Precision Wide Bandwidth Quad Analog Switches

Features

\rightarrow Single-Supply Operation (+2 V to +6 V)
\rightarrow Rail-to-Rail Analog Signal Range
\rightarrow Low On-Resistance (6-ohm typ @ 5V) Minimizes Distortion and Error Voltages
\rightarrow Ron Matching Between Channels, 0.4-ohm typ
\rightarrow On-Resistance Flatness, 2-ohm typ
\rightarrow Low Charge Injection. $\mathrm{Q}=4 \mathrm{pC}$ typ. Reduces Step errors, "clicking, popping" noise
\rightarrow High Speed. ton, 10ns typ
\rightarrow Very Low Crosstalk: -72dB @ 30 MHz
\rightarrow Wide -3dB Bandwidth: $>200 \mathrm{MHz}$
\rightarrow High-Current Channel Capability: $>100 \mathrm{~mA}$
\rightarrow TTL/CMOS Logic Compatible
\rightarrow Low Power Consumption ($0.5 \mu \mathrm{~W}$ typ)
\rightarrow Pin-compatible with DG3XX, DG4XX, MAX39X
\rightarrow Packaging (Pb -free \& Green):

- 16-pin QSOP (Q)

Description

The 392A is a monolithic analog switches designed for low-voltage, single-supply operation. This high-precision device is ideal for low-distortion audio, video, signal switching and routing applications.
The PI5A392A has four normally open (NO) switches. Each switch conducts current equally well in either direction when on. When off they block voltages up to the power-supply rails.
The 392 A is fully specified with +5 V , and +3.3 V supplies. With +5 V , they guarantee <12-ohm on-resistance. On-resistance matching between channels is within 2 -ohm. On-resistance flatness is less than 4ohm over the full signal range. The PI5A39X family guarantees fast switching speeds ($\mathrm{tON}<20 \mathrm{~ns}$).
This product is available in the 16-pin QSOP package for operation over the industrial $(-40 \mathrm{oC}$ to $+85 \mathrm{oC})$ temperature range.

Applications

\rightarrow Audio, Video Switching and Routing
\rightarrow Battery-Powered Communication Systems
\rightarrow Computer Peripherals
\rightarrow Telecommunications
\rightarrow Portable Instrumentation
\rightarrow Mechanical Relay Replacement

Logic	Switch
0	OFF
1	ON

Switch IS shown with logic " 0 " input.

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	-40	85	${ }^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5	7.0	V
DC Input Voltage	-0.5	0.5	V
DC Output Current		120	mA
Power Dissipation		0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
DC Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ	Max	Units
V ${ }_{\text {ANALOG }}$	Analog Signal Range		0		V_{CC}	V
R ${ }_{\text {ON }}$	ON-Resistance	$\mathrm{I}_{\mathrm{NC} \text { or } \mathrm{NO}}=10 \mathrm{~mA}$ to 30 mA		6	18	ohm
$\Delta \mathrm{R}_{\mathrm{ON}}$	Match Between Channels			0.4	2	
$\mathrm{R}_{\text {Flat(ON) }}$	R ${ }_{\text {ON }}$ Flatness	$\mathrm{I}_{\mathrm{ON}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V}$ TO 5 V		1	2	
$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	On/Off Leakage Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$	-30		30	nA
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ OR VCC			100	
Io	Output Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ to 5 V	100			mA
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
I_{IH}	Input High Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=$ VCC			± 1	$\mu \mathrm{A}$
IIL	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for applicable device type.

Dynamic Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}$ $=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ	Max	Units
$\mathrm{t}_{\text {ON }}$	Turn-on Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		10	20	NS
toff	Turn-off Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		5	10	NS
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}, \mathrm{f}=30 \mathrm{MHz}$, see Figure 4		-72		dB
$\mathrm{C}_{\text {(off) }}$	NC or NO Capacitance	$\mathrm{f}=1 \mathrm{kHz}$		13		pF
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}, \mathrm{f}=30 \mathrm{MHz}$, see Figure 5		-55		dB
BW	Bandwidth -3 dB	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}$, see Figure 3		200		MHz
D	Distortion \triangle RON/RL ${ }^{(2)}$	$\mathrm{R}_{\mathrm{L}}=100$ ohm		2		\%
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{Gen}}=0 \mathrm{~V}$		3	5	pC

DC Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ	Max	Units
Vanalog	Analog Signal Range		0		$\mathrm{V}_{\text {CC }}$	V
Ron	ON-Resistance	$\mathrm{I}_{\mathrm{NC} \text { or } \mathrm{NO}}=10 \mathrm{~mA}$ to 30 mA		15	28	ohm
$\Delta \mathrm{R}_{\text {ON }}$	Match Between Channels			0.4	2	
$\mathrm{R}_{\text {FLAT(ON) }}$	Ron Flatness	$\mathrm{I}_{\mathrm{ON}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V}$ TO 5 V		1	2	
$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	On/Off Leakage Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$	-30		30	nA
$\mathrm{ICC}^{\text {c }}$	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ OR VCC			100	
I_{O}	Output Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ to 5 V	80			mA
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
It	Input High Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=$ VCC			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	

Dynamic Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}$ = OV)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min	Typ	Max	Units
$\mathrm{t}_{\text {ON }}$	Turn-on Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		20	40	NS
toff	Turn-off Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		10	20	NS
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=100$ ohm, $\mathrm{f}=30 \mathrm{MHz}$, see Figure 4		-72		dB
$\mathrm{C}_{\text {(off) }}$	NC or NO Capacitance	$\mathrm{f}=1 \mathrm{kHz}$		15		pF
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=100$ ohm, $\mathrm{f}=30 \mathrm{MHz}$, see Figure 5		-55		dB
BW	Bandwidth -3 dB	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}$, see Figure 3		190		MHz
D	Distortion \triangle RON/RL ${ }^{(2)}$	$\mathrm{R}_{\mathrm{L}}=100$ ohm		2		\%
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{Gen}}=0 \mathrm{~V}$		3	10	pC

Notes:

1. For conditions shown as Max or Min, use appropriate value specified under Electrical Characteristics for applicable device type.
2. $\Delta \mathrm{R}_{\mathrm{ON}}=\Delta \mathrm{R}_{\mathrm{ON} \max }-\mathrm{R}_{\mathrm{ON} \min }$.
3. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Applications

Figure 1. Programmable Integrator and Sample/Hold

The 5A39X can be used to insert various capacitors $\left(C_{1}, C_{2}\right)$ and set proper $R C$ times for integration. Resistors R_{1} and R_{2} set initial gain. The R_{IN} resistor X_{1} or C_{2} sets the RC time. The reset switch discharges the hold capacitor through R_{IN}.

Test Circuits

Figure 2. Switching Time

Figure 3. Bandwidth

Typical Operating Characteristics

Figure 4. Crosstalk

Figure 5. Off Isolation
$V_{C C}=+5 \mathrm{~V}$
3.3 V
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$C_{L}=1 \mathrm{nF}$

Figure 6. Charge Injection vs Voltage In

Figure 7. On-Resistance vs Input Voltage

Figure 8. Insertion Loss vs Frequency

Figure 9. Off Isolation vs Frequency

Figure 10. Crosstalk vs Frequency

Packaging Mechanical: 16-Pin QSOP (Q)

Ordering Information

Ordering Code	Package Code	Package Type	Operating Temperature
PI5A392AQE	Q	Pb-free \& Green, $16-\mathrm{pin} 150-\mathrm{mil}$ QSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2301FG-G RS2117YUTQK10 RS2118YUTQK10

RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG201HSDJ-E3 DG307BDJ-E3

