
## PI3V312

## Low On-Resistance, 3.3V High-Bandwidth 4-Port, 2:1 Mux/DeMux VideoSwitch

### Features

- Near-Zero propagation delay
- $5\Omega$  switches connect inputs to outputs
- High signal passing bandwidth (500MHz)
- Beyond Rail-to-Rail switching
- 5V I/O tolerant with 3.3V supply
- 2.5V and 3.3V supply voltage operation
- Hot insertion capable
- Industrial operating temperature: -40°C to +85°C
- 2KV ESD Protection (human body model)
- Latch-up performance >250mA per JESD17
- Packaging (Pb-free & Green available):
  - -16-pin QSOP (Q)
  - 16-pin TSSOP (Ľ)
  - 20-contact TQFN (ZH)

### **Block Diagram**



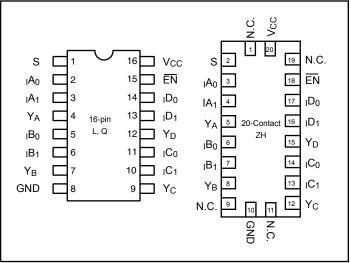
### **Truth Table**<sup>(1)</sup>

| ĒN | S | YA   | YB   | YC   | YD   | Function |
|----|---|------|------|------|------|----------|
| Н  | Х | Hi-Z | Hi-Z | Hi-Z | Hi-Z | Disable  |
| L  | L | IA0  | IB0  | IC0  | ID0  | S=0      |
| L  | Н | IA1  | IB1  | IC1  | ID1  | S=1      |

Notes:

1. H=High Voltage Level

L=Low Voltage Level


### Description

Pericom Semiconductor's PI3V312 is a 4-port, 2:1 Multiplexer/ Demultiplexer with 3-state outputs. The switch introduces no additional ground bounce noise or propagation delay.

Low On-Resistance and High bandwidth make it ideal for video and other applications. Also this device has exceptionally low crosstalk and off-isolation, which is far greater than most analog switches offered today. A single 3.3V supply is all that is required for operation.

The PI3V312 offers a high-performance (500MHz), low-cost solution to switch between video signals that have high bandwidth.

### **Pin Configuration**



### **Pin Description**

| Pin Name                         | Description   |
|----------------------------------|---------------|
| $_{I}A_{N}$ to $_{I}D_{N}$       | Data Inputs   |
| S                                | Select Inputs |
| ĒN                               | Enable        |
| Y <sub>A</sub> to Y <sub>D</sub> | Data Outputs  |
| GND                              | Ground        |
| V <sub>CC</sub>                  | Power         |



### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

| Storage Temperature                    | 65°C to +150°C |
|----------------------------------------|----------------|
| Ambient Temperature with Power Applied | 40°C to +85°C  |
| Supply Voltage to Ground Potential     | 0.5V to +4.6V  |
| DC Input Voltage                       | 0.5V to +6.0V  |
| DC Output Current                      | 120mA          |
| Power Dissipation                      | 0.5W           |

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

| Parameters       | Description                         | Test Conditions <sup>(1)</sup>                                             | Min. | <b>Typ</b> <sup>(2)</sup> | Max. | Units |
|------------------|-------------------------------------|----------------------------------------------------------------------------|------|---------------------------|------|-------|
| V <sub>IH</sub>  | Input HIGH Voltage                  | Guaranteed Logic HIGH Level                                                | 2.0  |                           |      |       |
| V <sub>IL</sub>  | Input LOW Voltage                   | Guaranteed Logic LOW Level                                                 | -0.5 |                           | 0.8  | V     |
| V <sub>IK</sub>  | Clamp Diode Voltage                 | $V_{CC} = Min., I_{IN} = -18 \text{ mA}$                                   |      | -1.3                      | -1.8 |       |
| I <sub>IH</sub>  | Input HIGH Current                  | $V_{CC} = Max., V_{IN} = V_{CC}$                                           |      |                           | ±1   |       |
| I <sub>IL</sub>  | Input LOW Current                   | $V_{CC} = Max., V_{IN} = GND$                                              |      |                           | ±1   | μΑ    |
| I <sub>OZH</sub> | High Impedance Output Current       | $0 \le Y$ , $I_N \le V_{CC}$                                               |      |                           | ±1   |       |
| R <sub>ON</sub>  | Switch On-Resistance <sup>(4)</sup> | $V_{CC} = Min., V_{IN} = 0V,$<br>$I_{ON} = 48 \text{ mA or } -64\text{mA}$ |      | 4                         | 6    | Ω     |
|                  |                                     | $V_{CC} = Min., V_{IN} = 3.6V, I_{ON} = -15 \text{ mA}$                    |      | 5                         | 8    |       |

### **DC Electrical Characteristics, 2.5V Supply** (Over Operating Range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$ , $V_{CC} = 2.5V \pm 10\%$ )

| Parameters <sup>(5)</sup> | Description                           | Test Conditions                                      | Min. | Тур. | Max.           | Units |
|---------------------------|---------------------------------------|------------------------------------------------------|------|------|----------------|-------|
| V <sub>IH</sub>           | Input HIGH Voltage                    | Guaranteed Logic HIGH Level                          | 1.8  | -    | $V_{CC} + 0.3$ |       |
| V <sub>IL</sub>           | Inout LOW Voltage                     | Guaranteed Logic LOW Level                           | -0.3 | -    | 0.8            | V     |
| V <sub>IK</sub>           | Clamp Diode Voltage                   | $V_{CC} = Max., I_{IN} = -6mA$                       | _    | -0.7 | -1.8           |       |
| I <sub>IH</sub>           | Input HIGH Current                    | $V_{CC} = Max., V_{IN} = V_{CC}$                     | _    | -    | ±1             |       |
| I <sub>IL</sub>           | Input LOW Current                     | $V_{CC} = Max., V_{IN} = GND$                        | —    | -    | ±1             | μA    |
| I <sub>OZH</sub>          | High Impedance Current <sup>(3)</sup> | $0 \le Y$ , In $\le V_{CC}$                          | —    | -    | ±1             |       |
| Dava                      | Switch On-Resistance <sup>(4)</sup>   | $V_{CC} = Min., V_{IN} = 0V,$<br>$I_{ON} = -48mA$    | _    | 6    | 8              | Ω     |
| R <sub>ON</sub>           | Switch On-Resistance                  | $V_{CC} = Min., V_{IN} = 2.25V,$<br>$I_{ON} = -15mA$ | _    | 7    | 14             | 52    |



### **Capacitance** ( $T_A = 25^{\circ}C f = 1 \text{ MHz}$ )

| Parameters <sup>(5)</sup> | Description                 | Test Conditions            | Тур. | Units |
|---------------------------|-----------------------------|----------------------------|------|-------|
| C <sub>IN</sub>           | Input Capacitance           |                            | 3.0  |       |
| C <sub>OFF(IN)</sub>      | In Capacitance, Switch Off  | $\mathbf{V} = 0\mathbf{V}$ | 3.5  | "Г    |
| C <sub>OFF(Y)</sub>       | Y Capacitance, Switch Off   | $V_{IN} = 0V$              | 7.0  | pF    |
| C <sub>ON</sub>           | Y/In Capacitance, Switch On |                            | 10.0 |       |

#### Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at  $V_{CC} = 3.3V$ ,  $T_A = 25^{\circ}C$  ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between Y and In pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.
- 5. This parameter is determined by device characterization but is not production tested.

### **Power Supply Characteristics**

| Parameters      | Description                    | Test Conditions <sup>(1)</sup>              | Min. | Typ. <sup>(2)</sup> | Max. | Units |
|-----------------|--------------------------------|---------------------------------------------|------|---------------------|------|-------|
| I <sub>CC</sub> | Quiescent Power Supply Current | $V_{CC}$ = 3.6V, $V_{IN}$ = GND or $V_{CC}$ |      |                     | 0.8  | mA    |

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at  $V_{CC} = 3.3V$ , +25°C ambient.

### **Dynamic Electrical Characteristics Over the Operating Range** ( $T_A = -40^{\circ}$ to $+85^{\circ}$ , $V_{CC} = 3.3V \pm 10\%$ )

| Parameter         | Description    | Test Condition                    | Min. | Тур. | Max. | Units |
|-------------------|----------------|-----------------------------------|------|------|------|-------|
| X <sub>TALK</sub> | Crosstalk      | See Test Diagram ( $f = 100MHz$ ) |      | -60  |      | П     |
| O <sub>IRR</sub>  | Off-Isolation  | See Test Diagram ( $f = 100MHz$ ) |      | -60  |      | dB    |
| BW                | -3dB Bandwidth | See Test Diagram; $C_L = 0pF$     | 100  | 500  |      | MHz   |

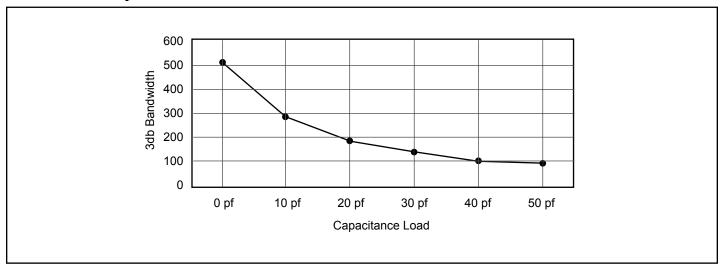


### Switching Characteristics over 3.3V Operating Range

| Parameters                           | Description                                  | Conditions <sup>(1)</sup> | Com. |      |      | Units |
|--------------------------------------|----------------------------------------------|---------------------------|------|------|------|-------|
| rarameters                           | Description                                  | Conditions                | Min. | Тур. | Max. | Units |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation $Delay^{(2,3)}$ Y to In, In to Y | See Test Diagram          |      |      | 0.3  |       |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Enable Time S or $\overline{EN}$ to Y or In  | See Test Diegrom          | 1.5  |      | 9.0  | ns    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Disable Time S or $\overline{EN}$ to Y or In | See Test Diagram          | 1.5  |      | 9.0  |       |

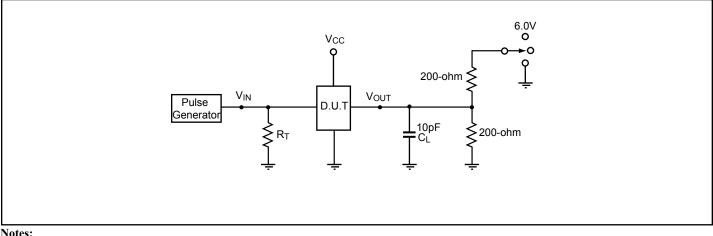
### Switching Characteristics over 2.5V Operating Range

| Davamatava                           | Description                                  | Conditions <sup>(1)</sup> | Co   | II.n:ta |       |
|--------------------------------------|----------------------------------------------|---------------------------|------|---------|-------|
| Parameters                           | Description                                  | Conditions                | Min. | Max.    | Units |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation $Delay^{(2,3)}$ Y to In, In to Y | See Test Diagram          |      | 0.3     |       |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Enable Time S or $\overline{EN}$ to Y or In  | See Test Diegrom          | 1.5  | 15.0    | ns    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Disable Time S or $\overline{EN}$ to Y or In | See Test Diagram          | 1.5  | 12.0    |       |


#### Notes:

1. See test circuit and waveforms.

2. This parameter is guaranteed but not tested on Propagation Delays.


3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

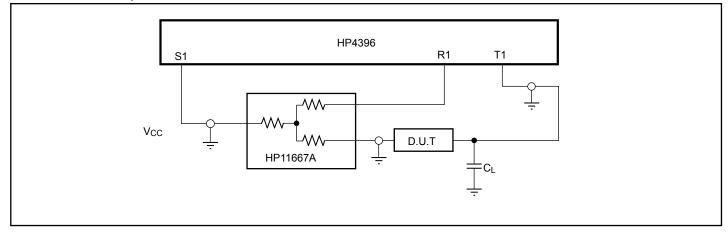
### **Bandwidth vs Capacitance**





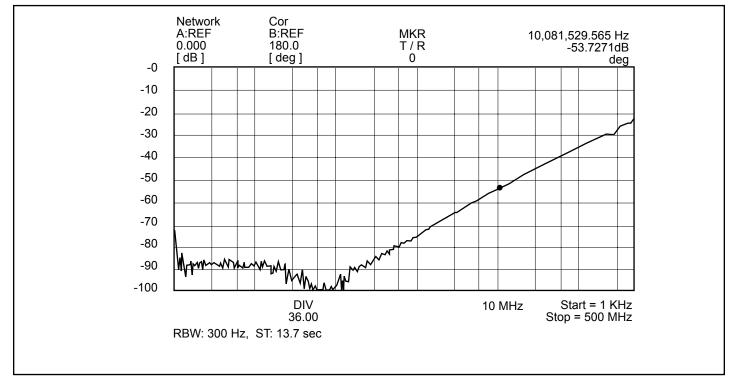
## Test Circuit for Electrical Characteristics<sup>(1)</sup>



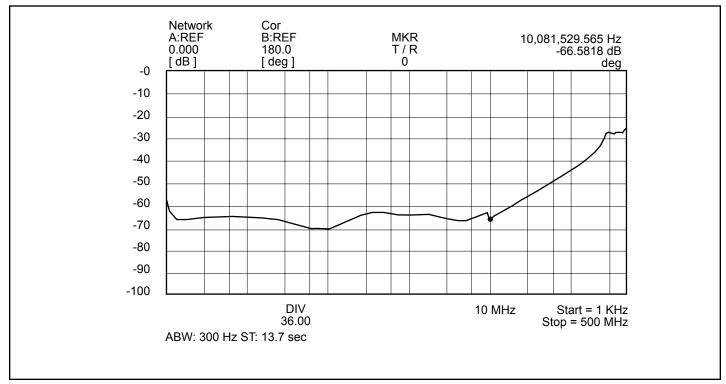

#### Notes:

- $C_L$  = Load capacitance: includes jig and probe capacitance. 1.
- $R_T$  = Termination resistance: should be equal to  $Z_{OUT}$  of the Pulse Generator 2.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. 3.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input impulses are supplied by generators having the following characteristics: PRR  $\leq$  MHz,  $Z_0 = 50\Omega$ ,  $t_R \leq 2.5$ ns,  $t_F \leq 2.5$ ns. 4.
- 5. The outputs are measured one at a time with one transition per measurement.

### Switch Positions

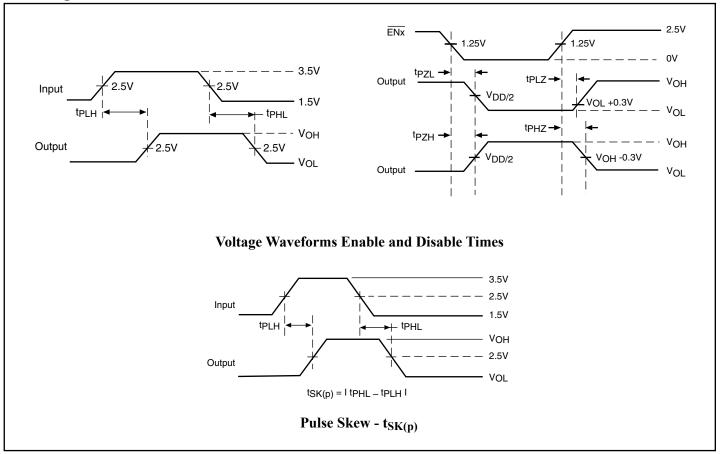

| Test                                | Switch |
|-------------------------------------|--------|
| t <sub>PLZ</sub> , t <sub>PZL</sub> | 6.0V   |
| t <sub>PHZ</sub> , t <sub>PZH</sub> | GND    |
| Prop Delay                          | Open   |

### **Test Circuit for Dynamic Electrical Characteristics**






### **Crosstalk** (V<sub>CC</sub> = 3.3V, 25°C)




### **Off Isolation** ( $V_{CC} = 3.3V, 25^{\circ}C$ )





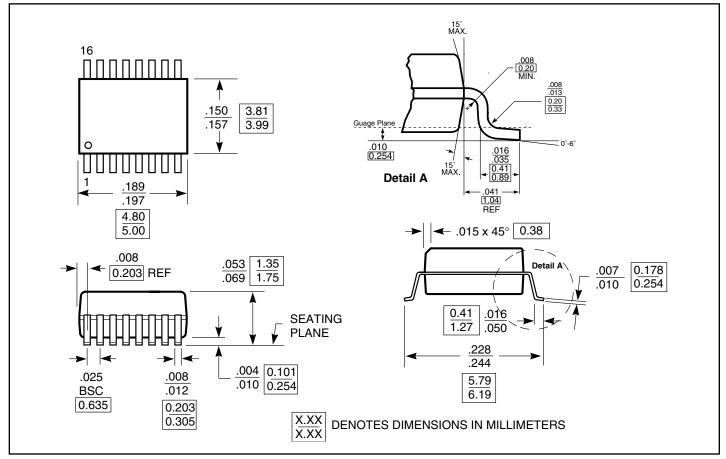
### **Switching Waveforms**





### **Applications Information**

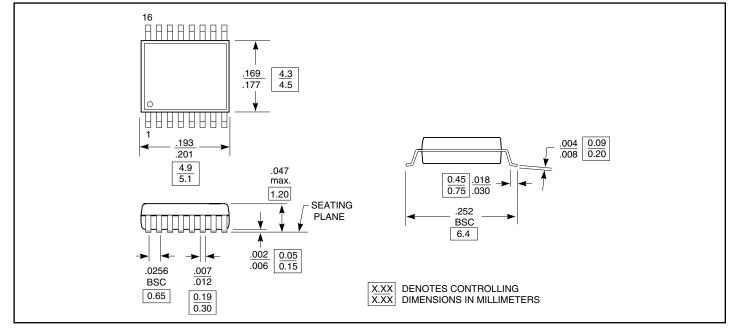
### **Logic Inputs**


The logic control inputs can be driven upto 3.6V regardless of the supply voltage. For example, given a +3.3V supply,  $\overline{EN}$  maybe driven LOW to 0V and HIGH to 3.6V. Driving  $\overline{EN}$  Rail-to-Rail<sup>®</sup> minimizes power consumption.

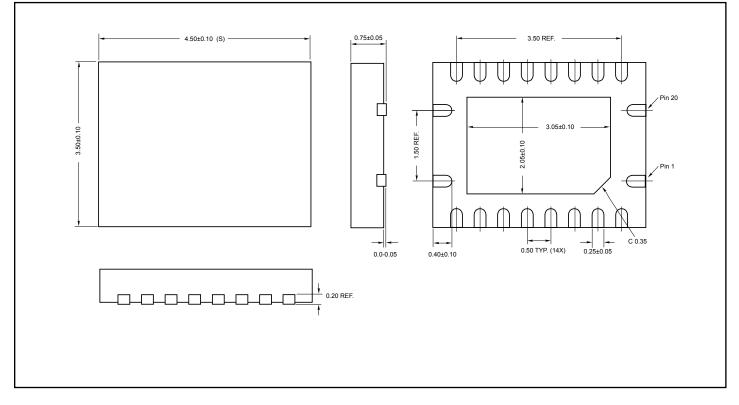
### **Power Supply-Sequencing**

Proper power supply sequencing is recommended for all CMOS devices. Always apply  $V_{CC}$  before applying signals to the input/ output or control pins.

### **Hot Insertion**


For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply may be seen at the device input pins during hot insertion. The PI3V312 device have maximum limits of 6V and 120mA for 20ns. If the power is higher or applied for a longer time or repeatedly reaches the maximum limits, the devices can be damaged.




### Packaging Mechanical: 16-pin QSOP (Q)



### Packaging Mechanical: 16-pin TSSOP (L)



## Packaging Mechanical: 20-Contact TQFN (ZH)





### **Ordering Information**

| Ordering Code | Packaging Code | Package Description                    |
|---------------|----------------|----------------------------------------|
| PI3V312Q      | Q              | 150-mil, 16-pin QSOP                   |
| PI3V312QE     | Q              | Pb-free & Green, 150-mil, 16-pin QSOP  |
| PI3V312L      | L              | 173-mil, 16-pin TSSOP                  |
| PI3V312LE     | L              | Pb-free & Green, 173-mil, 16-pin TSSOP |
| PI3V312ZHE    | ZH             | Pb-free & Green, 20-contact TQFN       |

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. Number of Transistors = TBD

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X\_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8188ARUZ ADG1208YRUZ-REEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7