

Low On-Resistance Wideband/Video Dual 4-Channel Mux/DeMux

Features

→ High-performance, low-cost solution to switch between video sources

→ Wide bandwidth: 150 MHz

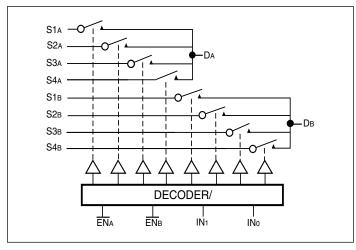
→ Low On-Resistance: 3Ω

→ Low crosstalk at 10 MHz: -58dB

→ Ultra-low quiescent power (0.1µA typical)

→ Single supply operation: +5.0V

→ Fast switching: 10ns


→ High-current output: 100mA

→ Functionally equivalent to QS4A210

→ Packaging (Pb-free & Green):

□ 16-pin 150-mil wide plastic QSOP (Q)

Block Diagram

Truth Table

\overline{EN}_{A}	\overline{EN}_{B}	IN_1	IN ₀	ON Switch
1	X	X	X	Disabled A
X	1	X	X	Disabled B
0	0	0	X	S1 _A - D _A , S1 _B - D _B
0	0	0	0	S2 _A - D _A , S2 _B - D _B
0	0	1	1	S3 _A - D _A , S3 _B - D _B
0	0	1	X	S4 _A - D _A , S4 _B - D _B

Description

Pericom Semiconductor's PI5V331 is a true bi di rec tion al Dual 4-channel multiplexer/demultiplexer that is rec om mend ed for both S-Video or composite video switching applications. The switch can be driven from a current output RAMDAC or voltage output composite video source.

Low On-resistance and wide bandwidth make it ideal for video and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today. A single 5V supply is all that is required for operation.

The PI5V331 offers a high-performance, low-cost solution to switch between video sources.

Pin Configuration (16-Pin QSOP)

Pinout Table

Pin Name	Description
S1 _A , S2 _A , S3 _A , S4 _A , S1 _B , S2 _B , S3 _B , S4 _B	Analog Video I/O (Usually Inputs)
S_0, S_1	Select Input
$\overline{\mathrm{EN}}_{\mathrm{A}},\overline{\mathrm{EN}}_{\mathrm{A}}$	Enable
D_A , D_B	Analog Video I/O (Usually Outputs)
GND	Ground
V _{CC}	Power

Absolute Maximum Ratings (Over operating free-air temperature range)

Parameter	Min.	Max.	Units
Storage temperature	-65	150	°C
Ambient Temperature with Power Applied	-40	85	C
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)	-0.5	7.0	
Supply Voltage to Ground Potential (Outputs & D/O Only) -0.5 7.0		V	
DC Input Voltage	-0.5	7.0	
DC Output Current	-	120	mA
Power Dissipation	-	500	mW

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5V \pm 5\%$)

Parameters	Description	Test Conditions(1)	Min	Typ (2)	Max	Units	
V _{ANALOG}	Analog Signal Range		0		2.0		
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH level 2.0				V	
$V_{\rm IL}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8		
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$		±1			
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ	
I _O	Analog Output Leakage Currnet	$0 \le S1$, S2, or $D \le V_{CC}$, Switch OFF			±1	μπ	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V	
Ios	Short Circuit Current(3)	$S1, S2, D = 0V V_{CC}$	100			mA	
V_{H}	Input Hysteresis at Control Pins			150		mV	
D	Switch On-Resistance	$V_{CC} = MIN., V_{OUT} = 0.975V \; R_L = 75\Omega, I_{ON} = 13 \; mA$		3	7	Ω	
Ron		V_{CC} = MIN., V_{OUT} = 1.95V R_L = 75 Ω , I_{ON} = 26 mA		7	10		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{\rm CC}$ = 5.0V, TA = 25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between S1, S2, and D I/O pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the S1, S2, and D I/O pins.

11-0002 2 www.pericom.com P-0.1 02/16/11

Dynamic Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5V \pm 5\%$)

Parameters	Description	Test Conditions(1)	Min	Тур	Max	Units	
T _{ON}	Turn On Time	$R_L = 70\Omega$, $C_L = 20$ PF, See Fig. 2		2.5	5		
T _{OFF}	Turn Off Time	$R_L = 70\Omega$, $C_L = 20$ PF, See Fig. 2		1.1	5	5 ns	
BW ⁽¹⁾	-3dB Bandwidth	$R_L = 150\Omega$, See Fig. 3	150			MHz	
X _{TALK}	Crosstalk	RIN = 10Ω ; $R_L = 150\Omega$, $10MHz$, See Fig. 3		-58		dB	
D_G	Differential Gain	$R_L = 150\Omega$, f = 3.58 MHz, See Fig. 1		0.64		%	
D_P	Differential Phase	$R_L = 150\Omega$, $f = 3.58$ MHz, See Fig. 1		0.27		Deg.	
$C_{IN}^{(1)}$	Input/Enable Capacitance	$V_{IN} = 0V, f = 1 MHz$			6		
C _{OFF} ⁽¹⁾	Capacitance, Switch Off	$V_{IN} = 0V, f = 1 MHz$			6	pF	
C _{ON} ⁽¹⁾	Capacitance, Switch On	$V_{IN} = 0V, f = 1 MHz$			20		
O _{IRR}	Off Isolation	$R_L = 150\Omega$, 10MHz, See Fig 3		-38		dB	

Notes:

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾			Typ (2)	Max	Units
I_{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$IN = GND \text{ or } V_{CC}$		0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	V _{CC} = Max.	$IN = 3.4V^{(3)}$			2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	$V_{CC} = Max.,$ S1, S2 and D Pins Open $\overline{EN} = GND$ Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at V_{CC} = 5.0V, +25°C ambient and maximum loading.
- 3. Per TTL driven input (V_{IN} = 3.4V, control inputs only); S1, S2, and D pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The S1, S2, and D I/O pins generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

^{1.} This parameter is determined by device characterization but is not production tested.

Definitions

Parameters	Description			
T _{ON}	Resistance between source and drain with switch in the ON state.			
Io	Output leakage current measured at S1, S2, and D with the switch OFF.			
V_{IN}	Digital voltage at the IN pin that selects between S1 and S2 analog inputs.			
V_{EN}	A voltage that ENABLES the chip.			
$C_{\rm IN}$	Capacitance at the digital inputs.			
C_{OFF}	Capacitance at analog I/O (S1, S2, D) with switch OFF.			
C_{ON}	Capacitance at analog I/O (S1, S2, D) with switch ON.			
V_{IH}	Minimum input voltage for logic HIGH.			
V_{IL}	Minimum input voltage for logic LOW.			
I _{IH} (I _{IL)}	Input current of the digital input.			
I_{OS}	Minimum short circuit current for S1, S2 and D.			
ton	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. The peak analog voltage is 0.714V.			
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. The peak analog voltage is 0.714V.			
Bw	Frequency response of the switch in the ON state measured at 3dB down.			
X_{TALK}	Is an unwanted signal coupled from channel to channel. Measured in $-dB$. $X_{TALK} = 20$ LOG V_{OUT}/V_{IN} . This is non-adjacent crosstalk.			
D_{G}	Differential gain is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.			
D_P	Differential phase is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.			
O _{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch off (NO).			

Test Circuits

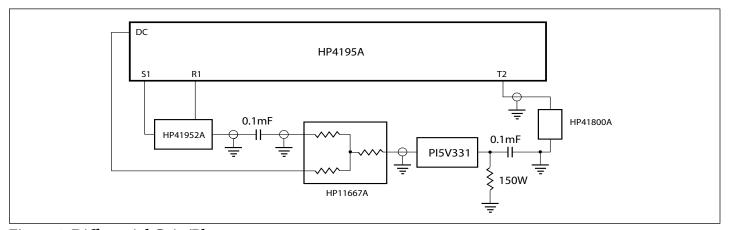


Figure 1. Differential Gain/Phase

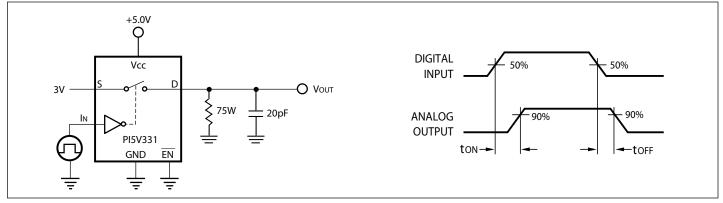


Figure 2. Switching Time

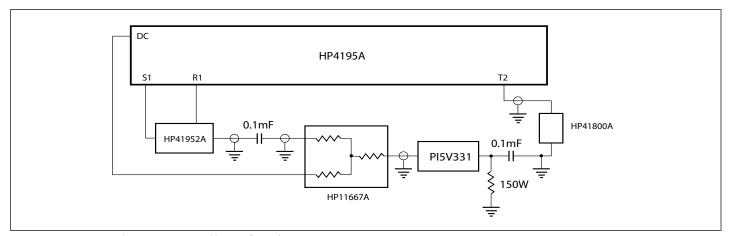
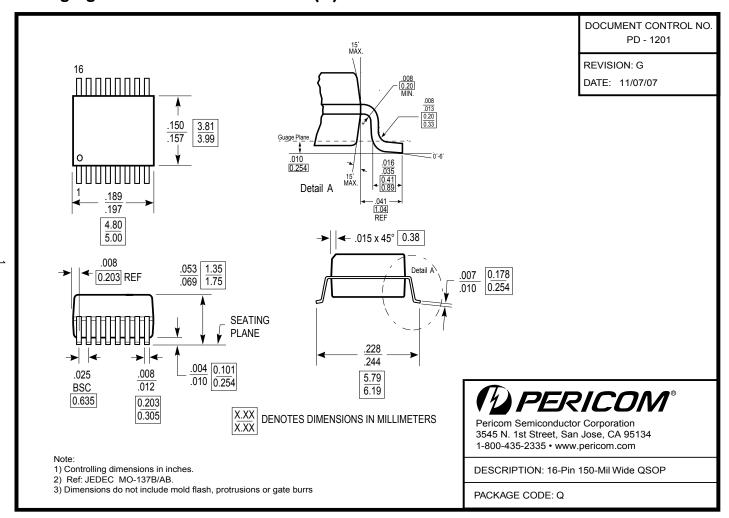



Figure 3. Gain/Phase, Crosstalk, Off-Isolation

Packaging Mechanical: 16-Pin QSOP (Q)

Ordering Information

Ordering Code	Package Code	Package Type
PI5V331QE	Q	Pb-free & Green, 16-pin 150-mil wide QSOP

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. "E" denotes Pb-free and Green
- 3. Adding an "X" at the end of the ordering code denotes tape and reel packaging

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+
PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE
PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ
AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZ-REEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7