Lead-free Gree

PI6C49CB04CQ

AEC-Q100 Qualified Low Skew 1 to 4 Automotive Clock Buffer

Features

\rightarrow Low Skew Outputs (250ps)
\rightarrow Low Power CMOS Technology
\rightarrow Operating Voltages of 1.5 V to 3.3 V
\rightarrow Output Enable pin Tri-States Outputs
\rightarrow 3.6V Tolerant Input Clock
\rightarrow AEC-Q100 Qualified
\rightarrow Automotive Grade 2 Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$
\rightarrow Automotive Grade 3 Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}$)
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow The PI6C49CB04CQ is suitable for automotive applications requiring specific change control; this part is AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.
\rightarrow https://www.diodes.com/quality/product-definitions/
\rightarrow Packaging (Pb-free \& Green): 8-pin, SOIC (W)

Block Diagram

Description

The PI6C49CB04CQ is an automotive-qualified, low-skew, single input to four output, clock buffer. Perfect for fanning out multiple clock outputs.

[^0]PI6C49CB04CQ

Pin Configuration

Pin Descriptions

Pin\#	Pin Name	Pin Type	Pin Description
1	CLK	Input	Clock Input. 3.3 V tolerant input. Internal $51 \mathrm{k} \Omega$ pulldown resistor.
2	Q1	Output	Clock Output 1
3	Q2	Output	Clock Output 2
4	Q3	Output	Clock Output 3
5	Q4	Output	Clock Output 4
6	GND	Power	Connect to ground
7	VDD	Power	Connect to 1.5V, 1.8V, 2.5V, or 3.3V
8	OE	Input	Output Enable. Tri-states outputs when low. Internal 125K Ω pullup resistor. Default on.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01 \mu \mathrm{~F}$ should be connected between VDD on pin 7 and GND on pin 6, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

A product Line of
Diodes Incorporated
Th PERICOM
PI6C49CB04CQ

Maximum Ratings

Supply Voltage, VDD	4.6 V
Output Enable and All Outputs	$\ldots-0.5 \mathrm{~V}$ to VDD +0.5 V
CLK	-0.5 V to $3.6 \mathrm{~V}(\mathrm{VDD}>0 \mathrm{~V})$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection (HBM)	. .2000V
Junction Temperature $125^{\circ} \mathrm{C}$ max

Note:
Stresses above the ratings listed below can cause permanent damage to the PI6C49X0204CQ. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.

Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (Automotive Grade 2)	-40	-	+105	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature (Automotive Grade 3)	-40	-	+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (Measured in Respect to GND)	+1.425	-	+3.6	V

DC ELECTRICAL CHARACTERISTICS

VDD $=\mathbf{1 . 5} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	1.425	1.5	1.575	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	0.9	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.575	V
I_{IH}	Input High Current	CLK ${ }^{(1)}$	-	-	40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	40	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	0.95	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$	-	-	0.45	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 160 \mathrm{MHz}$	-	15	21	mA
		$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	13	17	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	7	9	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	4	5.5	mA
Z_{O}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 12	-	mA

Notes: 1. Nominal switching threshold is VDD/2.

A product Line of Diodes Incorporated
(4) PERICOM

PI6C49CB04CQ

VDD $=\mathbf{1 . 8} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	1.7	1.8	1.89	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	1.1	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.6	V
$\mathrm{I}_{\text {IH }}$	Input High Current	CLK ${ }^{(1)}$	-	-	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	50	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.4	-	-	V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 160 \mathrm{MHz}$	-	22	28	mA
		$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	17	21	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	9	12	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	5	7	mA
Z_{O}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short Circuit Current	-	-	± 20	-	mA

Notes: 1. Nominal switching threshold is VDD/2.
VDD $=\mathbf{2 . 5} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	2.375	2.5	2.625	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	1.7	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.7	V
I_{IH}	Input High Current	CLK ${ }^{(1)}$	-	-	60	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	60	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	24	30	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	12	15	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	7	9	mA
Z_{o}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 50	-	mA

Notes: 1. Nominal switching threshold is VDD/2.

A product Line of Diodes Incorporated
(4) PERICOM

PI6C49CB04CQ

VDD $=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{1 0 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	3.0	3.3	3.6	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	2.4	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.7	V
$\mathrm{I}_{\text {IH }}$	Input High Current	CLK ${ }^{(1)}$	-	-	85	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	85	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.8	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.2	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	32	38	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	16	19	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	10	12	mA
Z_{O}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 50	-	mA

Notes: 1. Nominal switching threshold is VDD/2.

AC ELECTRICAL CHARACTERISTICS

VDD $=\mathbf{1 . 5} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	160	MHz
TOR	Output Rise Time	20% to 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% to 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	2	3	5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at $\mathrm{VDD} / 2$	-	0	± 250	ps

VDD $=\mathbf{1 . 8} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	160	MHz
tOR	Output Rise Time	20% to 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% to 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	1.3	2	4	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	(156.25MHz, 12 k to 20 MHz	-	0.1	-	ps

asamean TA PERICOM
PI6C49CB04CQ
VDD $=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{5 \%}$, Ambient temperature -40 to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	160	MHz
tOR	Output Rise Time	20% TO 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% TO 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	0.8	1.5	3	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	$@ 156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz	-	0.05	-	ps

VDD $=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{1 0 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	100	MHz
TOR	Output Rise Time	20% TO 80%	-	1.0	1.5	ns
tOF	Output Fall Time	$20 \% \mathrm{TO} 80 \%$	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	0.8	1.0	2.5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\mathrm{ADD}}$	Additive Jitter	$156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz	-	0.05	-	ps

Notes:

1. With rail-to-rail input clock.
2. Between any two outputs with equal loading.

A product Line of
Diodes Incorporated
(4) PERICOM

PI6C49CB04CQ

DC ELECTRICAL CHARACTERISTICS

$\mathbf{V D D}=\mathbf{1 . 5} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	1.425	1.5	1.575	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{CLK}^{(1)}$	0.9	-	3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	$\mathrm{CLK}^{(1)}$	-	-	0.575	V
I_{IH}	Input High Current	$\mathrm{CLK}^{(1)}$	-	-	40	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{CLK}^{(1)}$	-	-	1	$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	40	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	0.95	-	-	V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$	-	-	0.45	V
		$5 \mathrm{pF}, 160 \mathrm{MHz}$	-	15	21	mA
	$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	13	17	mA	
	$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	7	9	mA	
IDD	Operating Supply Current	$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	4	5.5	mA
Z_{O}		-	-	20	-	Ω
C_{IN}	Nominal Output Impedance	Input Capacitance	-	5	-	pF
I_{OS}	Short-Circuit Current	-	-12	-	mA	

Notes: 1. Nominal switching threshold is VDD/2
VDD $=\mathbf{1 . 8} \mathbf{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	1.7	1.8	1.89	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	1.1	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.6	V
I_{IH}	Input High Current	CLK ${ }^{(1)}$	-	-	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IL}	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	50	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.4	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 160 \mathrm{MHz}$	-	22	28	mA
		$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	17	21	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	9	12	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	5	7	mA
Z_{o}	Nominal Output Impedance	-	-	20	-	Ω

A product Line of
Diodes Incorporated
(T) PERICOM

PI6C49CB04CQ
VDD $=1.8 \mathrm{~V} \pm 5 \%$ Cont.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 20	-	mA

Notes: 1. Nominal switching threshold is VDD/2.
VDD $=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	2.375	2.5	2.625	V
V_{IH}	Input High Voltage	CLK ${ }^{(1)}$	1.7	-	3.6	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK ${ }^{(1)}$	-	-	0.7	V
I_{IH}	Input High Current	CLK ${ }^{(1)}$	-	-	60	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK ${ }^{(1)}$	-	-	1	$\mu \mathrm{A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	60	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2	-	-	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
IDD	Operating Supply Current	$5 \mathrm{pF}, 200 \mathrm{MHz}$	-	46	56	mA
		$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	24	30	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	12	15	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	7	9	mA
Z_{O}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 50	-	mA

Notes: 1. Nominal switching threshold is VDD/2.
VDD $=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{1 0 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage	-	3.0	3.3	3.6	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{CLK}^{(1)}$	2.4	-	3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	$\mathrm{CLK}^{(1)}$	-	-	0.7	V
I_{IH}	Input High Current	$\mathrm{CLK}^{\left(\mathrm{OE}^{(1)}\right.}$	-	-	85	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{CLK}, \mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{OE}^{(1)}$	-	-	1	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{OE}^{(1)}$	-	-	85	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.8	-	-	V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.2	V

a, Ramatas TUPERICOM
PI6C49CB04CQ
VDD $=3.3 \mathrm{~V} \pm 10 \%$ Cont.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
IDD	Operating Supply Current	$5 \mathrm{pF}, 200 \mathrm{MHz}$	-	62	75	mA
		$5 \mathrm{pF}, 100 \mathrm{MHz}$	-	32	38	mA
		$5 \mathrm{pF}, 50 \mathrm{MHz}$	-	16	19	mA
		$5 \mathrm{pF}, 25 \mathrm{MHz}$	-	10	12	mA
Z_{O}	Nominal Output Impedance	-	-	20	-	Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	CLK, OE pin	-	5	-	pF
$\mathrm{I}_{\text {OS }}$	Short-Circuit Current	-	-	± 50	-	mA

Notes: 1. Nominal switching threshold is VDD/2.

AC ELECTRICAL CHARACTERISTICS

VDD $=\mathbf{1 . 5} \mathrm{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	166	MHz
tOR	Output Rise Time	20% to 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% to 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	2	3	5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps

VDD $=\mathbf{1 . 8} \mathbf{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	166	MHz
tOR	Output Rise Time	20% to 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% to 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	1.3	2	4	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	@ $156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz	-	0.1	-	ps

VDD $=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{5 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	200	MHz
tOR	Output Rise Time	20% TO 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% TO 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	0.8	1.5	3	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	(156.25MHz, 12 k to 20 MHz	-	0.05	-	ps

VDD $=\mathbf{3 . 3} \mathbf{V} \pm \mathbf{1 0 \%}$, Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency	-	0	-	200	MHz
tOR	Output Rise Time	20% TO 80%	-	1.0	1.5	ns
tOF	Output Fall Time	20% TO 80%	-	1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay ${ }^{(1)}$	-	0.8	1.0	2.5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output-to-Output Skew ${ }^{(2)}$	Rising edges at VDD $/ 2$	-	0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	@ $156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz	-	0.05	-	ps

Notes:

1. With rail-to-rail input clock.
2. Between any two outputs with equal loading

Phase Noise Plot

THERMAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
OJA	Thermal Resistance Junction to Ambient	Still air	-	157	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
OJC	Thermal Resistance Junction to Case	-	-	42	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PI6C49CB04CQ

Application Information

Suggest for Unused Inputs and Outputs

LVCMOS Input Control Pins

It is suggested to add pullup $=4.7 \mathrm{k}$ and pulldown $=1 \mathrm{k}$ for LVCMOS pins even though they have internal pullup/pulldown but with much higher value ($\geq 50 \mathrm{k}$) for higher design reliability.

Outputs

All unused outputs are suggested to be left open and not connected to any trace. This can lower the IC power consumption.

Power Decoupling \& Routing

VDD Pin Decoupling

Each VDD pin must have a $0.1 \mu \mathrm{~F}$ decoupling capacitor. For better decoupling, $1 \mu \mathrm{~F}$ can be used. Placing the decoupling capacitor on the component side improves decoupling filter results, as shown below.

Placement of Decoupling Capacitors

CMOS Clock Trace Routing

Ensure there is a sufficient keep-out area to the adjacent trace (> 20 mil .). In an example using a 125 MHz XO driving a buffer IC, it is better to route the clock trace on the component side with a 33Ω termination resistor.

A product Line of Diodes Incorporated
(4) PERICOM

PI6C49CB04CQ

CMOS Output Termination

Popular CMOS Output Termination

The most popular CMOS termination is a serial resistor close to the output pin ($\leq 200 \mathrm{mil}$). It is simple and balances the drive strength. The resistor's value can be fine tuned for best performance during board bring-up based on VDDO voltage used.

Combining Serial and Parallel Termination

Designers can also use a parallel termination for CMOS outputs. For example, a 50Ω pulldown resistor can be used at the Rx side to reduce signal reflection, but it reduces the signals V_swing in half. This pulldown can be combined with a serial resistor to form a smaller clock voltage difference. The following diagram shows how to transition a 2.5 V clock into 1.8 V clock.

Rs $=33 \Omega$ with $\mathrm{Rn}=100 \Omega$, to transition 3.3 V CMOS to 2.5 V
$\mathrm{Rs}=43 \Omega$ with $\mathrm{Rn}=70 \Omega$ to transition 3.3 V CMOS to 1.8 V

Clock Jitter Definitions

Total jitter= RJ + DJ
Random Jitter (RJ) is unpredictable and unbounded timing noise that can fit in a Gaussian math distribution in RMS. RJ test values are directly related to how long or how many test samples are available. Deterministic jitter (DJ) is timing jitter that is predictable and periodic in fixed interference frequency. Total jitter (TJ) is the combination of random jitter and deterministic jitter, where factors are based on total test sample count. JEDEC std. specifies digital clock TJ in 10k random samples.

Phase Jitter

Phase noise is short-term random noise attached on the clock carrier and it is a function of the clock offset from the carrier, for example $\mathrm{dBc} / \mathrm{Hz} @ 10 \mathrm{kHz}$, which is phase noise power in $1-\mathrm{Hz}$ normalized bandwidth vs. the carrier power @ 10 kHz offset. Integration of phase noise in plot over a given frequency band yields RMS phase jitter, for example, to specify phase jitter $\leq 1 \mathrm{ps}$ at 12 k to 20 MHz offset band as SONET standard specification.

A product Line of Diodes Incorporated

PI6C49CB04CQ

Device Thermal Calculation

The JEDEC thermal model in a 4 -layer PCB is shown below.

JEDEC IC Thermal Model
Important factors to influence device operating temperature are:

1) The power dissipation from the chip (P_{-}chip) is found after subtracting power dissipation from external loads. Generally it can be the no-load device Idd.
2) Package type and PCB stack-up structure, for example, loz 4-layer board. PCB have more layers and are thicker, which improves heat dissipation.
3) Chassis air flow and cooling mechanism. More air flow M / s and adding heat sink on device can reduce device final die junction temperature Tj .
The individual device thermal calculation formula:
$\mathrm{Tj}=\mathbf{T a}+$ Pchip $\mathrm{x} \mathbf{J a}$
$\mathrm{Tc}=\mathrm{Tj}-\operatorname{Pchip} \times \mathrm{Jc}$
Ja Package thermal resistance from die to the ambient air in C/W unit. This data is provided in JEDEC model simulation. An air flow of $1 \mathrm{~m} / \mathrm{s}$ will reduce Ja (still air) by $20 \% \sim 30 \%$.

Jc \qquad Package thermal resistance from die to the package case in C/W unit.
Tj \qquad Die junction temperature in C (industry limit < 125C max).
Ta \qquad Ambient air temperature in C.
Tc \qquad Package case temperature in C.
Pchip \qquad IC actually consumes power through Iee/GND current.

Part Marking

Q Package-2

PI6C49CB
O4CQ2WE
ZYYWWX

Z: Die Rev
Y: Year
W: Workweek
1st X: Assembly Code
2nd X: Fab Code

A product Line of Diodes Incorporated
T) PERICOM

PI6C49CB04CQ

Packaging Mechanical: 8-SOIC (W)

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.75
A1	0.10	-	0.25
A2	1.25	-	-
b	0.31	-	0.51
c	0.10	-	0.25
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	1.27 BSC		
L	0.40	-	1.27
h	0.25	-	0.50
θ°	0	-	8

NOTE :

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES
2. DIMENSIONS EXCLUDE BURRS, MOLD FLASH OR PROTRUSIONS
3. REFER JEDEC MS-012

	DATE: 02/21/14
DESCRIPTION: 8-Pin, 150mil-Wide, SOIC	
PACKAGE CODE: W (W8)	REVISION: G
DOCUMENT CONTROL \#: PD-1001	

15-0103

For latest package information:
See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6C49CB04CQ2WEX	W	8-pin, 150mil-Wide (SOIC)	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
PI6C49CB04CQ3WEX	W	8-pin, 150mil-Wide (SOIC)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{Q}=$ Automotive Compliant
5. 2 and $3=$ AEC-Q100 Grade Level
6. $\mathrm{E}=\mathrm{Pb}$-free and Green
7. X suffix $=$ Tape/Reel

PI6C49CB04CQ

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE PI6C10810HE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB7L14MMNG NB6L14MMNR2G NB6L611MNG NB7V58MMNHTBG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR 9DB801BGLF ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2 ADCLK925BCPZ-R7

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine $(<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl})$ and $<1000 \mathrm{ppm}$ antimony compounds.
