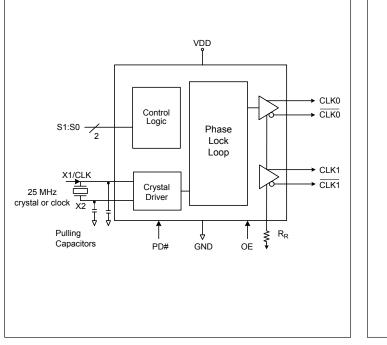
PERICOM[®]

PI6LC48H02-01

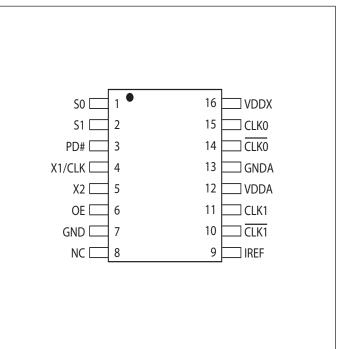
PCIe[®] 3.0/2.0/1.0 Clock Generator with 2 HCSL Outputs

Features

- → PCIe[®] 3.0/2.0/1.0 compliant
 - PCIe 3.0 Phase jitter 0.45ps RMS (High Freq. Typ.)
- → LVDS compatible outputs
- → Supply voltage of 3.3V ±10%
- → 25MHz crystal or clock input frequency
- → HCSL outputs, 0.8V Current mode differential pair
- → Jitter 35ps cycle-to-cycle (typ)
- → RMS phase jitter 12kHz ~ 20MHz @ 100MHz 0.32ps (typ)
- → RMS phase jitter 12kHz ~ 20MHz @ 125MHz 0.3ps (typ)
- ➔ Power down mode


Block Diagram

- ➔ Industrial temperature range
- → Packaging: (Pb-free and Green): 16-pin TSSOP (L16)


Description

The PI6LC48H02-01 is a clock generator compliant to PCI Express[®] 3.0/2.0/1.0 and Ethernet requirements. The device is used for servers, networking or embedded systems.

The PI6LC48H02-01 provides two differential (HCSL) or LVDS outputs. Using Pericom's patented Phase Locked Loop (PLL) techniques, the device takes a 25MHz crystal input and produces two pairs of differential outputs (HCSL) at 25MHz, 100MHz, 125MHz, 200MHz clock frequencies.

Pin Configuration (16-Pin TSSOP)

Rev B

Pin #	Pin Name	I/O Type	Description
1	SO	Input	Select pin 0 (Internal pull-up resistor). See Table 1.
2	S1	Input	Select pin 1 (Internal pull-up resistor). See Table 1.
3	PD#	Input	Power down mode. Internla pull-up resistor. See Table 2.
4	X1/CLK	Input	Crystal or clock input. Connect to a 25MHz crystal or single ended clock.
5	X2	Output	Crystal connection. Leave unconnected for clock input.
6	OE	Input	Output enable. Internal pull-up resistor.
7	GND	Power	Ground
8	NC	-	Do not connect
9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
10	CLK1	Output	HCSL compliment clock output
11	CLK1	Output	HCSL clock output
12	VDDA	Power	Connect to a +3.3V source.
13	GNDA	Power	Output and analog circuit ground.
14	CLK0	Output	HCSL compliment clock output
15	CLK0	Output	HCSL clock output
16	VDDX	Power	Connect to a +3.3V source.

Pin Description

Table 1: Output Select Table

S1	S0	CLK(MHz)
0	0	25
0	1	100
1	0	125
1	1	200

Table 2: Power down mode

PD#	Device
0	Power down mode
1	Normal Operation mode, default

Application Information

Decoupling Capacitors

Decoupling capacitors of 0.01μ F should be connected between each V_{DD} pin and the ground plane and placed as close to the V_{DD} pin as possible.

Crystal

Use a 25MHz fundamental mode parallel resonant crystal with less than 300PPM of error across temperature.

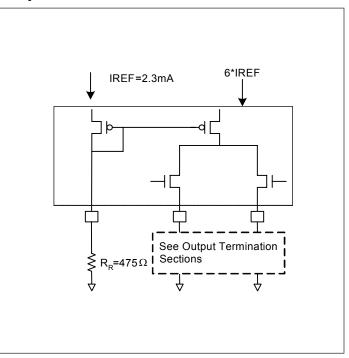
Crystal Capacitors

 C_L = Crystals's load capacitance in pF

Crystal Capacitors (pF) = $(C_L - 8) * 2$

For example, for a crystal with 16pF load caps, the external effective crystal cap would be 16 pF. (16-8)*2=16.

Current Source (IREF) Reference Resistor - R_R

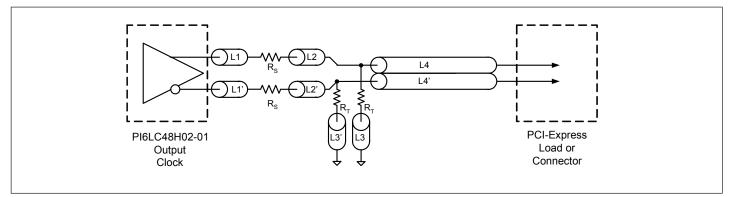

If board target trace impedance is 50Ω , then $R_R = 475\Omega$ providing an IREF of 2.32 mA. The output current (I_{OH}) is 6*IREF.

Output Termination

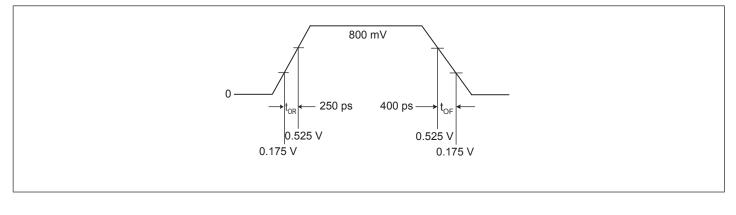
The PCI Express differential clock outputs of the PI6LC48H02-01 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI Express Layout Guidelines section.

The PI6LC48H02-01 can be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures


PCI Express Layout Guidelines

Common Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
L3 length, route as non-coupled 50Ω trace.	0.2 max	inch
R _S	33	Ω
R _T	49.9	Ω


Differential Routing on a Single PCB	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	2 min to 16 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	1.8 min to 14.4 max	inch

Differential Routing to a PCI Express connector	Dimension or Value	Unit
L4 length, route as coupled microstrip 100Ω differential trace.	0.25 min to 14 max	inch
L4 length, route as coupled stripline 100Ω differential trace.	0.225 min to 12.6 max	inch

PCI Express Device Routing

Typical PCI Express (HCSL) Waveform

Application Information

LVDS Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50 Ω trace.	0.5 max	inch
L2 length, route as non-coupled 50Ω trace.	0.2 max	inch
RP	100	Ω
RQ	100	Ω
RT	150	Ω
L3 length, route as 100Ω differential trace.		
L3 length, route as 100Ω differential trace.		

LVDS Device Routing

PERICOM[®]

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Specifications

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.0		+3.6	V

DC Characteristics (V_{DD} = 3.3V ±10%, T_A = -40°C to +85°C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{DD}	Supply Voltage		3.0	3.3	3.6	V	
V _{IH}	Input High Voltage ⁽¹⁾	OE, S0, S1, PD#	2.0		V _{DD} +0.3	V	
V _{IL}	Input Low Voltage ⁽¹⁾	OE, S0, S1, PD#	GND -0.3		0.8	V	
I _{IH}	Input High Current	$Vin = V_{DD}$	-5		5		
I _{IL}	Input Low Current	Vin = 0	-20		20	μA	
I _{DD}	Operating Supply Cur-	$R_L = 50\Omega, C_L = 2pF$		100	115	mA	
I _{DDOE}	rent	OE = LOW		58	65	mA	
I _{DDPD}	Power down Supply Cur- rent	PD# = LOW		0.07	0.15	mA	
C _{IN}	Input Capacitance	@ 25MHz			7	pF	
C _{OUT}	Output Capacitance	@ 25MHz			6	pF	
L _{PIN}	Pin Inductance				5	nH	
R _{OUT}	Output Resistance	CLK Outputs	3.0			kΩ	

6

Notes:

1. Single edge is monotonic when transitioning through region.

Rev B

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{IN}	Input Frequency			25		MHz
F _{OUT}	Output Frequency		25		200	MHz
V _{OH}	Output High Voltage (1,2)	100 MHz HCSL output @ V _{DD} = 3.3V	660	800	900	mV
V _{OL}	Output Low Voltage ^(1,2)		-150	0		mV
V _{CPA}	Crossing Point Voltage ^(1,2)	Absolute	250	350	550	mV
V _{CN}	Crossing Point Voltage ^(1,2,4)	Variation over all edges			140	mV
Јсс	Jitter, Cycle-to-Cycle ^(1,3)			35	60	ps
T	RMS Phase Jitter, (Random)	100MHz 25MHz Xtal input, 12kHz - 20MHz		0.33	0.5	ps
JPhase		125MHz 25MHz Xtal input, 12kHz - 20MHz		0.3	0.5	ps
J _{RMS2.0}	PCIe 2.0 RMS Jitter	PCIe 2.0 Test Method @ 100MHz Output		2.03	3.1	ps
		PLL L-BW @ 2M & 5M 1st H3		0.51	3	ps
I		PLL L-BW @ 2M & 4M 1st H3		0.58	3	ps
Jrms3.0	PCIe 3.0 RMS Jitter	PLL H-BW @ 2M & 5M 1st H3		0.44	1	ps
		PLL H-BW @ 2M & 4M 1st H3		0.38	1	ps
tor	Rise Time ^(1,2)	From 0.175V to 0.525V	175		700	ps
t _{OF}	Fall Time ^(1,2)	From 0.525V to 0.175V	175		700	ps
T _{SKEW}	Skew between outputs	At Crossing Point Voltage			50	ps
T _{DUTY-CYCLE}	Duty Cycle ^(1,3)		45		55	%
T _{OE}	Output Enable Time ⁽⁵⁾	All outputs			10	μs
T _{OT}	Output Disable Time ⁽⁵⁾	All outputs			10	μs
t _{STABLE}	Stabilization Time	From Power-up V _{DD} =3.3V		14		ms

HCSL Output AC Characteristics ($V_{DD} = 3.3V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$)

Notes:

1. $R_L = 50$ -Ohm with $C_L = 2 \text{ pF}$ 2. Single-ended waveform

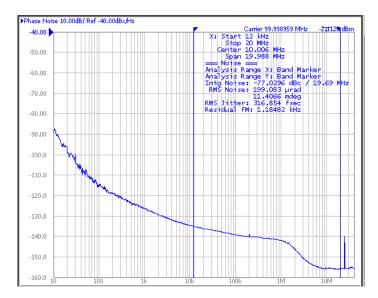
3. Differential waveform

4. Measured at the crossing point

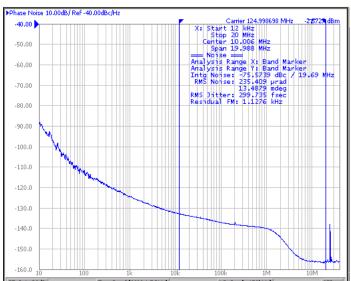
5. CLK pins are tri-stated when OE is LOW

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			90	°C/W
θ_{JC}	Thermal Resistance Junction to Case				24	°C/W

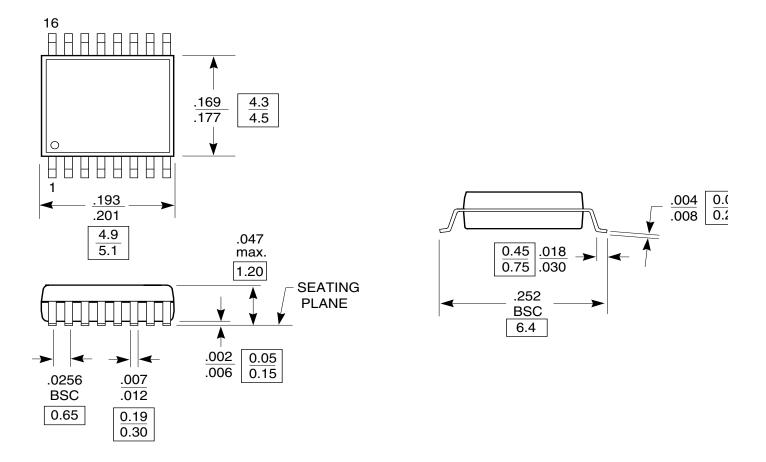

Recomended Crystal Specification

Pericom recommends:


- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500091, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm http://www.pericom.com/pdf/datasheets/se/FL.pdf

Phase Noise Plot

100MHz


125MHz

8

Rev B

Packaging Mechanical: 16-Pin TSSOP (L)

 $Note: For \ latest \ package \ info, \ please \ check: \ http://www.pericom.com/products/packaging/mechanicals.php$

Ordering Information

Ordering Code	Package Code	Package Type
PI6LC48H02-01LIE	L	Pb-free & Green, 16-pin TSSOP
PI6LC48H02-01LIEX	L	Pb-free & Green, 16-pin TSSOP, Tape & Reel

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• "E" denotes Pb-free and Green

 \bullet Adding an "X" at the end of the ordering code denotes tape and reel packaging

All trademarks are property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :

CV183-2TPAG 82P33814ANLG/W 8T49N241-002NLGI 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF MAX3674ECM+ ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30250LDG1 DSC557-0334F11 DSC557-0343F11 6V49205BNLGI