PI4IOE5V9555
 16-bit I2C-bus and SMBus I/O port with interrupt

Features

\rightarrow Operation power supply voltage from 2.3 V to 5.5 V
\rightarrow 16-bit I/O pins which can be programmed as Input or Output
$\rightarrow 5 \mathrm{~V}$ tolerant I/Os
\rightarrow Polarity inversion register
\rightarrow Active LOW interrupt output
\rightarrow Low current consumption
$\rightarrow 0 \mathrm{~Hz}$ to 400 KHz clock frequency
\rightarrow Noise filter on SCL/SDA inputs
\rightarrow Power-on reset
\rightarrow ESD protection (4KV HBM and 1KV CDM)
\rightarrow Latch-up tested (exceeds 100 mA)
\rightarrow Offered in two different packages: TSSOP-24 and TQFN 4x4-24

Description

The PI4IOE5V9555 is an $\mathrm{I}^{2} \mathrm{C}$-bus I/O expander that provides 16 bits of General Purpose parallel Input/Output (GPIO) expansion for $\mathrm{I}^{2} \mathrm{C}$-bus/SMBus applications. It includes the features such as higher driving capability, 5 V tolerance, lower power supply, individual I/O configuration, and smaller packaging. It provides a simple solution when additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.

The PI4IOE5V9555 consists of two 8-bit configuration registers to configure the I/Os as either inputs or outputs, and two 8 -bit polarity registers to change the polarity of the input port register data. The data for each input or output is kept in the corresponding Input port or Output port register. All registers can be read by the system master.

The PI4IOE5V9555 open-drain interrupt output is activated and indicate to the system when any input state has changed. The power-on reset sets the registers to their default values and initializes the device state machine.

Three input pins (A0, A1, A2) can select $\mathrm{I}^{2} \mathrm{C}$-bus address of PI4IOE5V9555 from the eight preset address. It allows up to eight PI4IOE5V9555 to share the same $\mathrm{I}^{2} \mathrm{C}$-bus/SMBus and provide maximum 128 I/Os.

Figure 2: TQFN 4x4-24 (Top View)

A Product Line of Diodes Incorporated

Pin Description

Table 1: Pin Description

Pin		Name	Type	Description
TSSOP24	TQFN24			
1	22	$\overline{\text { INT }}$	O	Interrupt input (open-drain)
2	23	A1	I	Address input 1
3	24	A2	I	Address input 2
4	1	IO0_0	I/O	Port 0 input/output 0
5	2	IO0_1	I/O	Port 0 input/output 1
6	3	IO0_2	I/O	Port 0 input/output 2
7	4	IO0_3	I/O	Port 0 input/output 3
8	5	IO0_4	I/O	Port 0 input/output 4
9	6	IO0_5	I/O	Port 0 input/output 5
10	7	IO0_6	I/O	Port 0 input/output 6
11	8	IO0_7	I/O	Port 0 input/output 7
12	9	GND	G	Ground
13	10	IO1_0	I/O	Port 1 input/output 0
14	11	IO1_1	I/O	Port 1 input/output 1
15	12	IO1_2	I/O	Port 1 input/output 2
16	13	IO1_3	I/O	Port 1 input/output 3
17	14	IO1_4	I/O	Port 1 input/output 4
18	15	IO1_5	I/O	Port 1 input/output 5
19	16	IO1_6	I/O	Port 1 input/output 6
20	17	IO1_7	I/O	Port 1 input/output 7
21	18	A0	I	Address input 0
22	19	SCL	I	Serial clock line input
23	20	SDA	I	Serial data line open-drain
24	21	VCC	P	Supply voltage

* I = Input; O = Output; P = Power; G = Ground

A Product Line of Diodes Incorporated

Maximum Ratings

Power supply.	-0.5V to +6.0 V
Voltage on an I/Opin.	..GND-0.5V to +6.0 V
Input current..	$\pm 20 \mathrm{~mA}$
Output current on an I/Opin	$\ldots . . \pm 50 \mathrm{~mA}$
Supply current.	. 160 mA
Ground supply current.	200 mA
Total power dissipation	200 mW
Operation temperature.	... $40 \sim 85^{\circ} \mathrm{C}$
Storage temperature ...	$\ldots-65 \sim 150^{\circ} \mathrm{C}$
Maximum Junction temperature, $\mathrm{Tj}(\max)$	

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Static characteristics

VCC $=2.3 \mathrm{~V}$ to 5.5 V ; GND $=0 \mathrm{~V}$; Tamb $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.
Table 2: Static characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Power supply						
VCC	Supply voltage		2.3	-	5.5	V
$\mathrm{I}_{\text {CC }}$	Supply current	Operating mode; $\mathrm{VCC}=5.5 \mathrm{~V}$; no load; fSCL $=100 \mathrm{kHz}$	-	135	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {sb }}$	Standby current	Standby mode; VCC = 5.5 V ; no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND} ;$ fscL $=0 \mathrm{kHz} ; \mathrm{I} / \mathrm{O}=$ inputs	-	1.1	1.5	mA
		Standby mode; VCC $=5.5 \mathrm{~V}$; no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{VCC} ;$ fsCL $=0 \mathrm{kHz} ; \mathrm{I} / \mathrm{O}=$ inputs	-	0.25	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage ${ }^{[1]}$		-	1.16	1.41	V

Input SCL, input/output SDA

$\mathrm{V}_{\mathbb{L}}$	Low level input voltage		-0.5	-	+0.3 VCC	V
V_{H}	High level input voltage		0.7 VCC	-	5.5	V
I_{OL}	Low level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
I_{L}	Leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{VCC}=\mathrm{GND}$	-1	-	1	$\mu \mathrm{~A}$
C_{i}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$	-	6	10	pF

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I/Os						
VIL	Low level input voltage		-0.5	-	+0.81	V
VIH	High level input voltage		+1.8	-	5.5	V
$\mathrm{I}_{\text {OL }}$	Low level output current	$\mathrm{VCC}=2.3 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}^{[2]}$	8	-	20	mA
		$\mathrm{VCC}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.7 \mathrm{~V}^{[2]}$	10	-	24	mA
V_{OH}	High level output voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} ; \mathrm{VCC}=2.3 \mathrm{~V}^{[3]}$	1.8	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA} ; \mathrm{VCC}=2.3 \mathrm{~V}^{[3]}$	1.7	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} ; \mathrm{VCC}=3.0 \mathrm{~V}^{[3]}$	2.6	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA} ; \mathrm{VCC}=3.0 \mathrm{~V}^{[3]}$	2.5	-	-	V
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} ; \mathrm{VCC}=4.75 \mathrm{~V}^{[3]}$	4.1	-	-	V
		$\mathrm{IOH}_{\mathrm{OH}}=-10 \mathrm{~mA} ; \mathrm{VCC}=4.75 \mathrm{~V}^{[3]}$	4.0	-	-	V
$\mathrm{I}_{\text {LIH }}$	High level input leakage current	$\mathrm{VCC}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{l}}=\mathrm{VCC}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LIL }}$	Low level input leakage current	$\mathrm{VCC}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$	-	-	-100	$\mu \mathrm{A}$
C_{i}	Input capacitance		-	3.7	10	pF
C_{0}	Output capacitance		-	3.7	10	pF

Interrupt $\overline{\mathrm{INT}}$

I_{OL}	Low level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA

Select inputs A0,A1,A2

V_{IL}	Low level input voltage		-0.5	-	+0.81	V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage		+1.8	-	5.5	V
I_{L}	Input leakage current		-1		1	$\mu \mathrm{~A}$

Note:
[1]: VCC must be lowered to 0.2 V for at least 20 us in order to reset part.
[2]: Each I/O must be externally limited to a maximum of 25 mA and each octal (IO0_0 to IO0_7 and IO1_0 to IO1_7) must be limited to a maximum current of 100 mA for a device total of 200 mA .
[3]: The total current sourced by all I/Os must be limited to 160 mA .

Dynamic Characteristics

Table 3: Dynamic characteristics

Symbol	Parameter	Test Conditions	Standard mode $I^{2} \mathbf{C}$		Fast mode $\mathbf{I}^{\mathbf{2}} \mathbf{C}$		Unit
			Min	Max	Min	Max	
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		0	100	0	400	kHz
$\mathrm{t}_{\text {BUF }}$	bus free time between a STOP and START condition		4.7	-	1.3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$	hold time (repeated) START condition		4.0	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{SU} ; \mathrm{STA}}$	set-up time for a repeated START condition		4.7	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STO	set-up time for STOP condition		4.0	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{VD} ; \mathrm{ACK}}{ }^{[1]}$	data valid acknowledge time		-	3.45	-	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}{ }^{[2]}$	data hold time		0	-	0	-	ns
$\mathrm{t}_{\mathrm{VD} ; \mathrm{DAT}}$	data valid time		-	3.45	-	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }{ }^{\text {DAT }}}$	data set-up time		250	-	100	-	ns
$\mathrm{t}_{\text {Low }}$	LOW period of the SCL clock		4.7	-	1.3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HIGH}}$	HIGH period of the SCL clock		4.0	-	0.6	-	$\mu \mathrm{s}$
t_{f}	fall time of both SDA and SCL signals		-	300	-	300	ns
t_{r}	rise time of both SDA and SCL signals		-	1000	-	300	ns
$\mathrm{t}_{\text {SP }}$	pulse width of spikes that must be suppressed by the input filter		-	50	-	50	ns

Port timing

$\mathrm{t}_{\mathrm{v}(\mathrm{Q})}$	Data output valid time $^{[3]}$		-	200	-	200	ns
$\mathrm{t}_{\mathrm{su}(\mathrm{D})}$	Data input set-up time		150	-	150	-	ns
$\mathrm{T}_{\mathrm{h}(\mathrm{D})}$	Data input hold time		1	-	1	-	$\mu \mathrm{s}$

Interrupt timing

$\mathrm{t}_{\mathrm{v}(\mathrm{INT})}$	Valid time on pin $\overline{\text { INT }}$		-	4	-	4	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {rst(INT) }}$	Reset time on pin $\overline{\text { INT }}$		-	4	-	4	$\mu \mathrm{~s}$

Note:
[1]: $\mathrm{t}_{\mathrm{VD} ; \mathrm{ACK}}=$ time for acknowledgement signal from SCL LOW to SDA (out) LOW.
[2]: $\mathrm{t}_{\mathrm{VD} ; \mathrm{DAT}}=$ minimum time for SDA data out to be valid following SCL LOW.
[3]: $\mathrm{t}_{\mathrm{v}(\mathrm{Q})}$ measured from 0.7 VCC on SCL to $50 \% \mathrm{I} / \mathrm{O}$ output.

Figure 3: timing parameters for INT signal

PI4IOE5V9555 Block Diagram

Figure 4: Block diagram

Note: All I/Os are set to inputs at reset.

Details Description

a. Device address

	b7(MSB)	b6	b5	b4	b3	b2	b1	b0
Address Byte	0	1	0	0	A2	A1	A0	R/W

Note: Read " 1 ", Write "0"

b. Registers

i. Command byte

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Table 4: Command byte

Command	Register
0	Input port 0
1	Input port 1
2	Output port 0
3	Output port 1
4	Polarity inversion port 0
5	Polarity inversion port 1
6	Configuration port 0
7	Configuration port 1

ii. Register 0 and 1: input port registers

This register is a read-only port. It reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3. Writes to this register have no effect.

The default value ' X ' is determined by the externally applied logic level.
Table 5: Input port 0 register

Bit	7	6	5	4	3	2	1	0
Symbol	I 0.7	I 0.6	I 0.5	I 0.4	I 0.3	I 0.2	I 0.1	I 0.0
Default	X	X	X	X	X	X	X	X

Table 6: Input port 1 register

Bit	7	6	5	4	3	2	1	0
Symbol	I 1.7	I 1.6	I 1.5	I 1.4	I 1.3	I 1.2	I 1.1	I 1.0
Default	X	X	X	X	X	X	X	X

A Product Line of Diodes Incorporated

iii. Register 2 and 3:Output port registers

This register is an output-only port. It reflects the outgoing logic levels of the pins defined as outputs by Registers 6 and 7. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flipflop controlling the output selection, not the actual pin value.

Table 7: Output port 0 register

Bit	7	6	5	4	3	2	1	0
Symbol	O 0.7	O 0.6	O 0.5	O 0.4	O 0.3	O 0.2	O 0.1	O 0.0
Default	1	1	1	1	1	1	1	1

Table 8: Output port 1 register

Bit	7	6	5	4	3	2	1	0
Symbol	O1.7	O1.6	O1.5	O1.4	O1.3	O1.2	O1.1	O1.0
Default	1	1	1	1	1	1	1	1

iv. Register 4 and 5: Polarity inversion registers

This register allows the user to invert the polarity of the Input port register data. If a bit in this register is set (written with ' 1 '), the Input port data polarity is inverted. If a bit in this register is cleared (written with a ' 0 '), the Input port data polarity is retained.

Table 9: Polarity Inversion port 0 register

Bit	7	6	5	4	3	2	1	0
Symbol	N 0.7	N 0.6	N 0.5	N 0.4	N 0.3	N 0.2	N 0.1	N 0.0
Default	0	0	0	0	0	0	0	0

Table 10: Polarity Inversion port 1 register

Bit	7	6	5	4	3	2	1	0
Symbol	N 1.7	N 1.6	N 1.5	N 1.4	N 1.3	N 1.2	N 1.1	N 1.0
Default	0	0	0	0	0	0	0	0

v. Register 6 and 7: Configuration registers

This register configures the directions of the I/O pins. If a bit in this register is set (written with ' 1 '), the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared (written with ' 0 '), the corresponding port pin is enabled as an output. Note that there is a high value resistor tied to VCC at each pin. At reset, the IOs are configured as inputs with a pull-up to VCC.

A Product Line of Diodes Incorporated

PI4IOE5V9555

Table 11: Configuration port 0 register

Bit	7	6	5	4	3	2	1	0
Symbol	C 0.7	C 0.6	C 0.5	C 0.4	C .3	C 0.2	C 0.1	C 0.0
Default	1	1	1	1	1	1	1	1

Table 12: Configuration port 1 register

Bit	7	6	5	4	3	2	1	0
Symbol	C 1.7	C 1.6	C 1.5	C 1.4	C 1.3	C 1.2	C 1.1	C 1.0
Default	1	1	1	1	1	1	1	1

c. Power-on reset

When power is applied to VCC, an internal power-on reset holds the PI4IOE5V9555 in a reset condition until VCC has reached Vpor. At that point, the reset condition is released and thePI4IOE5V9555 registers and SMBus state machine will initialize to their default states. The power-on reset typically completes the reset and enables the part by the time power supply is above VPOR. However, when it is required to reset the part by lowering the power supply, it is necessary to lower it below 0.2 V .

d. I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input with a weak pull-up to VCC. The input voltage may be raised above VCC to a maximum of 5.5 V .

If the I/O is configured as an output, then either Q1 or Q2 is on, depending on the state of the Output Port register. Care should be exercised if an external voltage is applied to an I/O configured as an output because of the low-impedance path that exists between the pin and either VCC or GND.

A Product Line of Diodes Incorporated

PI4IOE5V9555

Figure 5: Simplified schematic of I/Os

After power-on reset, all registers return to default values.

e. Bus Transaction

i. Writing to the port registers

Data is transmitted to the PI4IOE5V9555 by sending the device address and setting the least significant bit to a logic 0 . The command byte is sent after the address and determines which register will receive the data following the command byte.
The eight registers within the PI4IOE5V9555 are configured to operate as four register pairs. The four pairs are Input Ports, Output Ports, Polarity Inversion Ports, and Configuration Ports. After sending data to one register, the next data byte will be sent to the other register in the pair. For example, if the first byte is sent to Output Port 1 (register 3), the next byte will be stored in Output Port 0 (register 2).There is no limitation on the number of data bytes sent in one write transmission. In this way, each 8 -bit register may be updated independently of the other registers.

Figure 6: Write to output registers

A Product Line of Diodes Incorporated

Figure 7: Write to configuration registers

ii. Reading the port registers

In order to read data from the PI4IOE5V9555, the bus master must first send the PI4IOE5V9555address with the least significant bit set to a logic 0 . The command byte is sent after the address and determines which register will be accessed. After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1 . Data from the register defined by the command byte will then be sent by the PI4IOE5V9555. Data is clocked into the register on the falling edge of the acknowledge clock pulse. After the first byte is read, additional bytes may be read but the data will now reflect the information in the other register in the pair. For example, if you read Input Port 1, then the next byte read would be Input Port 0 . There is no limitation on the number of data bytes received in one read transmission but the final byte received, the bus master must not acknowledge the data.

Figure 8: Read from registers

Note: Transfer can be stopped at any time by a STOP condition.

A Product Line of Diodes Incorporated

PI4IOE5V9555

Figure 9: Read Input port register

Note: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte has previously been set to ' 00 ' (read Input Port register).

iii. Interrupt output

The open-drain interrupt output is activated when one of the port pins changes state and the pin is configured as an input. The interrupt is deactivated when the input returns to its previous state or the Input Port register is read. A pin configured as an output cannot cause an interrupt. Since each 8 -bit port is read independently, the interrupt caused by Port 0 will not be cleared by a read of Port 1 or the other way around.

Note: Changing an I/O from an output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the Input Port register.

Application design-in information

Figure 10: Typical application

Device address configured as 0100000 xb for this example.
IO0_0, IO0_4, IO0_5 configured as outputs.
IO0_1, IO0_2, IO0_3 configured as inputs.
IO0_6, IO0_7, and IO1_0 to IO1_7 configured as inputs.

Mechanical Information
 TSSOP-24(L)

TQFN 4x4-24(ZD)

Ordering Information

Part No.	Package Code	Package
PI4IOE5V9555LE	L	24-pin,173mil Wide (TSSOP)
PI4IOE5V9555LEX	L	24-pin,173mil Wide (TSSOP), Tape \& Reel
PI4IOE5V9555ZDEX	ZD	24-contact, Very Thin Quad Flat No-Lead (TQFN), Tape \& Reel

Note:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- X suffix $=$ Tape/Reel

A Product Line of Diodes Incorporated

PI4IOE5V9555

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - I/O Expanders category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
PCA9654EDR2G LC709006V-E LC709006V-TLM-E PM8053B-F3EI PM8004C-F3EI PM8005C-F3EI PI4IOE5V9554LEX PI4IOE5V9555LEX PI4IOE5V6534Q2ZLWEX PI4IOE5V6416Q2LEX 41700-100 MCP25050-E/P MIC74YQS ADP5585ACBZ-00-R7 ADP5585ACBZ-04-R7 EM4095HMSO16A HTRC11001T/02EE ADP5587ACPZ-1-R7 ADP5587ACPZ-R7 ADP5585ACPZ-01-R7 ADP5586ACBZ-00-R7 PCF8574P XD8574AP XD8574P XD8255-2 XD82C55-5 XD71055 ECE1088-DZK KTS1620EWA-TR MAX7311AWG+ MCP25025-ISL MCP25020-I/SL PI4IOE5V9555ZDEX MAX7300ATL+ MCP23008-E/SS MCP23009-E/SS MAX7325ATG+T MCP23016-I/SO MCP23S17-E/SO MAX7300AAI+ MAX7301AAI+ MAX7312AUG+ MAX7315AEE + MAX7317AEE $+\underline{\text { MAX7321AEE }+~ M C P 25020-I / P ~ P C A 9554 A P W, 118 ~ M A X 7310 A U E+~ P I 4 I O E 5 V 9538 L E ~ P I 4 I O E 5 V 9554 L E ~}$

