwidth (1.6 GHz Typical)
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes $1 \& 2$)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow Packaging (Pb-free \& Green):
- 10-contact, UDFN (ZW10)
- 10-contact, UQFN (ZUA10)

Block Diagram

Description

The PI3USB221A is a high-bandwidth switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/ Os. The wide bandwidth (1.1 GHz) of this switch allows signals to pass with minimum edge and phase distortion. The device multiplexes differential outputs from a USB host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps).

The PI3USB221A offer over voltage protection for the D+/D- pins as per the USB 2.0 specification. with the chip power on or off if $\mathrm{D}+/ \mathrm{D}$ - pins are shorted to VBus ($5 \mathrm{~V}+/-5 \%$), a less than 3.8 V (typical) signal will transmit through $1 \mathrm{D}+/ 1 \mathrm{D}-$ and $2 \mathrm{D}+/ 2 \mathrm{D}-$ output.

Applications

\rightarrow Routes Signals for USB 1.0, 1.1, and 2.0
\rightarrow Mobile Industry Processor Interface (MIPI) Signal Routing

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnect
L	L	D = 1D
H	L	D $=2 \mathrm{D}$

[^0]PI3USB221A

Pin Configuration

Pin Description

Name	Description
$\overline{\mathrm{OE}}$	Active LOW, Output enable
S	Select input
D	COM port
nD	I/O for USB data path (port 1 and port 2)

A product Line of Diodes Incorporated

PI3USB221A

Absolute Maximum Ratings ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted)

Supply Voltage Range ... -0.5 V to 4.6 V	
$\mathrm{V}_{\text {IN }}$ Control Input Voltage Range ${ }^{(2,3)}$..	-0.5V to 5.5 V
I_{IK} Control Input Clamp Current ($\left.\mathrm{V}_{\mathrm{IN}}<0\right)$............................... -50 mA	
$\mathrm{I}_{\mathrm{I} / \mathrm{OK}} \mathrm{I} / \mathrm{O}$ Port Clamp Current ($\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0$).................................... -50 mA	
$\mathrm{I}_{\text {I/O }}$ ON-state Switch Current ${ }^{(5)}$... ± 120	
Continuous Current through VDD or GND $\pm 100 \mathrm{~mA}$ θ_{JA} Package Thermal Impedance	
TLLGA Package ..48.7 ${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range 65 to $150^{\circ} \mathrm{C}$	
Tj Junction Temperature .. $125^{\circ} \mathrm{C}$	

Notes:

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltages are with respect to ground, unless otherwise specified.
3. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
4. VI and VO are used to denote specific conditions for VI/O.
5. II and IO are used to denote specific conditions for II/O.
6. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

Symbol	Description	Parameter	Min.	Max.	Unit
V_{DD}	Supply voltage		2.3	3.6	
	High-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V	1.3	-	
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V	1.4	-	
V_{IL}	Low-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V		0.6	
		$\mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V		0.6	
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Data input/output voltage		0	4.6	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature		-40	85	${ }^{\circ}{ }^{\circ} \mathrm{C}$

Note:

1. All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation.

A product Line of
Diodes Incorporated
(4) PERICOM

PI3USB221A

Electrical Chatacteristics

Over operating free-air temperature range (unless otherwise noted)

Parameter		Testing Conditions		Min.	Typ.	Max.	Unit	
V_{IK}		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V	
$\mathrm{I}_{\text {IN }}$	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.6 V				± 1		
$\mathrm{I}_{\mathrm{OZ}}{ }^{(3)}$		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND , $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$, Switch OFF				± 1		
$\mathrm{I}_{\text {(OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$ to 3.6 V			± 2		
		$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0$ to 2.7 V			± 1			
I_{CC}			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}, \text { Switch ON or OFF } \end{aligned}$			25	50	$\mu \mathrm{A}$
I_{CC} (low power mode)		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND , Switch disabled, ($\overline{\mathrm{OE}}$ in high state)				4		
$\mathrm{DI}_{C C}{ }^{(4)}$	Control Inputs		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~S} \text { sweeps from } \\ & 1.4 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{OE} /=0 \mathrm{~V} \end{aligned}$			15		
			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{OE} /$ sweeps from 1.4 V to $3.3 \mathrm{~V}, \mathrm{~S}=0 \mathrm{~V}$			0.75		
CIN	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ or 0 V			1	2		
$\mathrm{C}_{\text {io(OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ or 0 V , Switch OFF			2	3	pF	
$\mathrm{C}_{\mathrm{io} \text { (ON) }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ or 0 V , Switch ON			4	6		
$\mathrm{raN}^{(5)}$		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$			4	Ω	
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$			6			
$\mathrm{Dr}_{\mathrm{ON}}{ }^{(6)}$			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		0.2		
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$			0.2			
ron(flat)		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		1			
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$		1				
$\mathrm{V}_{\text {pass }}$			$\mathrm{V}_{\mathrm{DD}}=2.5-3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}>3.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{uA}$	2.8	3.8	4.2	V

Notes:

1. $\mathrm{V}_{\text {IN }}$ and $\mathrm{I}_{\text {IN }}$ refer to control inputs. VI, VO, II, and IO refer to data pins.
2. All typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For I / O ports, the parameter IOZ includes the input leakage current.
4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VDD or GND.
5. Measured by the voltage drop between the input and output terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two terminals.
6. Dron is delta Ron between channels

Dynamic Electrical Chatacteristics

Over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Typ. ${ }^{(\mathbf{1})}$	Unit
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-40	dB
$\mathrm{O}_{\text {IRR }}$	OFF isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-41	
BW	Bandwidth $(-3 \mathrm{~dB})$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.6	GHz

Note:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

PI3USB221A

Switching Chatacteristics

Over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter		Min.	Typ. ${ }^{(1)}$	Max.	Unit
$\mathrm{t}_{\text {pd }}$	Propagation Delay ${ }^{(2,3)}$			0.25		ns
ton	Line enable time	S to D, nD			125	
		$\overline{\mathrm{OE}}$ to D, nD			100	
toff	Line disable time	S to D, nD			12	
		$\overline{\mathrm{OE}}$ to D, nD			12	
$\mathrm{t}_{\text {SK(O) }}$	Output skew between center port to any other port ${ }^{(2)}$			0.1	0.2	
$\mathrm{t}_{\text {SK(P) }}$	Skew between opposite transitions of the same output (tPHL - tPLH) ${ }^{(2)}$			0.1	0.2	
tVPASS	OVP response time			53		ns

Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Specified by design
3. The switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $10-\mathrm{pF}$ load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side

PI3USB221A

Application Information

Figure 1: HS Eye Test Setup

Test Result

Test Result: High-speed, Up-stream, Near-end Eye of PI3USB221A

PI3USB221A

Parameter Measurement Information

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50-\mathrm{Ohm}, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 2. Turn-On (\mathbf{t}_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

Figure 3.OFF Isolation ($\mathrm{O}_{\text {Iso }}$)

PI3USB221A

Figure 4. Crosstalk ($\mathrm{X}_{\mathrm{TALK}}$)

Figure 5. Bandwidth (BW)

Figure 6. Propagation Delay

A product Line of Diodes Incorporated

Figure 7.Skew Test

Figure 8. ON-State Resistance ($\mathrm{r}_{\text {on }}$)

A product Line of Diodes Incorporated

Figure 9. OFF-State Leakage Current

Figure 10. Capacitance

Part Marking

ZW Package

Z: Die Rev
Y: Year
W: Workweek
1st X: Assembly Code
2nd X: Fab Code

ZUA Package

Y: Shorten Year Code
W : Shorten Workweek Code

Packaging Mechanical: 10-UQFN (ZUA)

17-0002

A product Line of
Diodes Incorporated
(4) PERICOM

PI3USB221A

Packaging Mechanical: 10-UDFN (ZW)

TOP VIEW

SIDE VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN(unit:mm)

PKG. DIMENSIONS(MM)			
SYMBOL	Min	NOM	Max
A	0.50	0.60	0.65
A1	0.00	0.02	0.05
A3	0.15 REF		
D	2.90	3.00	3.10
E	2.90	3.00	3.10
D1	2.30	2.40	2.50
E1	1.50	1.60	1.70
b	0.18	0.25	0.30
e	0.50 BSC		
L	0.25	0.40	0.55

Notes:

1. Comply with JEDEC MO-229F, except 'L' Max and 'L' Min.

DESCRIPTION: 10-Pin, UDFN, 3X3
PACKAGE CODE: ZW(ZW10)
DOCUMENT CONTROL\#: PD-2219

17-0001
For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description
PI3USB221AZUAEX	ZUA	$10-$ Pin, $1.5 \times 2.0(\mathrm{UQFN})$
PI3USB221AZWEX	ZW	$10-$ Pin, 3×3 (UDFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape $/$ Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX

NLAS7242MUTBG TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4906EFELB+T MAX4906FELB+T MAX4983EEVB+T MAX4899AEETE+T MAX14651ETA+T PI3USB20LE UCS2114-1-V/LX UCS2113-1-V/G4 UCS2113T-1-V/G4 UCS2112-1-V/G4 FSA1153UCX FSA221L10X FSA221MUX FSA223UMX

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
