Low Voltage Dual SPDT 0.8Ω Analog Switch

Description

The PI5A23159 is a dual high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. The device features ultra low RON of 0.8Ω typical at 3.0 V VCC and will operate over the wide VCC range of 1.65 V to 5.5 V .
The PI5A23159 features very low quiescent current even when the control voltage is lower than the VCC supply. This feature services the mobile handset applications very well by allowing direct interface with baseband processor general purpose I/Os. Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.
The control input, S , is independent of supply voltage.

Pin Assignment

A Product Line of Diodes Incorporated

PI5A23159

Maximum Ratings

Storage Temperature.................................-65 ${ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	
Ambient Temperature with Power Applied	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage V_{CC}	-0.5V to +7.0 V
DC Switch Voltage V_{S}	-0.5 V to +7.0 V
DC Input Voltage $\mathrm{V}_{\text {IN }}$	-0.5 V to +7.0 V
DC Output Current $\mathrm{V}_{\text {ou }}$	128mA
DC V $\mathrm{CCC}^{\text {or Ground Current }} \mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{G}}$	$\pm 100 \mathrm{~mA}$
Junction Temperature under Bias (TJ)	$150^{\circ} \mathrm{C}$
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD (HBM)	.5KV
Power Dissipation (Pd) @ $+85^{\circ} \mathrm{C}$	MSOP10 350mW

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{CC}	Operating Voltage	-	1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage	-	0	-	V_{CC}	V
V_{S}	Switch Input Voltage	-	0	-	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	-	0	-	V_{CC}	V
T_{A}	Operating Temperature	-	-40	25	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Control Input $\mathrm{VCC}=2.7 \mathrm{~V}$ to 3.6 V	0	-	10	$\mathrm{~ns} / \mathrm{V}$
		Control Input $\mathrm{VCC}=4.5 \mathrm{~V}$ to 5.5 V	0	-	5	$\mathrm{~ns} / \mathrm{V}$

Note: Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Symbol	Parameter	Test Conditions	Supply Voltage	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IAR }}$	Analog Input Signal Range	-	$\mathrm{V}_{\text {CC }}$	0	-	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{R}_{\text {ON }}$	ON Resistance ${ }^{(1)}$	$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.7	1.1	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=2.4 \mathrm{~V}$		-	0.6	1.0	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=4.5 \mathrm{~V}$		-	0.8	1.2	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.8	1.3	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=3.0 \mathrm{~V}$		-	0.9	1.9	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	1.0	1.5	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=2.3 \mathrm{~V}$		-	1.2	1.8	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	1.3	1.9	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=1.65 \mathrm{~V}$		-	2.0	2.8	
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON Resistance Match Between Channels ${ }^{(1,2,3)}$	$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=3.15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.01	0.12	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=2.1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.02	-	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=1.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.03	-	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=1.15 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	0.03	-	
$\mathrm{R}_{\mathrm{ONF}}$	ON Resistance Flatness ${ }^{(1,2,4)}$	$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}, 2.4 \mathrm{~V}, 4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.2	0.4	Ω
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}, 1.5 \mathrm{~V}, 3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	0.2	0.4	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}, 1.1 \mathrm{~V}, 2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	0.4	0.6	
		$\mathrm{I}_{\mathrm{Ax}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{nBx}}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	1.0	1.4	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Logic High Level	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	0.9	-	-	V
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.0	-	-	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	1.1	-	-	
			$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$	1.2	-	-	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1.3	-	-	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Logic Low Level	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.6	V
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.6	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.6	
			$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$	-	-	0.8	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	0.8	
$\mathrm{I}_{\text {OFF(Bn) }}$	Source Off Leakage Current	$\mathrm{V}_{\mathrm{Ax}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{nBx}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-20	-	+20	nA
$\mathrm{I}_{\mathrm{ON}(\mathrm{A}, \mathrm{Bn})}$	Channel On Leakage Current	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \\ \hline \end{gathered}$	-40	-	+40	nA
I_{CC}	Quiescent Supply Current	All Channels ON or OFF, $\mathrm{V}_{\mathrm{nBx}}=\mathrm{V}_{\mathrm{CC}}$ and GND , $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	0.002	0.1	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	0.002	0.1	
$\mathrm{I}_{\mathrm{CCT}}$	Increase in I_{CC} per Input	Channel Input at 2.7 V	$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	0.2	10.0	$\mu \mathrm{A}$

Notes:

1. Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports $(\mathrm{Ax}$ or nBx$) \mathrm{x}=0$ or $1, \mathrm{n}=0$ or 1 .
2. Parameter is characterized but not tested in production.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min. measured at identical V_{CC}, temperature and voltage levels.
4. Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions.

Capacitance ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Supply Voltage	Temp (${ }^{\circ} \mathrm{C}$)	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Control Input	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	3.5	-	pF
$\mathrm{C}_{\text {IO-B }}$	For Bn Port, Switch OFF				-	15.0	-	
$\mathrm{C}_{\text {IOA-ON }}$	For An Port, Switch ON				-	34.0	-	

Notes:

1. Capacitance is characterized but not tested in production

Switch and AC Characteristics ${ }^{(1)}$

Parameter	Description	Test Conditions	Supply Voltage	Min	Typ	Max	Units
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time	See Figure 2	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	10	-	ns
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6	-	
t_{ON}	Turn on Time	See Figure 1	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	16	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	12	-	
$\mathrm{t}_{\text {OFF }}$	Turn off Time	See Figure 1	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	8	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5	-	
Q	Charge Injection	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega . \\ \text { See Figure } 3 \end{gathered}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$	-	35	-	pC
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	25	-	
OIRR	Off Isolation ${ }^{(2)}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{f}=1 \mathrm{MHz} . \end{gathered}$ See Figure 4	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	-	-70	-	dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk Isolation	$\mathrm{f}=1 \mathrm{MHz}$, See Figure 5	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	-	-70	-	
f3dB	-3dB Bandwidth	See Figure 8	$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$ to 5.5 V	-	150	-	MHz
T_{HD}	Total Harmonic Distortion	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{Vpp}, \\ \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ \text { See Figure } 9 \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 4.2 V	-	0.015	-	\%

Notes:

1. Guaranteed by design.
2. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{nBx}} / \mathrm{V}_{\mathrm{Ax}}\right]$ and is measured in dB .

PI5A23159

Test Circuits and Timing Diagrams

Figure 1. Turn ON/OFF Timing

Figure 2. Break Before Make Interval Timing

Figure 3. Charge Injection Test

Figure 4. Off Isolation

Figure 5. Crosstalk

Figure 6. Channel Off Capacitance

Figure 7. Channel On Capacitance

Figure 8. Bandwidth

Figure 9. Harmonic Distortion

A Product Line of Diodes Incorporated

Packaging Mechanical 10-MSOP (U)

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Part Number	Package Code	Package Description
PI5A23159UEX	U	10-Pin, Mini Small Outline Package (MSOP)

Notes:

- EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- $\quad \mathrm{X}$ suffix $=$ Tape/Reel

A Product Line of Diodes Incorporated

MPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

