3.3V Low Skew 1-to-4 LVTTL/LVCMOS to LVPECL Fanout Buffer

Features

- Maximum operation frequency: 500 MHz
- 4 pair of differential LVPECL outputs
- Selectable CLK $_{0}$ and CLK $_{1}$ inputs
- CLK $_{0}$, CLK $_{1}$ accept LVCMOS, LVTTL input level
- Output Skew: 40ps (typical)
- Propagation delay: 1.5 ns (typical)
- 3.3 V power supply
- Additive jitter of 0.03ps (typical)
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging (Pb -free \& Green available):
- 20-pin TSSOP (L)

Description

The PI6C48535-01B is a high-performance low-skew LVPECL fanout buffer. PI6C48535-01B features two selectable single-ended clock inputs and translates to four LVPECL outputs. The CLK_{0} and CLK $_{1}$ inputs accept LVCMOS or LVTTL signals. The outputs are synchronized with input clock during asynchronous assertion/ deassertion of CLK_EN pin. PI6C48535-01B is ideal for singleended LVTTL/LVCMOS to LVPECL translations. Typical clock translation and distribution applications are data-communications and telecommunications.

Block Diagram

Pin Configuration

Pin Description

Name	Pin \#	Type	Description
$\mathrm{V}_{\text {EE }}$	1	P	Connect to Negative power supply
CLK_EN	2	I_PU	Synchronizing clock enable. When high, clock outputs follow clock input. When low, Qx outputs are forced low, nQx outputs are forced high. LVCMOS/LVTTL level with $50 \mathrm{~K} \Omega$ pull up.
CLK_SEL	3	I_PD	Clock select input. When high, selects CLK_{1} input. When low, selects CLK_{0} input. LVCMOS/LVTTL level with $50 \mathrm{~K} \Omega$ pull down.
CLK_{0}	4	I_PD	LVCMOS / LVTTL clock input
CLK_{1}	6	I_PD	LVCMOS / LVTTL clock input
NC	5,7, 8, 9		No internal connection.
V_{CC}	$\begin{gathered} 10,13, \\ 18 \end{gathered}$	P	Connect to 3.3V.
$\mathrm{Q}_{3}, \mathrm{n}_{3}$	11, 12	O	Differential output pair, LVPECL interface level.
$\mathrm{Q}_{2}, \mathrm{n}_{2}$	14, 15	O	Differential output pair, LVPECL interface level.
$\mathrm{Q}_{1},{ }_{\mathrm{n}} \mathrm{Q}_{1}$	16, 17	O	Differential output pair, LVPECL interface level.
$\mathrm{Q}_{0},{ }_{\mathrm{n}} \mathrm{Q}_{0}$	19, 20	O	Differential output pair, LVPECL interface level.

Notes:

1. $\mathrm{I}=\mathrm{Input}, \mathrm{O}=$ Output, $\mathrm{P}=$ Power supply connection, $\mathrm{I}_{-} \mathrm{PD}=\mathrm{Input}$ with pull down, I_PU = Input with pull up.

Pin Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
C_{IN}	Input Capacitance				4	pF
R_pullup	Input Pullup Resistance			50		$\mathrm{~K} \Omega$
R_pulldown	Input Pulldown Resistance			50		

Control Input Function Table

Inputs			Outputs	
CLK_EN	CLK_SEL	Selected Source	$\mathbf{Q}_{\mathbf{0}}: \mathbf{Q}_{\mathbf{3}}$	$\mathbf{n}_{\mathbf{n}} \mathbf{0}_{\mathbf{n}} \mathbf{Q} \mathbf{3}$
0	0	CLK $_{0}$	Diasbled: Low	Diasbled: High
0	1	CLK $_{1}$	Disabled: Low	Disabled: High
1	0	CLK $_{0}$	Enabled	Enabled
1	1	CLK_{1}	Enabled	Enabled

Notes:

1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show below.

Figure 1. CLK_EN Timing Diagram

Clock Input Function Table

Inputs	Outputs	
CLK_{0} or CLK_{1}	$\mathrm{Q}_{0}: \mathrm{Q}_{3}$	$\mathrm{n}_{0}: \mathrm{n}_{3}$
0	LOW	HIGH
1	HIGH	LOW

Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{CC}	Supply voltage	Referenced to GND			4.6	
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	Referenced to GND	-0.5		$\mathrm{~V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{OUT}}$	Output voltage	Referenced to GND	-0.5		$\mathrm{~V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature		-65		150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

Notes:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress speci fications only and correct functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{CC}	Power Supply Voltage		3.0	3.3	3.6	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature		-40		85	${ }^{\circ} \mathrm{C}$
I_{DD}	Power Supply Current	All outputs unloaded			130	mA

LVCMOS/LVTTL DC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V unless otherwise stated below.)

Symbol	Parameter		Conditions	Min.	Typ.	Max.	Units
V_{IH}	Input High Voltage	$\begin{gathered} \mathrm{CLK}_{0}, \mathrm{CLK}_{1}, \mathrm{CLK} \text { EN, } \\ \text { CLK_SEL } \end{gathered}$		2		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{CLK}_{0}, \mathrm{CLK}_{1}$		-0.3		0.8	V
		CLK_EN, CLK_SEL		-0.3		0.8	V
I_{IH}	Input High Current	CLK0, CLK1, CLK_SEL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$			150	uA
		CLK_EN	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$			15	uA
ILL	Input Low Current	$\mathrm{CLK}_{0}, \mathrm{CLK}_{1}$, CLK_SEL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-10			uA
		CLK_EN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-150			uA

LVPECL DC Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.1		2.6	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	1.3		1.8	V

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{\max }$	Output Frequency				500	MHz
t_{Pd}	Propagation Delay			1.5		ns
$\mathrm{~T}_{\mathrm{sk}(\mathrm{o})}$	Output-to-output Skew			40		ps
$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall time	$20 \%-80 \%$		150		
odc	Output Duty Cycle		48		52	$\%$
$\mathrm{~J}_{\mathrm{add}}$	Additive Jitter			30		fs

Notes:

1. All parameters are measured with CMOS input of 266 MHz unless stated otherwise

Configuration Test Load Board Termination for LVPECL

Packaging Mechanical: 20-Pin TSSOP (L)

Ordering Information

Ordering Code	Package Code	Package Description
PI6C48535-01BLIE	L	Pb-free \& Green 20-pin 173-mil wide TSSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free \& Green
- X suffix $=$ Tape $/$ Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE PI6C10810HE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB7L14MMNG NB6L14MMNR2G NB6L611MNG NB7V58MMNHTBG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR 9DB801BGLF ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2 ADCLK925BCPZ-R7

