PI5A392A

Precision Wide Bandwidth Quad Analog Switches

Features

\rightarrow Single-Supply Operation (+2 V to +6 V)
\rightarrow Rail-to-Rail Analog Signal Range
\rightarrow Low On-Resistance (6-ohm typ @ 5V) Minimizes Distortion and Error Voltages
\rightarrow Ron Matching Between Channels, 0.4-ohm typ
\rightarrow On-Resistance Flatness, 2-ohm typ
\rightarrow Low Charge Injection. $\mathrm{Q}=4 \mathrm{pC}$ typ. Reduces Step errors, "clicking, popping" noise
\rightarrow High Speed. ton, 10 ns typ
\rightarrow Very Low Crosstalk: -72dB @ 30 MHz
\rightarrow Wide -3dB Bandwidth: $>200 \mathrm{MHz}$
\rightarrow High-Current Channel Capability: $>100 \mathrm{~mA}$
\rightarrow TTL/CMOS Logic Compatible
\rightarrow Low Power Consumption ($0.5 \mu \mathrm{~W}$ typ)
\rightarrow Pin-compatible with DG3XX, DG4XX, MAX39X
\rightarrow Packaging (Pb -free \& Green):

- 16-pin QSOP (Q)

Description

The 392A is a monolithic analog switches designed for low-voltage, single-supply operation. This high-precision device is ideal for low-distortion audio, video, signal switching and routing applications.
The PI5A392A has four normally open (NO) switches. Each switch conducts current equally well in either direction when on. When off they block voltages up to the power-supply rails.
The 392 A is fully specified with +5 V , and +3.3 V supplies. With +5 V , they guarantee <12-ohm on-resistance. On-resistance matching between channels is within 2 -ohm. On-resistance flatness is less than 4ohm over the full signal range. The PI5A39X family guarantees fast switching speeds ($\mathrm{tON}<20 \mathrm{~ns}$).
This product is available in the 16-pin QSOP package for operation over the industrial $(-40 \mathrm{oC}$ to $+85 \mathrm{oC})$ temperature range.

Applications

\rightarrow Audio, Video Switching and Routing
\rightarrow Battery-Powered Communication Systems
\rightarrow Computer Peripherals
\rightarrow Telecommunications
\rightarrow Portable Instrumentation
\rightarrow Mechanical Relay Replacement

Functional Diagram, Pin Configuration and Truth Tables

Logic	Switch
0	OFF
1	ON

Switch IS shown with logic "0" input.

A product Line of Diodes Incorporated

PI5A392A

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	-40	85	${ }^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5	7.0	V
DC Input Voltage	-0.5	0.5	V
DC Output Current		120	mA
Power Dissipation		0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
DC Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
Vanalog	Analog Signal Range		0		VCC	V
R_{ON}	ON-Resistance	$\mathrm{I}_{\mathrm{NC} \text { or } \mathrm{NO}}=10 \mathrm{~mA}$ to 30 mA		6	18	ohm
$\Delta \mathrm{R}_{\text {ON }}$	Match Between Channels			0.4	2	
$\mathrm{R}_{\text {FLat(ON) }}$	$\mathrm{R}_{\text {ON }}$ Flatness	$\mathrm{I}_{\mathrm{ON}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V}$ TO 5 V		1	2	
$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	On/Off Leakage Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$	-30		30	nA
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ OR VCC			100	
IO	Output Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ to 5 V	100			mA
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
I_{IH}	Input High Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=$ VCC			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for applicable device type.

A product Line of Diodes Incorporated

PI5A392A

Dynamic Electrical Characteristics

(Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
ton	Turn-on Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		10	20	NS
toff	Turn-off Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		5	10	NS
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=100$ ohm, $\mathrm{f}=30 \mathrm{MHz}$, see Figure 4		-72		dB
$\mathrm{C}_{\text {(off) }}$	NC or NO Capacitance	$\mathrm{f}=1 \mathrm{kHz}$		13		pF
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=100$ ohm, $\mathrm{f}=30 \mathrm{MHz}$, see Figure 5		-55		dB
BW	Bandwidth -3 dB	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}$, see Figure 3		200		MHz
D	Distortion \triangle RON/RL ${ }^{(2)}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}$		2		\%
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{Gen}}=0 \mathrm{~V}$		3	5	pC

DC Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
Vanalog	Analog Signal Range		0		V_{CC}	V
Ron	ON-Resistance	$\mathrm{I}_{\mathrm{NC} \text { or } \mathrm{NO}}=10 \mathrm{~mA}$ to 30 mA		15	28	ohm
$\Delta \mathrm{R}_{\mathrm{ON}}$	Match Between Channels			0.4	2	
$\mathrm{R}_{\text {Flat(ON) }}$	RON Flatness	$\mathrm{I}_{\mathrm{ON}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V}$ TO 5 V		1	2	
$\mathrm{I}_{\mathrm{NO} \text { (OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	On/Off Leakage Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}$	-30		30	nA
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ OR VCC			100	
Io	Output Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$ or $\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ to 5 V	80			mA
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{I}_{\text {IH }}$	Input High Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=$ VCC			± 1	$\mu \mathrm{A}$
IIL	Input Low Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	

A product Line of Diodes Incorporated
PI5A392A

Dynamic Electrical Characteristics

(Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ.	Max.	Units
ton	Turn-on Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		20	40	NS
toff	Turn-off Time	$\mathrm{V}_{\text {COM }}=3.0 \mathrm{~V}$, see Figure 1		10	20	NS
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}, \mathrm{f}=30 \mathrm{MHz}$, see Figure 4		-72		dB
$\mathrm{C}_{\text {(OFF) }}$	NC or NO Capacitance	$\mathrm{f}=1 \mathrm{kHz}$		15		pF
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}, \mathrm{f}=30 \mathrm{MHz}$, see Figure 5		-55		dB
BW	Bandwidth -3 dB	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohm}$, see Figure 3		190		MHz
D	Distortion \triangle RON/RL ${ }^{(2)}$	$\mathrm{R}_{\mathrm{L}}=100$ ohm		2		\%
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{Gen}}=0 \mathrm{~V}$		3	10	pC

Notes:

1. For conditions shown as Max or Min, use appropriate value specified under Electrical Characteristics for applicable device type.
2. $\Delta \mathrm{R}_{\mathrm{ON}}=\Delta \mathrm{R}_{\mathrm{ON} \text { max }}-\mathrm{R}_{\mathrm{ON} \text { min }}$.
3. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Applications

Figure 1. Programmable Integrator and Sample/Hold

The 5A39X can be used to insert various capacitors $\left(C_{1}, C_{2}\right)$ and set proper $R C$ times for integration. Resistors R_{1} and R_{2} set initial gain. The R_{IN} resistor X_{1} or C_{2} sets the RC time. The reset switch discharges the hold capacitor through R_{IN}.

A product Line of Diodes Incorporated
(1) PERICOM

PI5A392A

Test Circuits

Figure 2. Switching Time

Figure 3. Bandwidth

A product Line of Diodes Incorporated

PI5A392A

Typical Operating Characteristics

Figure 4. Crosstalk

Figure 5. Off Isolation

Figure 6. Charge Injection vs Voltage In

Figure 7. On-Resistance vs Input Voltage

A product Line of Diodes Incorporated

PI5A392A

Figure 8. Insertion Loss vs Frequency

Figure 10. Crosstalk vs Frequency

Part Marking

Q Package

PI5A
392AQE
BZYWXX

B: Fab 2 Port Code
Z: Die Rev Code
Y: Year
W: Workweek
1st X: Assembly Code
2nd X: Fab Code

Packaging Mechanical: 16-QSOP (Q)

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Type	Operating Temperature
PI5A392AQEX	Q	16-pin 150-mil Wide (QSOP)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:

1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
2. See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
3. $\mathrm{E}=\mathrm{Pb}$-free and Green
4. X suffix $=$ Tape $/$ Reel

A product Line of Diodes Incorporated
(1) PERICOM

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2301FG-G RS2117YUTQK10 RS2118YUTQK10

RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG201HSDJ-E3 DG307BDJ-E3

