Lead-free Green

Features

\rightarrow CMOS Technology for Bus and Analog Applications
\rightarrow Low On-Resistance: 0.8Ω at 3.0 V
\rightarrow Wide V_{CC} Range: 1.65 V to 5.5 V
\rightarrow Rail-to-Rail Signal Range
\rightarrow Control Input Overvoltage Tolerance: 5.5 V
\rightarrow Fast Transition Speed: 2ns at 5.0 V
\rightarrow High Bandwidth: 200 MHz
\rightarrow Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
\rightarrow I/O pins Has Power-off Protection Function
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow Packaging (Pb -free \& Green):

- 5-pin SOT23
- 5-pin SC70

Applications

\rightarrow Cell Phones
\rightarrow PDAs
\rightarrow Portable Instrumentation
\rightarrow Battery powered Communications
\rightarrow Computer Peripherals

Description

The PI5A3166 is a high-bandwidth, fast single-pole singlethrow (SPST) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. The device features ultra low RON of 0.8Ω typical at 3.0 V VCC and will operate over the wide VCC range of 1.65 V to 5.5 V .
The PI5A3166 features very low quiescent current even when the control voltage is lower than the VCC supply. This feature services the mobile handset applications very well by allowing direct interface with baseband processor general purpose I/Os. The control input, S, is independent of supply voltage.

Pin Configuration

SOT23 and SC70 Package (Top View)

Pin Description

Pin No	Pin Name	Description
1	B	Data Port
2	A	Common Output/Data Port
3	GND	Ground
4	S	Logic Control
5	VCC	Positive Power Supply

Logic Function Table

Logic Input(S)	Function(A to B)
0	OFF
1	ON

[^0]
Maximum Ratings

Storage Temperature.	65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage V_{CC}	-0.5 V to +7.0 V
DC Switch Voltage V_{S}	-0.5V to +7.0 V
DC Input Voltage $\mathrm{V}_{\text {IN }}$	-0.5 V to +7.0 V
DC Output Current $\mathrm{V}_{\text {Out }}$	128 mA
DC V_{CC} or Ground Current $\mathrm{I}_{\mathrm{CC}} / \mathrm{I}$	$\pm 100 \mathrm{~mA}$
Junction Temperature under Bias (TJ)	$150^{\circ} \mathrm{C}$
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD (HBM)	...4KV
Power Dissipation (PD) @ $+85^{\circ} \mathrm{C}$	$\begin{array}{r} \text {..SOT23 250mW } \\ \text { SC70 200mW } \end{array}$

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{CC}	Operating Voltage	-	1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	-	0	-	V_{CC}	V
V_{S}	Switch Input Voltage	-	0	-	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	-	0	-	V_{CC}	V
T_{A}	Operating Temperature	-	-40	25	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Control Input $\mathrm{VCC}=2.7 \mathrm{~V}$ to 3.6 V	0	-	10	$\mathrm{~ns} / \mathrm{V}$
		Control Input $\mathrm{VCC}=4.5 \mathrm{~V}$ to 5.5 V	0	-	5	$\mathrm{~ns} / \mathrm{V}$

Note: Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Description	Test Conditions	Supply Voltage	Min	Typ	Max	Units
$\mathrm{V}_{\text {IAR }}$	Analog Input Signal Range	-	V_{CC}	0	-	VCC	V
R_{ON}	$\text { ON Resistance }{ }^{(1)}$	$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}$	4.5 V	-	0.7	1.1	Ω
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}$		-	0.6	1.0	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=4.5 \mathrm{~V}$		-	0.8	1.2	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}$	3.0 V	-	0.8	1.3	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=3.0 \mathrm{~V}$		-	0.9	1.9	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}$	2.3 V	-	1.0	1.5	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=2.3 \mathrm{~V}$		-	1.2	1.8	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}$	1.65 V	-	1.3	1.9	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=1.65 \mathrm{~V}$		-	2.0	2.8	
$\mathrm{R}_{\text {ONF }}$	ON Resistance Flatness	$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, 2.4 \mathrm{~V}, 4.5 \mathrm{~V}$	4.5 V	-	0.2	0.4	Ω
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, 1.5 \mathrm{~V}, 3.3 \mathrm{~V}$	3.3 V	-	0.2	0.4	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, 1.1 \mathrm{~V}, 2.5 \mathrm{~V}$	2.5 V	-	0.4	0.6	
		$\mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.8 \mathrm{~V}$	1.8 V	-	1.0	1.4	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Logic High Level	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1	-	-	V
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.2	-	-	
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	1.3	-	-	
			$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$	1.5	-	-	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1.8	-	-	

$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Logic Low Level	$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	-	0.4	V
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.6	
			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-	0.8	
			$\mathrm{V}_{\text {CC }}=4.2 \mathrm{~V}$	-	-	1	
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	1.2	
$\mathrm{I}_{\text {OFF (B) }}$	Source Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{VA}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{VB}=1 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-20	-	+20	nA
$\mathrm{I}_{\mathrm{NC}(\mathrm{A}, \mathrm{B})}$	Channel On Leakage Current	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	-40	-	+40	
$\mathrm{I}_{\text {PWROFF }}$	Input Leakage Current for Power off	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{A}} \leq 5.5 \mathrm{~V} \\ & 0 \leq \mathrm{V}_{\mathrm{B}} \leq 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$	-5	-	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	Quiescent Supply Current	All channels ON or OFF, $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ $\mathrm{~V}_{C C}=5.5 \mathrm{~V}$	-	0.002 0.002	0.1	$\mu \mathrm{A}$

Notes:

1. Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B).
2. Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions Guaranteed by design.

Capacitance ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Control Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	3.5	-	pF
$\mathrm{C}_{\text {IO-B }}$	For B Port, Switch OFF		-	15.0	-	
$\mathrm{C}_{\text {IOA-ON }}$	For A Port, Switch ON		-	34.0	-	

Notes:

1. Capacitance is characterized but not tested in production

Switch and AC Characteristics ${ }^{(1)}$

Parameter	Description	Test Conditions	Supply Voltage	Min	Typ	Max	Units
t_{ON}	Turn on Time	See Figure 1	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	3	-	ns
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	2	-	
$\mathrm{t}_{\text {OFF }}$	Turn off Time	See Figure 1	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	9	-	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5	-	
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega . \\ & \text { See Figure } 2 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	35	-	pC
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	25	-	
$\mathrm{O}_{\text {IRR }}$	Off Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{f}=1 \mathrm{MHz} . \end{aligned}$ $\text { See Figure } 3^{(2)}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	-	-70	-	dB
f3dB	-3dB Bandwidth	See Figure 6	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	-	200	-	MHz
T_{HD}	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{Vpp}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz See Figure 7	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 4.2 V	-	0.015	-	\%

Notes:

1. Guaranteed by design.
2. Off Isolation $=20 \log _{10}[\mathrm{VB} / \mathrm{VA}]$ and is measured in dB .

Test Circuits and Timing Diagrams

Figure 1. Turn ON/OFF Timing

Figure 2. Charge Injection Test

Figure 3. Off Isolation

Figure 4. Channel Off Capacitance

Figure 5. Channel On Capacitance

Figure 6. Bandwidth

Figure 7. Harmonic Distortion

Part Marking

TA Package

pT: PI5A3166TAE

Y: Year
W: Workweek
Bar above "T" means Fab3 of MGN

C Package

$\overline{\mathrm{p}} \mathrm{T}$: Top Mark
XX: Date Code (Year \& Work Week)
Bar above "T" means Fab3 of MGN

Packaging Mechanical

SOT23-5 (TA)

16-0081

A Product Line of Diodes Incorporated

SC70-5 (C)
Notes:
1.Comply with MO-203C/AA, except D Min and D Max
2.PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BUR

(1) PERICOM Enobling Sorial Connectivity	DATE: 03/29/16
DESCRIPTION: 5-Pin, SOT353 (SC70)	
PACKAGE CODE: C (C5)	
DOCUMENT CONTROL\#: PD-1901	REVISION:E

16-0091

For latest package information:
Please see http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Part Number	Package Code	Description
PI5A3166CEX	C	5-Pin, SOT353 (SC70)
PI5A3166TAEX	TA	5-Pin, Small Outline Transistor Plastic Package (SOT23)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2301FG-G RS2117YUTQK10 RS2118YUTQK10

RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG201HSDJ-E3 DG307BDJ-E3

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
