Low On-Resistance Wideband/Video Quad 2-Channel Mux/DeMux

Features

- High-performance solution to switch between video sources
- Wide bandwidth: 570 MHz (typical)
- Low On-Resistance: 5Ω (typical)
- Low crosstalk at $10 \mathrm{MHz}:-80 \mathrm{~dB}$
- Ultra-low quiescent power ($0.1 \mu \mathrm{~A}$ typical)
- Single supply operation: +5.0 V
- Fast switching: 10ns
- $\mathrm{ESD}>5 \mathrm{KV}$ HBM, 10 KV I/O to GND
- Packaging (Pb -free \& Green Available):
- 16-pin 150-mil wide plastic SOIC (W)
- 16-pin 150-mil wide plastic QSOP (Q)

Description

Pericom Semiconductor's PI5V330S is a true bidirectional Quad 2-channel multiplexer/demultiplexer recommended for both RGB and composite video switching applications. The video switch can be driven from a current output RAMDAC or voltage output composite video source.
Low On-Resistance and wide bandwidth make it ideal for video and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today. A single 5 V supply is all that is required for operation. The PI5V330S offers a high-performance, low-cost solution to switch between video sources. The application section describes the PI5V330S replacing the HC4053 multiplier and buffer/amplifier.

Pin Configuration

IN \square		
$s^{1} A-2$		
$\mathrm{s}^{2} \mathrm{~A}-$		
$\mathrm{D}_{\mathrm{A}} \square^{\text {a }}$		
$\mathrm{s}^{1} \mathrm{~B}-5$		
$\mathrm{s}^{2} \mathrm{~B}$		
$\mathrm{D}_{\mathrm{B}} \square$		
GND		

Pin Description

Pin Name	Description
$\mathrm{S}_{\mathrm{A}}, \mathrm{s}_{\mathrm{B}}, \mathrm{S}_{\mathrm{C}}, \mathrm{s}_{\mathrm{D}}$ $\mathrm{s}_{\mathrm{A}}, \mathrm{s}_{\mathrm{B}}, \mathrm{s}^{2} \mathrm{C}, \mathrm{s}^{2} \mathrm{D}$	Analog Video I/O
IN	Select Input
$\overline{\mathrm{EN}}$	Enable
$\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$ $\mathrm{D}_{\mathrm{C}}, \mathrm{D}_{\mathrm{D}}$	Analog Video I/O
GND	Ground
V_{DD}	Power

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Inputs \& V DD Only) . -0.5 V to +7.0 V
Supply Voltage to Ground Potential (Outputs \& D/O Only) -0.5 V to +7.0 V
DC Input Voltage ... -0.5 V to +7.0 V
DC Output Current... 120 mA
Power Dissipation .. 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 5 \%$)

Parameters	Description	Test Conditions ${ }^{(\mathbf{1})}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
Vanalog	Analog Signal Range		0		2.0	V
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0		-	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {DD }}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{V}_{\text {IN }}=$ GND			± 1	
I_{O}	Analog Output Leakage Current	$0 \leq \mathrm{S} 1$, S2 or $\mathrm{D} \leq \mathrm{V}_{\mathrm{DD}}$, Switch OFF			± 1	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	-0.7	-1.2		V
V_{H}	Input Hysteresis at Control Pins			150	-	mV
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=13 \mathrm{~mA} \end{aligned}$		5	7	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=26 \mathrm{~mA} \end{aligned}$		7	10	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between S1, S2, and D I/O pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the $\mathrm{S} 1, \mathrm{~S} 2$, and D I/O pins.

Dynamic Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Unit
ton	Turn On Time	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=20_{\text {PF }}$, See Fig. 4		2.5	5	ns
toff	Turn Off Time	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=20_{\text {PF }}$, See Fig. 4		1.1	5	
$\mathrm{B}_{\mathrm{W}}{ }^{(1)}$	-3 dB Bandwidth	See Fig. 5			570	MHz
$\mathrm{X}_{\text {TALK }}$	Crosstalk	10 MHz , See Fig. 5, $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-80		dB
$\mathrm{C}_{\text {IN }}{ }^{(1)}$	Input/Enable Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			6	pF
$\mathrm{C}_{\mathrm{OFF}}{ }^{(1)}$	Capacitance, Switch Off	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			6	
$\mathrm{CON}^{(1)}$	Capacitance, Switch On	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			9	
OIRR	Off Isolation	10 MHz , See Fig 5, $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-48		dB

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

| Parameters | Description | Test Conditions ${ }^{(\mathbf{1)}}$ | Min. | Typ $^{(\mathbf{2})}$ | Max. | Units |
| :---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| I_{CC} | Quiescent Power
 Supply Current | $\mathrm{V}_{\mathrm{DD}}=$ Max. | $\mathrm{IN}=\mathrm{GND}$ or V_{DD} | | | |

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right.$, control inputs only); $\mathrm{S} 1, \mathrm{~S} 2$, and D pins do not contribute to I_{CC}.
4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The S1, S2, and D I/O pins generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Definitions

Symbol	
R_{ON}	Resistance between source and drain with switch in the ON state.
I_{O}	Output leakage current measured at $\mathrm{S} 1, \mathrm{~S} 2$, and D with the switch OFF.
V_{IN}	Digital voltage at the IN pin that selects between S1 and S2 analog inputs.
V_{EN}	A voltage that ENABLES the chip.
$\mathrm{C}_{\text {IN }}$	Capacitance at the digital inputs.
$\mathrm{C}_{\mathrm{OFF}}$	Capacitance at analog I/O (S1, S2, D) with switch OFF.
C_{ON}	Capacitance at analog I/O (S1, S2, D) with switch ON.
V_{IH}	Minimum input voltage for logic HIGH.
V_{IL}	Minimum input voltage for logic LOW.
$\mathrm{I}_{\mathrm{IH}}\left(\mathrm{I}_{\mathrm{IL}}\right)$	Input current of the digital input.
t_{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. The peak analog voltage is 0.714 V.
$\mathrm{t}_{\mathrm{OFF}}$	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. The peak analog voltage is 0.714 V.
$\mathrm{~B}_{\mathrm{W}}$	Frequency response of the switch in the ON state measured at 3dB down.
$\mathrm{X}_{\mathrm{TALK}}$	Is an unwanted signal coupled from channel to channel. Measured in -dB . XTALK $=20$ LOG Vout/VIN. This is non-adjacent crosstalk.
$\mathrm{O}_{\text {IRR }}$	Off isolation is the resistance (measured in -dB) between the input and output with the switch off (NO).

Figure 1. Gain vs Frequency

Figure 2. Off Isolation vs Frequency

Figure 3. Crosstalk vs Frequency

Figure 4. Switching Time

Figure 5. Gain/Phase, Crosstalk, Off-Isolation

Packaging Mechanical: 16-pin SOIC (W)

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS. ANGLES IN DEGREES.
2. JEDEC OUTLINE : MS-012 AC
3. DIMENSIONS DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.75
A1	0.10	-	0.25
A2	1.25	-	-
b	0.31	-	0.51
c	0.10	-	0.25
D	9.80	9.90	10.0
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	1.27 BSC		
L	0.40	-	1.27
h	0.25	-	0.50
θ°	0	-	8

2012-0398

Packaging Mechanical: 16-pin QSOP (Q)

Ordering Information

Ordering Code	Package Code	Package Description
PI5V330SWE	W	Pb-free \& Green, 16-pin 150-mil wide plastic SOIC
PI5V330SQE	Q	Pb-free \& Green, 16-pin 150-mil wide plastic QSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=\mathrm{Pb}$-free and Green
3. Adding an X suffix $=$ Tape/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

