## Wide Bandwidth Analog Switches

## Features

- Single-Supply Operation (+2V to +6 V )
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance ( $6 \Omega$ typ. with 5 V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, $3 \Omega$ typ.
- Low Charge Injection Reduces Glitch Errors. $Q=4 p C$ typ.
- High Speed. $\mathrm{t}_{\mathrm{ON}}=10 \mathrm{~ns}$ typ.
- Wide -3dB Bandwidth: 326 MHz (typ.)
- High-Current Channel Capability: $>100 \mathrm{~mA}$
- TTL/CMOS Logic Compatible
- Low Power Consumption ( $0.5 \mu \mathrm{~W}$ typ)
- Small outline transistor package minimizes board area
- Packaging (Pb-free \& Green available):
- 6-pin 65-mil wide SOT23 (T) for PI5A124


## Applications

- Audio, Video Switching, and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- Mechanical Relay Replacement
- Cell Phones
- PDAs


## Functional Diagrams/Pin Configurations



Switches shown for Logic "0" input

## Description

The PI5A124 are analog switches designed for single-supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.
These switches are fully specified with +5 V , and +3.3 V supplies. With +5 V , they guarantee $<10 \Omega$ On-Resistance. On-Resistance matching between channels is within $2 \Omega$. On-Resistance flatness is less than $55 \Omega$ over the specified range. These switches also guarantee fast switching speeds ( $\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ns}$ ).
These products are available in 6-pin SOT23 plastic packages for operation over the industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

## Truth Tables

|  | PI5A124 |  |
| :---: | :---: | :---: |
| LOGIC | NC | NO |
| 0 | ON | OFF |
| 1 | OFF | ON |

Absolute Maximum Ratings
Voltages Referenced to Gnd
V+ $\qquad$ -0.5 V to +7 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}($ Note 1$) \ldots . . . . . . . . . . . . . . . .-0.5 \mathrm{~V}$ to $\mathrm{V}++2 \mathrm{~V}$ or 30 mA , whichever occurs first
Current (any terminal) $\pm 25 \mathrm{~mA}$
Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) $\pm 25 \mathrm{~mA}$

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5 V Supply
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Min. ${ }^{(1)}$ | Typ. ${ }^{(2)}$ | Max. ${ }^{(1)}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Switch |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{(3)}$ | VaNALOG |  | Full | 0 |  | V+ | V |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.5 \mathrm{~V} \end{aligned}$ | 25 |  | 7.2 | 10 | $\Omega$ |
|  |  |  | Full |  |  | 12 |  |
| On-Resistance Match Between Channels ${ }^{(4)}$ | $\Delta \mathrm{R}_{\mathrm{ON}}$ |  | 25 |  | 0.2 | 2 |  |
|  |  |  | Full |  |  | 4 |  |
| On-Resistance Flatness ${ }^{(5)}$ | $\mathrm{R}_{\text {FLAT(ON) }}$ | $\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$ | 25 |  | 2.72 | 3.5 |  |
|  |  |  | Full |  |  | 4 |  |
| NO or NC Off Leakage Current ${ }^{(6)}$ | $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$ | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$ | 25 |  | 0.18 |  | nA |
|  |  |  | Full | -1 |  | 150 |  |
| COM Off Leakage Current ${ }^{(6)}$ | $\mathrm{I}_{\mathrm{COM}(\mathrm{OFF})}$ | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 0 \mathrm{~V} \end{aligned}$ | 25 |  | 0.20 |  |  |
|  |  |  | Full | -1 |  | 150 |  |
| COM On Leakage Current ${ }^{(6)}$ | $\mathrm{I}_{\mathrm{COM}(\mathrm{ON})}$ | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \\ & \hline \end{aligned}$ | 25 |  | 0.20 |  |  |
|  |  |  | Full | -1 |  | 50 |  |

## Electrical Specifications - Single $+\mathbf{5 V}$ Supply

( $\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}$ )

| Parameter | Symbol | Conditions | Temp $\left({ }^{\circ} \mathbf{C}\right)$ | Min. ${ }^{(1)}$ | Typ. ${ }^{(2)}$ | Max. ${ }^{(1)}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |

Logic Input

| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | Guaranteed logic High Level | Full | 2 |  |  | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Low Voltage | $\mathrm{V}_{\text {IL }}$ | Guaranteed logic Low Level |  |  |  | 0.8 |  |
| Input Current with Voltage High | $\mathrm{I}_{\text {INH }}$ | $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$ |  | -1 | 0.005 | 1 | $\mu \mathrm{A}$ |
| Input Current with Voltage Low | $\mathrm{I}_{\text {INL }}$ | $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$ |  | -1 | 0.005 | 1 |  |

## Dynamic

| Turn-On Time | $\mathrm{t}_{\mathrm{ON}}$ | $\mathrm{V}+=5 \mathrm{~V}$, Figure 1 | 25 | 7 | 15 | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Full |  | 20 |  |
| Turn-Off Time | toff |  | 25 | 1 | 7 |  |
|  |  |  | Full |  | 10 |  |
| Charge Injection ${ }^{(3)}$ | Q | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$ | 25 | 1.6 | 10 | pC |
| Off Isolation | OIRR | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \\ & \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 3 \end{aligned}$ |  | -43 |  | dB |
| Crosstalk ${ }^{(8)}$ | $\mathrm{X}_{\text {TALK }}$ | $\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & f=10 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$ |  | -43 |  |  |
| NC or NO Capacitance | $\mathrm{C}_{\text {(OFF) }}$ | $\mathrm{f}=1 \mathrm{kHz}$, Figure 5 |  | 5.5 |  | pF |
| COM Off Capacitance | $\mathrm{C}_{\text {COM (OFF) }}$ |  |  | 5.5 |  |  |
| COM On Capacitance | $\mathrm{C}_{\text {COM(ON }}$ | $\mathrm{f}=1 \mathrm{kHz}$, Figure 6 |  | 13 |  |  |
| -3dB Bandwidth | BW | $\mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 7 | Full | 326 |  | MHz |

## Supply

| Power-Supply Range | V+ |  | Full | 2 | 6 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Positve Supply Current | I+ | $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$ |  |  | 1 | $\mu \mathrm{A}$ |

## Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are $100 \%$ tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 3.
8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3 V Supply
$\left(\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}\right)$

| Parameter | Symbol | Conditions | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Min.(1) | Typ.(2) | Max.(1) | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Switch |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{(3)}$ | V ANALOG |  |  | 0 |  | V+ | V |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$ | 25 |  | 12 | 18 | $\Omega$ |
|  |  |  | Full |  |  | 22 |  |
| On-Resistance Match Between Channels ${ }^{(4)}$ | $\Delta \mathrm{R}_{\mathrm{ON}}$ | $\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$ | 25 |  | 1 | 1 |  |
|  |  |  | Full |  |  | 2 |  |
| On-Resistance Flatness ${ }^{(3,5)}$ | $\mathrm{R}_{\text {FLAT(ON) }}$ |  | 25 |  | 0.5 | 4 |  |
|  |  |  | Full |  |  | 5 |  |
| Dynamic |  |  |  |  |  |  |  |
| Turn-On Time | $\mathrm{t}_{\mathrm{ON}}$ | $\mathrm{V}+=3.3 \mathrm{~V},$ <br> $\mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, <br> Figure 1 | 25 |  | 15 | 25 |  |
|  |  |  | Full |  |  | 40 |  |
| Turn-Off Time | toff |  | 25 |  | 1.5 | 12 |  |
|  |  |  | Full |  |  | 20 |  |
| Charge Injection ${ }^{(3)}$ | Q | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V} \text {, Figure } 2 \end{aligned}$ | 25 |  | 1.3 | 10 | pC |
| Supply |  |  |  |  |  |  |  |
| Positve Supply Current | I+ | $\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+\mathrm{All}$ <br> Channels on or off | Full |  |  | 1 | $\mu \mathrm{A}$ |
| Logic Input |  |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | Guaranteed logic high level | Full | 2 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {IL }}$ | Guaranteed logic low level | Full |  |  | 0.8 |  |
| Input High Current | $\mathrm{I}_{\text {INH }}$ | $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$ | Full | -1 |  | 1 | $\mu \mathrm{A}$ |
| Input Low Current | $\mathrm{I}_{\text {INL }}$ | $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$ | Full | -1 |  | 1 |  |

## Test Circuits/Timing Diagrams



Figure 1. Switching Time


Figure 2. Charge Injection

## Test Circuits/Timing Diagrams



Figure 3. Off Isolation


Figure 5. Channel-Off Capacitance


Figure 7. Bandwidth


Figure 4. Crosstalk (124 only)


Figure 6. Channel-On Capacitance

## Packaging Mechanical: SOT23 (T)



09-0131

## Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php


## Ordering Information

| Ordeing Code | Packaging Code | Package Type | Top Marking |
| :---: | :---: | :---: | :---: |
| P15A124TE | T | 6-pin, Small Outline Transistor Plastic Package (SOT23) | ZT |

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X suffix = Tape/Reel


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2301FG-G RS2117YUTQK10 RS2118YUTQK10

RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG201HSDJ-E3 DG307BDJ-E3

