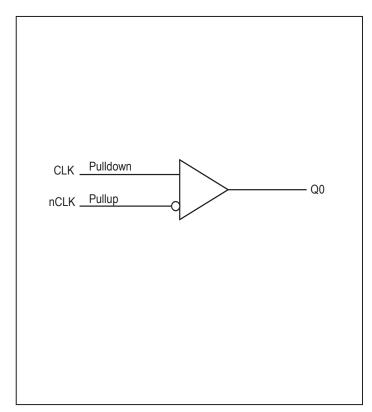
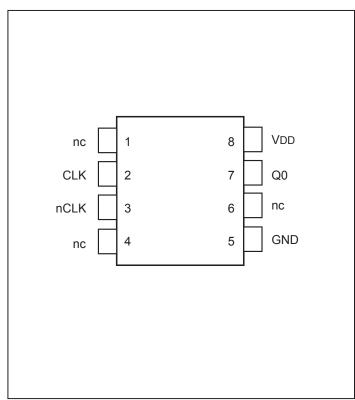


1-To-1 Differential-to-LVCMOS/LVTTL Translator


Features

- → One LVCMOS/LVTTL output
- → Differential CLK/nCLK input pair
- → CLK/nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- → Output frequency: 360MHz
- → Part-to-part skew: 500ps (maximum)
- → Additive phase jitter, RMS: 0.09ps (typical), 3.3V output
- → Full 3.3V and 2.5V operating supply
- → -40°C to 85°C ambient operating temperature


Description

The PI6C49X0201 is a 1-to-1 Differential-to-LVCMOS/LVTTL Translator High Performance Buffer. The differential input is highly flexible and can accept LVPECL, LVDS, LVHSTL, SSTL, and HCSL. The small 8-lead SOIC footprint makes this device ideal for use in applications with limited board space.

Block Diagram

Pin Assignment

13-0112 1 www.pericom.com PI6C49X0201 Rev A 07/16/13

Pin Descriptions

Pin#	Pin Name	Pin Type		Pin Description
1, 4, 6	nc	Unused		No connect.
2	CLK	Input	Pulldown	Non-inverting differential clock input.
3	nCLK	Input	Pullup	Inverting differential clock input.
5	GND	Power		Power supply ground.
7	Q0	Output		Single-ended clock output. LVCMOS/LVTTL interface levels.
8	VDD	Power		Positive supply pin.

Note: Pullup and Pulldown refer to internal input resistors.

Pin Characteristics

Symbol	Parameter	Test Conditions	Min.	Typical	Max.	Units
$C_{_{\mathrm{IN}}}$	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
C_{pD}	Power Dissipation Capacitance	VDD = 3.6V		23		pF
R _{OUT}	Output Impedance		5	7	13	Ω

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Supply Voltage, VDD	r
Inputs, V ₁	r
Output, $V_{_{\rm O}}$	
Storage Temperature, T _{STG} 65°C to 150°C ESD Protection (Input) 2000V min (HBM)	;)

Note:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics

is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

DC Electrical Characteristics

Power Supply DC Characteristics, VDD = $3.3V \pm 0.3V$ or $2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VDD			3.0	3.3	3.6	V
VDD Positive S	Positive Supply Voltage		2.375	2.5	2.625	V
IDD Power Supply Current	Dowar Supply Current	25MHz, unloaded			25	mA
	Power Supply Current	250MHz, unloaded			35	mA

LVCMOS / LVTTL DC Characteristics, VDD = 3.3V \pm 0.3V or 2.5V \pm 5%, T_A = -40°C to 85°C

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V	Output High Voltage; NOTE 1	VDD = 3.6V	2.6		3.6	V
V _{OH}	Output High Voltage, NOTE 1	VDD = 2.625V	1.8		2.625	V
V _{OL}	Output Low Voltage; NOTE 1	VDD = 3.6V or 2.625V			0.5	V

NOTE 1: Outputs terminated with 50Ω to VDD/2.

Differential DC Characteristics, VDD = $3.3V \pm 0.3V$ or $2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
ī	Input High Current	nCLK	$V_{IN} = VDD = 3.6V \text{ or } 2.625V$			5	μΑ
1 _{IH}	Input High Current	CLK	$V_{IN} = VDD = 3.6V \text{ or } 2.625V$			150	μΑ
ī	Input Low Current	nCLK	$V_{IN} = 0V$, VDD = 3.6V or 2.625V	-150			μΑ
l IIL	Input Low Current	CLK	$V_{IN} = 0V, VDD = 3.6V \text{ or } 2.625V$	-5			μΑ
V_{pp}	Peak-to-Peak Input Vol	ltage		0.15		1.3	V
V _{CRM}	Common Mode Input NOTE 1, 2	Voltage;		GND + 0.5		VDD – 0.85	V

NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VDD + 0.3V.

NOTE 2: Common mode voltage is defined as $(V_{\parallel} + V_{\parallel})/2$.

AC Electrical Characteristics

AC Characteristics, VDD = $3.3V \pm 0.3V$, $T_{A} = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f_{MAX}	Output Frequency		4		360	MHz
t _{PD}	Propagation Delay, NOTE 1	<i>f</i> ≤ 350MHz	1.6	1.8	2.0	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				500	ps
	Ducces Addition Disease Figure DMC	156.25MHz, Integration Range (12kHz – 20MHz)		0.09		
tjit	Buffer Additive Phase Jitter, RMS	125MHz, Integration Range (12kHz – 20MHz)		0.15		ps
t_R/t_F	Output Rise/Fall Time	0.8V to 2V	80	250	350	ps
ada	Output Duty Cycle	<i>f</i> ≤ 166MHz	45	50	55	%
odc	Output Duty Cycle	$166MHz < f \le 350MHz$	40	50	60	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at f_{MAX} unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output at VDD/2.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions.

Using the same type of inputs on each device, the outputs are measured at VDD/2.

AC Characteristics, VDD = $2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
f_{MAX}	Output Frequency		4		360	MHz	
t_{PD}	Propagation Delay, NOTE 1	<i>f</i> ≤ 350MHz	1.9	2.2	2.5	ns	
tsk(pp)	Part-to-Part Skew; NOTE 2				500	ps	
	D. Co., Addison Physics Physics PMC	156.25MHz, Integration Range (12kHz – 20MHz)		0.04			
tjit	Buffer Additive Phase Jitter, RMS	125MHz, Integration Range (12kHz – 20MHz)		0.14		ps	
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time	20% to 80%	180		350	ps	
	Output Duty Cycle	<i>f</i> ≤ 250MHz	45	50	55	%	
odc	Output Duty Cycle	$250 \text{MHz} < f \le 350 \text{MHz}$	40	50	60	%	

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at $\boldsymbol{f}_{\text{MAX}}$ unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output at VDD/2.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions.

Using the same type of inputs on each device, the outputs are measured at VDD/2.

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = VDD/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and R1/R2 = 0.609.

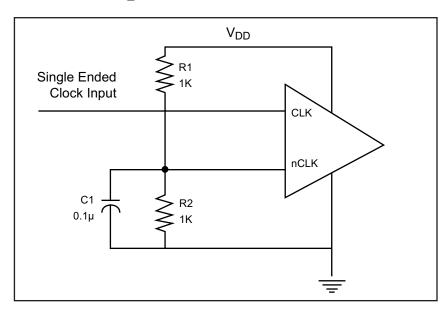
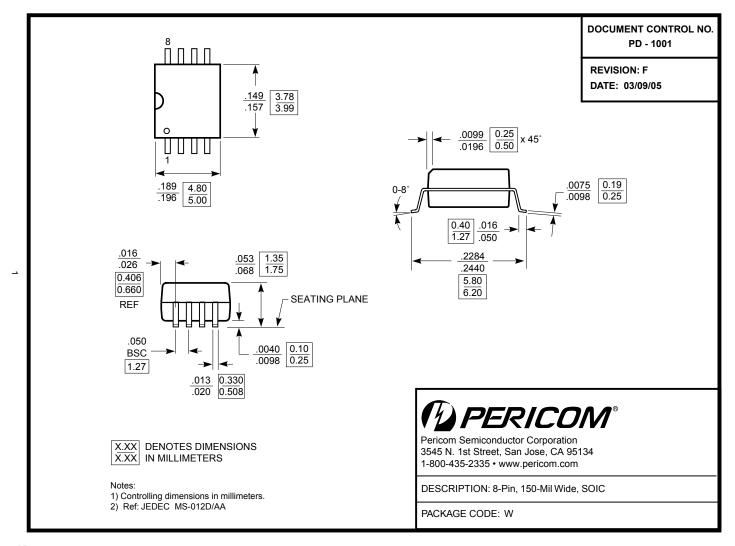



Figure 1. Single-ended input to Differential input device

Thermal Information

Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	157 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		42 °C/W

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C49X0201WIE	W	8-pin, Pb-free & Green, SOIC

Notes

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE NB7L1008MNG NB7L14MN1G PI49FCT20807QE
PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG
PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG
MC100EP11DTG NB7L14MMNG NB6L14MMNR2G NB6L611MNG NB7V58MMNHTBG NB3N111KMNR4G ADCLK944BCPZ-R7
ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR 9DB801BGLF ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2
ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2
ADCLK925BCPZ-R7