

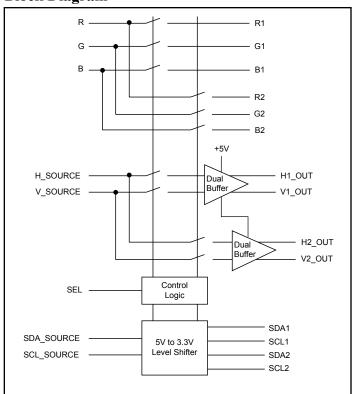
3.3V, 7-Channel Analog Video Switch

Features

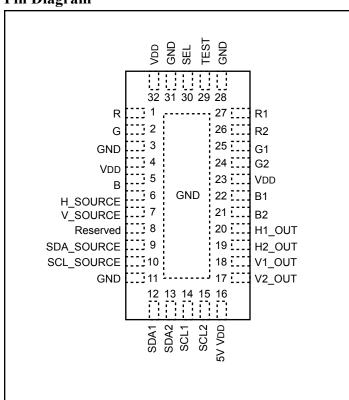
- · Designed specifically to switch VGA signals
- 7-Channels for VGA signals (R,G,B, Hsync, Vsync, DDC Data, and DDC CLK)
- $V_{DD} = 3.3V + -10\%$
- DDC path will operate as a 5V to 3.3V level shifter
- H/V output buffer with +/-24mA drive
- ESD tolerance on video I/O pins is up to 12kV HBM per JEDEC standard
- -3dB BW of 1.7GHz (typ)
- Low Xtalk, (-38dB typ)
- Low and Flat ON-STATE resistance (R_{on} = 4.8-Ohm, R_{on}(Flat) = 0.5ohm, typ)
- Low input/output capacitance (Con = 5.6pF, typ)
- Packaging (Pb-free and Green):
 - -32-contact TQFN (ZLE)

Applications

• Routes physical layer signals for high bandwidth digital video


Description

Pericom's PI3V713-A is a 7-channel video mux/demux used to switch between multiple VGA sources or end points. In a notebook application where analog video signals are found in both the notebook and the dock, a switch solution is required to switch between the two video port locations. With the high bandwidth of \sim 1.7GHz, the signal integrity will remain strong even through the long FR4 trace between the notebook and the docking station. In addition to high signal performance, the video signals are also protected against high ESD with integrated diodes to V_{DD} and GND that will support up to 12kV HBM ESD protection.


Application

Routing VGA signals with low signal attenuation and high ESD.

Block Diagram

Pin Diagram

Pin Description

Pin Number	Pin Name	Pin Type	Description
1	R	I/O	Red signal from VGA Transmitter
2	G	I/O	Green signal from VGA Transmitter
3	GND	Ground	Ground
4	V_{DD}	Power	3.3V +/-10% power rail
5	В	I/O	Blue signal from VGA Transmitter
6	H_SOURCE	I	Horizontal Synchronous signal from VGA Transmitter
7	V_SOURCE	I	Vertical Synchronous signal from VGA Transmitter
8	Reserved	I	For normal operation, this pin needs to be tied HIGH
9	SDA_SOURCE	I/O	DDC, data signal from VGA Transmitter
10	SCL_SOURCE	I/O	DDC, clock signal from VGA Transmitter
11	GND	Ground	Ground
12	SDA1	I/O	DDC, data signal for VGA output port 1
13	SDA2	I/O	DDC, data signal for VGA output port 2
14	SCL1	I/O	DDC, clock signal for VGA output port 1
15	SCL2	I/O	DDC, clock signal for VGA output port 2
16	5V V _{DD}	Power	5V +/-10% Power rail
17	V2_OUT	0	Vertical Synchronous buffered signal for VGA output port 2
18	V1_OUT	0	Vertical Synchronous buffered signal for VGA output port 1
19	H2_OUT	0	Horizontal Synchronous buffered signal for VGA output port 2
20	H1_OUT	0	Horizontal Synchronous buffered signal for VGA output port 1
21	B2	I/O	Blue signal for VGA port 2
22	B1	I/O	Blue signal for VGA port 1
23	V_{DD}	Power	3.3V +/-10% power rail
24	G2	I/O	Green signal for VGA port 2
25	G1	I/O	Green signal for VGA port 1
26	R2	I/O	Red signal for VGA port 2
27	R1	I/O	Red signal for VGA port 1
28	GND	Ground	Ground
29	TEST	Input	Description is TEST pin to enable TEST mode. IF this pin is LOW, then test mode is enabled. For normal usage disable TEST mode by holding this pin high, or floating. There is an internal 100Kohm pull-up on this pin
30	SEL	I	Control signal. If pin 30 is LOW, port 1 is chosen If pin 30 is HIGH, port 2 is chosen
31	GND	Ground	Ground
32	VDD	Power	3.3V +/-10% power rail

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.0V
DC Input Voltage	0.5V to +5.5V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth Table

SEL	Result
0	Port 1 is active
1	Port 2 is active

DC Electrical Characteristics for Video Switching over Operating Range

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V_{DD} = 3.3\text{V} \pm 10\%, 5\text{V} V_{DD} = 5\text{V})$

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ.(2)	Max.	Units
V_{IH}	Input HIGH Voltage (SEL/Priority and MS pins)	Guaranteed HIGH level	2	-	-	
$ m V_{IL}$	Input LOW Voltage (SEL/Priority, and MS pins)	Guaranteed LOW level	-0.5	-	0.8	V
V _{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{SELx} = -18mA$	-	-0.8	-1.2	
I_{IH}	Input HIGH Current (SEL/Priority)	$V_{DD} = Max., V_{SELx} = V_{DD}$	-	-	±5	
$I_{ m IL}$	Input LOW Current (SEL/Priority)	$V_{DD} = Max., V_{SELx} = GND$	-	-	±5	μΑ
I _{OFF_H/V/DDC}	Power Down Leakage Current for H/V and DDC channels only	$V_{DD} = 0V, V_{B} = 0V, V_{A} \le 3.6$	-	-	±5	μΑ
R _{ON}	Switch On-Resistance for RGB path (3)	$\begin{split} V_{DD} &= Min., 0V \leq V_{input} \leq 1.2V, \\ I_{input} &= -40mA \end{split}$	-	4.8	5.6	
R _{FLAT(ON)}	On-Resistance Flatness for RGB path (4)	V_{DD} = Min., V_{input} @ 0V and 1.2V, I_{input} = -40mA	-	0.5	+1	Ω
$\Delta R_{ m ON}$	On-Resistance match from center ports to any other port (RGB path only) ⁽⁴⁾	$V_{DD} = Min., 0V \le V_{input} \le 1.2V,$ $I_{input} = -40mA$	-	0.1	1	
V _{OH (H/V)}	Output high for H/V signals	5V V _{DD} = 5V, I _{OH} = -24mA	3.0		5V V _{DD}	V
V _{OL (H/V)}	Output low for H/V signals	$5V V_{DD} = 5V, I_{OL} = 24mA$	0		0.8	

Capacitance ($T_A = 25$ °C, f = 1MHz)

Parameters ⁽⁴⁾	Description	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Units
C_{IN}	Input Capacitance		2.0	
C _{OFF}	RGB Capacitance, Switch OFF		2.4	pF
C _{ON}	RGB Switch Capacitance, Switch ON		5.6	

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between input and output pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two pins.
- 4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I _{CC} _3.3V rail	Quiescent Power Supply Current for 3.3V power rail	V_{DD} = Max., V_{DD} = 3.6V, 5V V_{DD} = 5.5V V_{SEL} = GND or V_{DD}	-	250	500	μΑ
I _{CC} _5V V _{DD}		$5V V_{DD} = 5.5V, V_{DD} = 3.6V,$ $V_{SEL} = GND \text{ or } V_{DD}$		100	500	nA

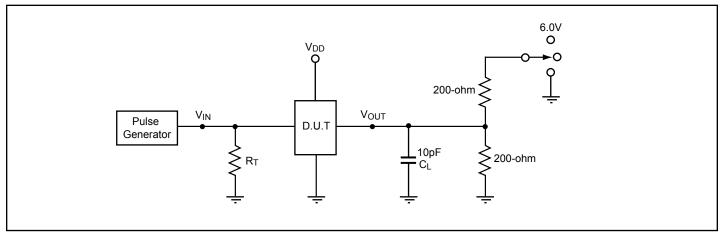
Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range (TA=-40° to +85°C, VDD=3.3V±10%, GND=0V)

Parameters	Description	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Units
X _{TALK}	Crosstalk	f = 250MHz, See Fig. 2		-	-38	-	dB
O _{IRR}	OFF Isolation	f = 250MHz, See Fig. 3		-	-46	-	uБ
BW	Bandwidth –3dB	See Fig. 1		-	1.7	-	GHz
	L .: L . 0 DCD	:4.55.01	Freq = 10MHz (VGA)		-1.77		
It Occ	Insertion Loss for RGB path	with 75-Ohm load	Freq = 100MHz (XGA)		-1.88		dB
		Todd	Freq = 300MHz (UXGA)		-2.09		

Switching Characteristics


Parameters	Description	Min.	Typ.(2)	Max.	Units
t_{PD}	Propagation Delay(2,3)	-	0.25		
t _{PZH} , t _{PZL}	Line Enable Time - SEL to Input, Output	0.5	-	15	
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to Input, Output	0.5	-	10	
t _{SK(p)}	Skew between opposite transitions of the same output (t _{PHL} - t _{PLH}) (2)	-	0.1	0.2	ns
Trise (H/V)	Horizontal/Vertical synchronous output rise time (H1_out, V1_out, H2_out, and V2_out) with 15pF load		1.5		
Tfall (H/V)	Horizontal/Vertical synchronous output fall time (H1_out, V1_out, H2_out, and V2_out) with 15pF load		1.6		

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- Guaranteed by design.
- 3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Test Circuit for Electrical Characteristics⁽¹⁾

Notes:

- 1. $C_L = Load$ capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. All input impulses are supplied by generators having the following characteristics: f = 10 MHz, $Z_O = 50\Omega$, $t_R \le 2.5$ ns, $t_F \le 2.5$ ns.
- 4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
t _{PLZ} , t _{PZL} (output on I-side)	6.0V
t _{PHZ} , t _{PZH} (output on I-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

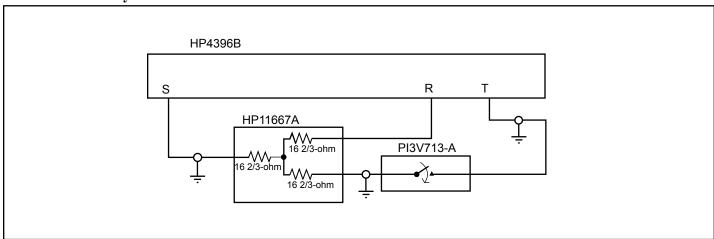


Figure 1. Bandwidth -3dB Testing

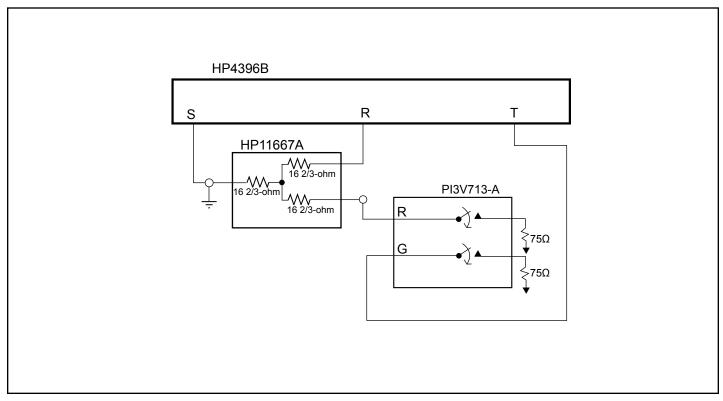


Figure 2. Crosstalk Test Setup

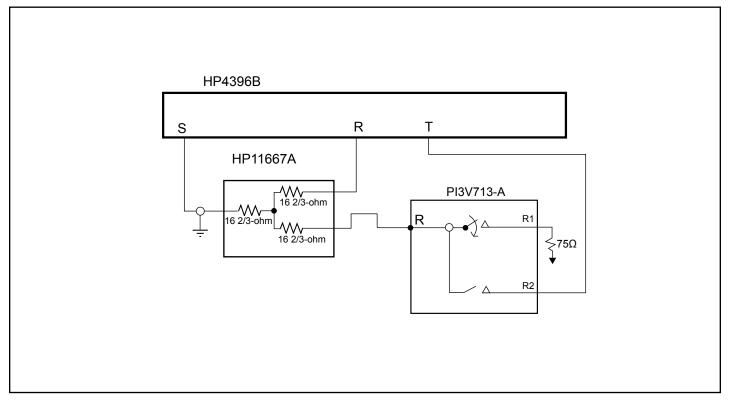
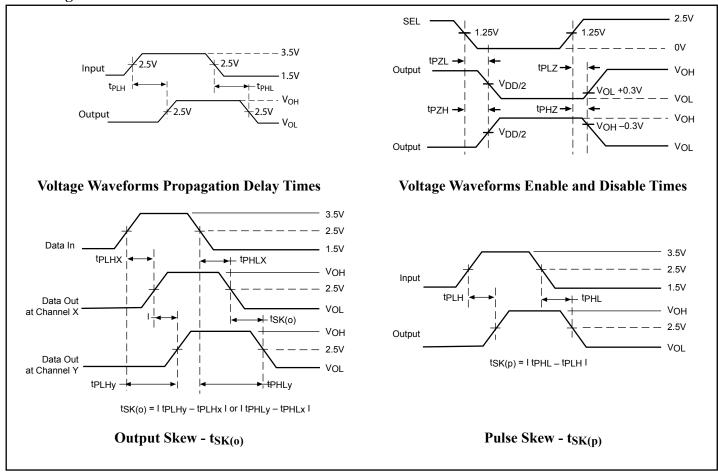
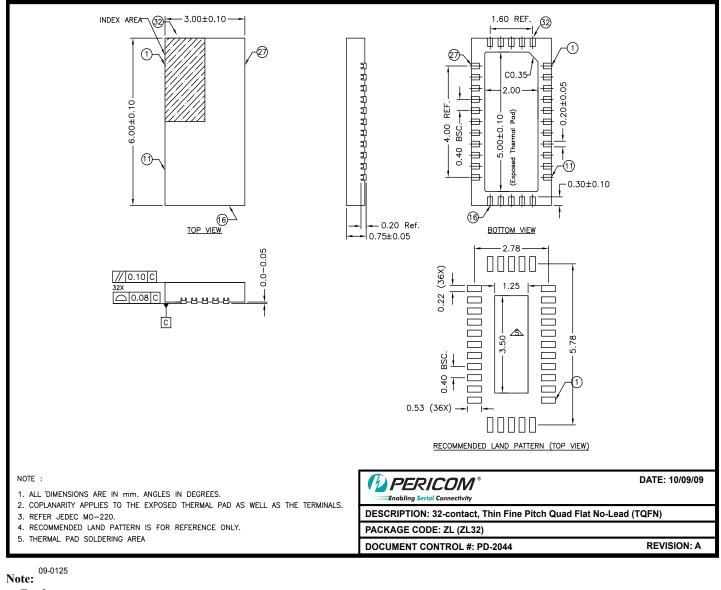



Figure 3. Off Isolation Test Setup

10-0192 6 PS9101 06/29/10

Switching Waveforms


Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, the output enables or select pins may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

10-0192 7 PS9101 06/29/10

· For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3V713-A ZLE	ZL	Pb-free & Green, 32-pin TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

PI3HDX621FBE PI3HDMI2410FFE PI3VDP12412NEE HD3SS212ZQER PI3HDMI412ADZBEX AD8191ASTZ LT6555IGN#PBF

AD8190ACPZ HD3SS215IZQER MAX4567CSE+ MAX4566ESE+ MAX4566CSE+ MAX4567ESE+ PI3HDX412BDZBEX NJM2244M

LT1203CN8#PBF MAX4885ETJ+T MAX4589CAP+ MAX4565EAP+ MAX4565CAP+ MAX4545EAP+ MAX4545CAP+

MAX4529CUT+T MAX4545CWP+ MAX4547CEE+ MAX4547EEE+ MAX4562CEE+ MAX4562EEE+ MAX4563CEE+ MAX4563EEE+

MAX4566CEE+ MAX4567EEE+ MAX4573CAI+ MAX4584EUB+ MAX4586EUB+ MAX4587EUB+ MAX4588CAI+ EL4340IUZ

MAX4885EETG+CK2 MAX4565CPP+ MAX4545EPP+ NJM2246M NJM2279D NJM2249M FSAV330MTCX FSAV430MTCX

FSAV430QSCX FSAV433MTCX FSAV450BQX FSHDMI08MTDX