Features

\rightarrow Low skew outputs (250 ps)
\rightarrow Packaged in 8-pin SOIC
\rightarrow Low power CMOS technology
\rightarrow Operating Voltages of 1.5 V to 3.3 V
\rightarrow Output Enable pin tri-states outputs
$\rightarrow 3.6 \mathrm{~V}$ tolerant input clock
\rightarrow Industrial temperature ranges

Block Diagram

Description

The PI6C49X0204A is a low skew, single input to four output, clock buffer. Perfect for fanning out multiple clock outputs.

Pin Assignment

Pin Descriptions

Pin\#	Pin Name	Pin Type	Pin Description
1	CLK	Input	Clock Input. 3.3 V tolerant input.
2	Q1	Output	Clock Output 1.
3	Q2	Output	Clock Output 2.
4	Q3	Output	Clock Output 3.
5	Q4	Output	Clock Output 4.
6	GND	Power	Connect to ground.
7	VDD	Power	Connect to 1.5 V, 1.8V, 2.5V or 3.3V.
8	OE	Input	Output Enable. Tri-states outputs when low. Connect to VDD for normal operation.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01 \mu \mathrm{~F}$ should be connected between VDD on pin 7 and GND on pin 6, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

Maximum Ratings

Note:

Stresses above the ratings listed below can cause permanent damage to the PI6C49X0204A. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (industrial)	-40		+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (measured in respect to GND)	+1.425		+3.6	V

DC ELECTRICAL CHARACTERISTICS

VDD $=1.5 \mathbf{V} \mathbf{5 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage		1.425	1.5	1.575	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	Note 1, CLK	1.17		3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Note 1, CLK			0.575	V
I_{IH}	Input High Current	Note 1, CLK, OE			40	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	Note 1, CLK, OE			1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{\text {OH }}=-6 \mathrm{~mA}$	0.95			V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {OL }}=6 \mathrm{~mA}$			0.45	V
IDD	Operating Supply Current	No load, 133 MHz			9	mA
$\mathrm{Z}_{\text {O }}$	Nominal Output Impedance			20		Ω
C_{IN}	Input Capacitance	CLK, OE pin		5	pF	
$\mathrm{I}_{\text {OS }}$	Short Circuit Current			± 12		mA

Notes: 1. Nominal switching threshold is VDD/2

VDD $=\mathbf{1 . 8} \mathbf{V} \mathbf{\pm 5 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage		1.7	1.8	1.89	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	Note 1, CLK	1.7		3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Note 1, CLK			0.6	V
I_{IH}	Input High Current	Note 1, CLK, OE			50	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	Note 1, CLK, OE			1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.4	V
IDD	No load, 133 MHz			11	mA	
Z_{O}	Operating Supply Current	Nominal Output Impedance	CLK, OE pin		20	
C_{IN}	Input Capacitance			Ω		
$\mathrm{I}_{\text {OS }}$	Short Circuit Current			± 20		mF

Notes: 1. Nominal switching threshold is VDD/2

VDD $=\mathbf{2 . 5} \mathbf{V} \mathbf{\pm} \%$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage		2.375	2.5	2.625	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	Note 1, CLK	1.7		3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Note 1, CLK			0.7	V
I_{IH}	Input High Current	Note 1, CLK, OE			60	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	Note 1, CLK, OE			3	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{\text {OH }}=-8 \mathrm{~mA}$	2			V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$			0.4	V
IDD	Operating Supply Current	No load, 133 MHz			15	mA
Z_{O}	Nominal Output Impedance				Ω	
C_{IN}	Input Capacitance	CLK, OE pin		5	pF	
$\mathrm{I}_{\text {OS }}$	Short Circuit Current			± 50		mA

Notes: 1. Nominal switching threshold is VDD/2
VDD=3.3 V $\mathbf{\pm 1 0 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VDD	Operating Voltage		3.0	3.3	3.6	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	Note 1, CLK	2.1		3.6	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Note 1, CLK			0.7	V
I_{IH}	Input High Current	Note 1, CLK, OE			85	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	Note 1, CLK, OE			1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{\text {OH }}=-8 \mathrm{~mA}$	2.8			V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$			0.2	V
IDD	No load, 133 MHz			21	mA	
Z_{O}	Operating Supply Current			20		Ω
C_{IN}	Nominal Output Impedance	CLK, OE pin		5	pF	
$\mathrm{I}_{\text {OS }}$	Shput Capacitance			± 50		mA

Notes: 1. Nominal switching threshold is VDD/2

AC ELECTRICAL CHARACTERISTICS

$\mathbf{V D D = 1 . 5 ~ V} \mathbf{\pm 5 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency		0		166	MHz
tOR	Output Rise Time	20% to 80%		1.0	1.5	ns
tOF	Output Fall Time	20% to 80%		1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay (Note1)		2	3	5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output to Output Skew (Note2)	Rising edges at VDD $/ 2$		0	± 250	ps

AC ELECTRICAL CHARACTERISTICS

VDD $=1.8 \mathbf{V} \mathbf{5 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\mathrm{OUT}}$	Output Frequency		0		166	MHz
tOR	Output Rise Time	20% to 80%		1.0	1.5	ns
tOF	Output Fall Time	20% to 80%		1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay (Note1)		1.3	2	4	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output to Output Skew (Note2)	Rising edges at VDD/2		0	± 250	ps
$\mathrm{J}_{\mathrm{ADD}}$	Additive Jitter	$@ 156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz	0.1	ps		

VDD $=\mathbf{2 . 5} \mathbf{V} \mathbf{\pm 5 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency		0		200	MHz
tOR	Output Rise Time	20% TO 80%		1.0	1.5	ns
tOF	Output Fall Time	$20 \% \mathrm{TO} 80 \%$		1.0	1.5	ns
$\mathrm{~T}_{\mathrm{PD}}$	Propagation Delay (Note1)		0.8	1.5	3	ns
$\mathrm{~T}_{\text {SK }}$	Output to Output Skew (Note2)	Rising edges at VDD $/ 2$		0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	$@ 156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz		0.05		ps
Notes:						

1. With rail to rail input clock
2. Between any 2 outputs with equal loading.

VDD=3.3 V $\mathbf{\pm 1 0 \%}$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{F}_{\text {OUT }}$	Output Frequency		0		200	MHz
tOR	Output Rise Time	$20 \% \mathrm{TO} 80 \%$		1.0	1.5	ns
tOF	Output Fall Time	$20 \% \mathrm{TO} 80 \%$		1.0	1.5	ns
$\mathrm{~T}_{\text {PD }}$	Propagation Delay (Note1)		0.8	1.0	2.5	ns
$\mathrm{~T}_{\mathrm{SK}}$	Output to Output Skew (Note2)	Rising edges at VDD/2		0	± 250	ps
$\mathrm{J}_{\text {ADD }}$	Additive Jitter	$@ 156.25 \mathrm{MHz}, 12 \mathrm{k}$ to 20 MHz		0.05		ps

Notes:

1. With rail to rail input clock
2. Between any 2 outputs with equal loading.

THERMAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
θ JA	Thermal Resistance Junction to Ambient	Still air		157		${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ JC	Thermal Resistance Junction to Case			42		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Phase Noise Plot

Application information

Suggest for Unused Inputs and Outputs

LVCMOS Input Control Pins

It is suggested to add pull-up=4.7k and pull-down=1k for LVCMOS pins even though they have internal pull-up/down but with much higher value ($>=50 \mathrm{k}$) for higher design reliability.

Outputs

All unused outputs are suggested to be left open and not connected to any trace. This can lower the IC power consumption.

Power Decoupling \& Routing

VDD Pin Decoupling

Each VDD pin must have a 0.1uF decoupling capacitor. For better decoupling, luF can be used. Locating the decoupling capacitor on the component side has better decoupling filter result as shown.

Placement of Decoupling caps

CMOS Clock Trace Routing

Please ensure that there is a sufficent keep-out area to the adjacent trace ($>20 \mathrm{mil}$.). In an example using a 125 MHz XO driving a buffer IC, it is better to route the clock trace on the component side with a 33 ohm termination resistor.

CMOS Output Termination

Popular CMOS Output Termination

The most popular CMOS termination is a serial resitor close to the output $\mathrm{pin}(<=200 \mathrm{mil})$. It is simple and balances the drive strength. The resistor's value can be fine tuned for best performance during board bring-up based on VDDO voltage used.

Combining Serial and Parallel Termination

Designers can also use a parallel termination for CMOS outputs. For example, a 50 ohm pull-down resistor can be used at the Rx side to reduce signal reflection, but it reduces the signals V_swing in half. This pull-down can be combined with a serial resitor to form a smaller clock voltage difference. The following diagram shows how to transition a 2.5 V clock into 1.8 V clock.

$\mathrm{Rs}=33$ ohm with $\mathrm{Rn}=100 \mathrm{ohm}$, to transition 3.3 V CMOS to 2.5 V

Rs $=43$ ohm with $\mathrm{Rn}=70$ ohm to transition 3.3 V CMOS to 1.8 V

Clock Jitter Definitions

Total jitter= RJ + DJ
Random Jitter (RJ) is unpredictable and unbounded timing noise that can fit in a Gaussian math distribution in RMS. RJ test values are directly related with how long or how many test samples are available. Deterministic Jitter (DJ) is timing jitter that is predictable and periodic in fixed interference frequency. Total Jitter (TJ) is the combination of random jitter and deterministic jitter: , where is a factor based on total test sample count. JEDEC std. specifies digital clock TJ in 10k random samples.

Phase Jitter

Phase noise is short-term random noise attached on the clock carrier and it is a function of the clock offset from the carrier, for example $\mathrm{dBc} / \mathrm{Hz@10kHz}$ which is phase noise power in $1-\mathrm{Hz}$ normalized bandwidth vs. the carrier power @10kHz offset. Integration of phase noise in plot over a given frequency band yields RMS phase jitter, for example, to specify phase jitter $<=1 \mathrm{ps}$ at 12 k to 20 MHz offset band as SONET standard specification.

Device Thermal Calculation

The JEDEC thermal model in a 4-layer PCB is shown below.

JEDEC IC Thermal Model

Important factors to influence device operating temperature are:

1) The power dissipation from the chip (P _chip) is after subtracting power dissipation from external loads. Generally it can be the no-load device Idd
2) Package type and PCB stack-up structure, for example, loz 4 layer board. PCB with more layers and are thicker has better heat dissipation
3) Chassis air flow and cooling mechanism. More air flow M/s and adding heat sink on device can reduce device final die junction temperature Tj
The individual device thermal calculation formula:
$\mathrm{Tj}=\mathrm{Ta}+$ Pchip x Ja
$\mathrm{Tc}=\mathrm{Tj}-\operatorname{Pchip} \mathrm{x} \mathrm{Jc}$
Ja ___ Package thermal resistance from die to the ambient air in C/W unit; This data is provided in JEDEC model simulation. An air flow of $1 \mathrm{~m} / \mathrm{s}$ will reduce Ja (still air) by 20~30\%

Jc \qquad Package thermal resistance from die to the package case in C/W unit

Tj \qquad Die junction temperature in C (industry limit <125C max.)

Ta \qquad Ambiant air température in C
Tc \qquad Package case temperature in C Pchip___ IC actually consumes power through Iee/GND current

Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information ${ }^{(1-3)}$

Ordering Code	Package Code	Package Description
PI6C49X0204AWIE	W	8-pin, Pb-free \& Green, SOIC
PI6C49X0204AWIEX	W	8-pin, Pb-free \& Green, SOIC, Tape \& Reel

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=\mathrm{Pb}$-free and Green
3. Adding an X suffix $=$ Tape/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF PI49FCT20802QE PI6C10810HE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB7L14MMNG NB6L14MMNR2G NB6L611MNG NB7V58MMNHTBG NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR 9DB801BGLF ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK907BCPZ-R2 ADCLK907BCPZ-WP ADCLK914BCPZ-R2 ADCLK914BCPZ-R7 ADCLK925BCPZ-R2 ADCLK925BCPZ-R7

