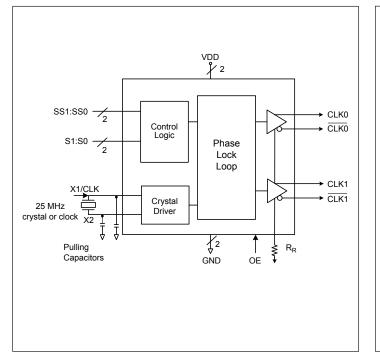


PI6C557-03AQ

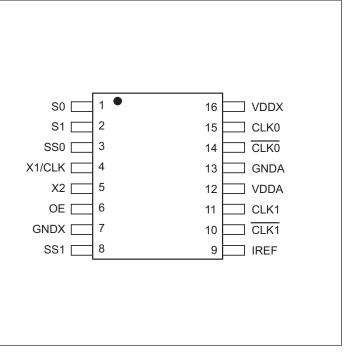
PCIe 2.0 Clock Generator with 2 HCSL Outputs for Automotive Applications

Features

- → PCIe[®] 2.0 compliant
 - Phase jitter 2.1ps RMS (typ)
- → LVDS compatible outputs
- → Supply voltage of 3.3V ±10%
- → 25MHz crystal or clock input frequency
- → HCSL outputs, 0.8V Current mode differential pair
- → Jitter 35ps cycle-to-cycle (typ)
- \rightarrow Spread of -0.5%, -0.75%, and no spread
- → AEC-Q100 qualified


Block Diagram

- ➔ Spread Bypass option available
- → Spread and frequency selection via external pins
- → Packaging: (Pb-free and Green)
 - 16-pin TSSOP (L16)


Description

The PI6C557-03AQ is a spread spectrum clock generator compliant to PCI Express[®] 2.0 and Ethernet requirements. The device is used for PC or embedded systems to substantially reduce Electromagnetic Interference (EMI).

The PI6C557-03AQ provides two differential (HCSL) or LVDS spread spectrum outputs. The PI6C557-03AQ is configured to select spread and clock selection. Using Pericom's patented Phase-Locked Loop (PLL) techniques, the device takes a 25MHz crystal input and produces two pairs of differential outputs (HCSL) at 25MHz, 100MHz, 125MHz and 200MHz clock frequencies. It also provides spread selection of -0.5%, -0.75%, and no spread.

Pin Configuration (16-Pin TSSOP)

Pin Description

Pin #	Pin Name	I/O Type	Description
1	SO	Input	Select pin 0 (Internal pull-up resistor). See Table 1.
2	S1	Input	Select pin 1 (Internal pull-up resistor). See Table 1.
3	SS0	Input	Spread Select pin 0 (Internal pull-up resistor). See Table 2.
4	X1/CLK	Input	Crystal or clock input. Connect to a 25MHz crystal or single ended clock.
5	X2	Output	Crystal connection. Leave unconnected for clock input.
6	OE	Input	Output enable. Internal pull-up resistor.
7	GNDX	Power	Crystal ground pin.
8	SS1	Input	Spread Select pin 1 (Internal pull-up resistor). See Table 2.
9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
10	CLK1	Output	HCSL compliment clock output
11	CLK1	Output	HCSL clock output
12	VDDA	Power	Connect to a +3.3V source.
13	GNDA	Power	Output and analog circuit ground.
14	CLK0	Output	HCSL compliment clock output
15	CLK0	Output	HCSL clock output
16	VDDX	Power	Connect to a +3.3V source.

Table 1: Output Select Table

S1	S0	CLK(MHz)
0	0	25
0	1	100
1	0	125
1	1	200

Table 2: Spread Selection Table

SS1	SS0	Spread
0	0	No Spread
0	1	Down -0.5
1	0	Down -0.75
1	1	No Spread

Application Information

Decoupling Capacitors

Decoupling capacitors of 0.01μ F should be connected between each V_{DD} pin and the ground plane and placed as close to the V_{DD} pin as possible.

Crystal

Use a 25MHz fundamental mode parallel resonant crystal with less than 300PPM of error across temperature.

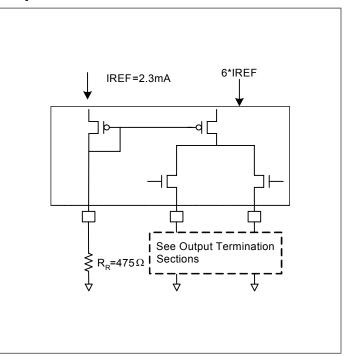
Crystal Capacitors

 C_L = Crystals's load capacitance in pF

Crystal Capacitors (pF) = $(C_L - 8) * 2$

For example, for a crystal with 16pF load caps, the external effective crystal cap would be 16 pF. (16-8)*2=16.

Current Source (IREF) Reference Resistor - R_R

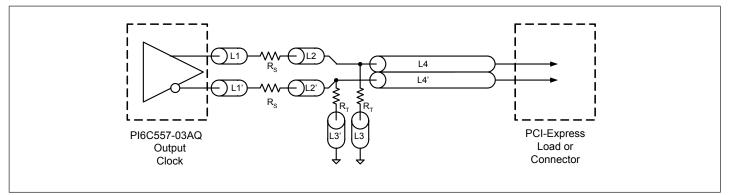

If board target trace impedance is 50Ω , then $R_R = 475\Omega$ providing an IREF of 2.32 mA. The output current (I_{OH}) is 6*IREF.

Output Termination

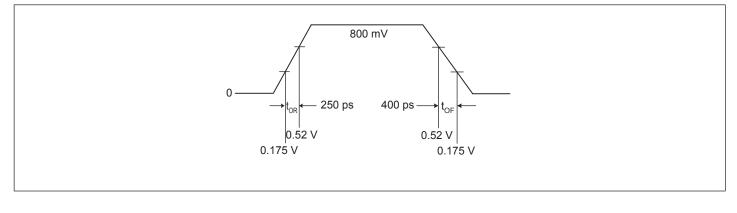
The PCI Express differential clock outputs of the PI6C557-03AQ are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI Express Layout Guidelines section.

The PI6C557-03AQ can be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

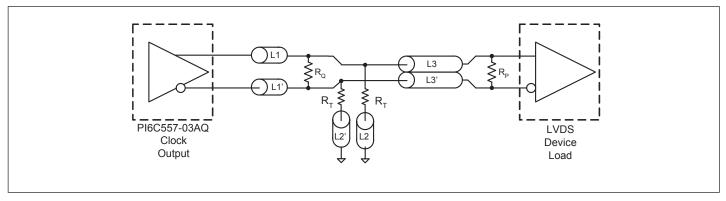

PCI Express Layout Guidelines

Common Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
L3 length, route as non-coupled 50Ω trace.	0.2 max	inch
R _S	33	Ω
R _T	49.9	Ω


Differential Routing on a Single PCB	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	2 min to 16 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	1.8 min to 14.4 max	inch

Differential Routing to a PCI Express connector	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	0.25 min to 14 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	0.225 min to 12.6 max	inch

PCI Express Device Routing


Typical PCI Express (HCSL) Waveform

Application Information

LVDS Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
RP	100	Ω
RQ	100	Ω
RT	150	Ω
L3 length, route as 100Ω differential trace.		
L3 length, route as 100Ω differential trace.		

LVDS Device Routing

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Supply Voltage to Ground Potential 5.5V
All Inputs and Outputs
Ambient Operating Temperature40 to +85°C
Storage Temperature
Junction Temperature
Soldering Temperature
EDS Protection (Input)

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Specifications

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)			+3.6	V

DC Characteristics (V_{DD} = 3.3V ±10%, T_A = -40°C to +85°C)

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage			3.0	3.3	3.6	V
V _{IH}	Input High Voltage ⁽¹⁾	OE		2.0		V _{DD} +0.3	V
V _{IL}	Input Low Voltage ⁽¹⁾	OE		GND -0.3		0.8	V
I _{IL} Input Leakage Current	Input Leakage Current 0 < Vin < V _{DD}	With input pull-up and pull-downs	-20		20		
		$0 < Vin < V_{DD}$	Without input pull-up and pull-downs	-5		5	_ μΑ
I _{DD}	Operating Supply Cur-	$R_L = 50\Omega, C_L = 2$	2pF			95	mA
I _{DDOE}	rent	OE = LOW				50	mA
C _{IN}	Input Capacitance	@ 55MHz	@ 55MHz			7	pF
Cout	Output Capacitance	@ 55MHz	@ 55MHz			6	pF
L _{PIN}	Pin Inductance					5	nH
R _{OUT}	Output Resistance	CLK Outputs	CLK Outputs				kΩ

Notes:

1. Single edge is monotonic when transitioning through region.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{IN}	Input Frequency			25		MHz
V _{OUT}	Output Frequency		25		200	MHz
V _{OH}	Output High Voltage ^(1,2)	100 MHz HCSL output @ V _{DD} = 3.3V	660	800	900	mV
Vol	Output Low Voltage ^(1,2)		-150	0		mV
V _{CPA}	Crossing Point Voltage ^(1,2)	Absolute	250	350	550	mV
V _{CN}	Crossing Point Voltage ^(1,2,4)	Variation over all edges			140	mV
Jcc	Jitter, Cycle-to-Cycle ^(1,3)			35	60	ps
J _{rms}	PCIe RMS Jitter	PCIe 2.0 Test Method @ 100MHz Output			3.1	ps
MF	Modulation Frequency	Spread Spectrum	30	31.5	33	kHz
t _{OR}	Rise Time ^(1,2)	From 0.175V to 0.525V	175		500	ps
toF	Fall Time ^(1,2)	From 0.525V to 0.175V	175		500	ps
T _{SKEW}	Skew between outputs	At Crossing Point Voltage			50	ps
T _{DUTY-CYCLE}	Duty Cycle ^(1,3)		45		55	%
T _{OE}	Output Enable Time ⁽⁵⁾	All outputs			10	μs
Тот	Output Disable Time ⁽⁵⁾	All outputs			10	μs
t _{STABLE}	From power-up to V _{DD} =3.3V	From Power-up V _{DD} =3.3V		3.0		ms
t _{SPREAD}	Setting period after spread change	Setting period after spread change		3.0		ms

HCSL Output AC Characteristics (V_{DD} = 3.3V ±10%, T_A = -40°C to +85°C)

Notes:

1. R_L = 50-Ohm with C_L = 2 pF

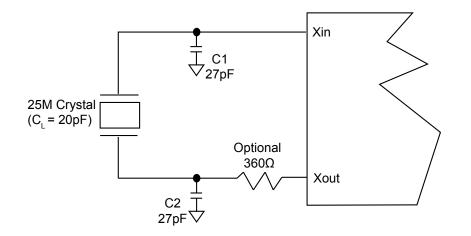
2. Single-ended waveform

3. Differential waveform

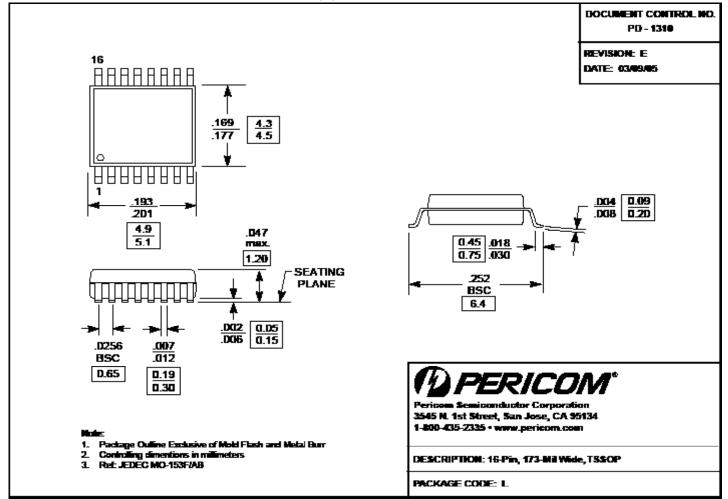
Measured at the crossing point
 CLK pins are tri-stated when OE is LOW

Thermal Characteristics

Conditions Symbol Parameter Min. Typ. Max. Unit Still air °C/W θ_{JA} Thermal Resistance Junction to Ambient 90 °C/W θ_{JC} Thermal Resistance Junction to Case 24


Recomended Crystal Specification

Pericom recommends:


a) FL2500184Q, SMD 3.2x2.5(4P), 25M, CL=20pF, Frequency Tolerance ±15ppm, Stability ±20ppm (http://www.pericom.com/pdf/datasheets/se/FL.pdfb)

Recommended Crystal Circuit

The following diagram shows PI6C557-03AQ crystal circuit connection with a parallel crystal. For the C L=20pF parallel crystal, it is suggested to use C1=27 pF, C2=27 pF in general. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillation according to different board layouts. R1=360 ohm is recommended in layout for smaller size crystal drive level adjustment.

Packaging Mechanical: 16-Pin TSSOP (L)

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Type
PI6C557-03AQLE	L	Pb-free & Green, 16-pin TSSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

5P49V5901A748NLGI 5P49V5901B680NLGI 5P49V5901B744NLGI 5P49V5929B502NLGI 5P49V5935B520LTGI 5V49EE903-116NLGI CV183-2TPAG 82P33814ANLG/W 8T49N004A-002NLGI 8T49N004A-039NLGI 9FGV0631CKLF 9FGV0641AKLFT 9LRS3197AKLF 9UMS9633BFILF 9VRS4450AKLF NB3N51132DTR2G 8N3Q001EG-0035CDI 932SQ426AKLF 950810CGLF 9DBV0531AKILF 9DBV0741AKILF 9FGV0641AKLF 9UMS9633BKLF 9VRS4420DKILF 9VRS4420DKLF 9VRS4420DKLFT CY25404ZXI226 CY25422SXI-004 5P49V5901B712NLGI NB3H5150-01MNTXG 6INT61041NDG PL602-20-K52TC PL613-51QC 8N3Q001FG-1114CDI 9FGV0641AKILF ZL30314GKG2 ZL30253LDG1 ZL30251LDG1 ZL30250LDG1 ZL30169LDG1 ZL30142GGG2 9UMS9633BKILFT 9FGV0631CKLFT 9FGV0631CKILF 5P49V5935B536LTGI PI6LC48P0101LIE DS1099U-ST+ MAX24305EXG+ PI6LC48H02-01LIE 82P33814ANLG