A Product Line of Diodes Incorporated

Features

\rightarrow 2-bit bidirectional translator for SDA and SCL lines in mixed-mode I2C-bus applications
\rightarrow Standard-mode, Fast-mode, and Fast-mode Plus I2C-bus and SMBus compatible
\rightarrow Less than 1.5 ns maximum propagation delay to accommodate Standard mode and Fast mode I2C-bus devices and multiple masters
\rightarrow Allows voltage level translation between:

- 0.9V VREF1 and $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V VREF2
- 1.2 V VREF1 and 1.8 V, 2.5 V, 3.3 V or 5 V VREF2
- 1.5 V VREF1 and 2.5 V, 3.3 V or 5 V VREF2
- 1.8 V VREF1 and 3.3 V or 5 V VREF2
- 2.5 V VREF1 and 5 V VREF2
- 3.3 V VREF1 and 5 V VREF2
\rightarrow Provides bidirectional voltage translation with no direction pin
\rightarrow Low 3.5 ohm ON-state connection between input and output ports provides less signal distortion
\rightarrow Open-drain I2C-bus I/O ports (SCL1, SDA1, SCL2 and SDA2)
$\rightarrow 5 \mathrm{~V}$ tolerant I2C-bus I/O ports to support mixed-mode signal operation
\rightarrow High-impedance SCL1, SDA1, SCL2 and SDA2 pins for EN = LOW
\rightarrow Lock-up free operation for isolation when EN = LOW
\rightarrow Flow through pin out for ease of printed-circuit board trace routing
\rightarrow ESD protection exceeds 4 KV HBM per JESD22-A114
\rightarrow Package: TDFN2x3-8L, MSOP-8L,SOIC-8L

Description

The PI6ULS5V9306 is a dual bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus and SMBus voltage-level translator with an enable (EN) input, and is operational from 1.0 V to 3.3 V (VREF1) and 1.8 V to 5.5 V(VREF2).
The PI6ULS5V9306 allows bidirectional voltage translations between 1.0 V and 5 V without the use of a direction pin. The low ON-state resistance (Ron) of the switch allows connections to be made with minimal propagation delay. When EN is HIGH, the translator switch is on, and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O respectively, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a highimpedance state exists between ports.

The PI6ULS5V9306 is not a bus buffer that provides both level translation and physically isolates to either side of the bus when both sides are connected. The PI6ULS5V9306 only isolates both sides when the device is disabled and provides voltage level translation when active.
The PI6ULS5V9306 can also be used to run two buses, one at 400 kHz operating frequency and the other at 100 kHz operating frequency. If the two buses are operating at different frequencies, the 100 kHz bus must be isolated when the 400 kHz operation of the other bus is required. If the master is running at 400 kHz , the maximum system operating frequency may be less than 400 kHz because of the delays added by the translator.
As with the standard $\mathrm{I}^{2} \mathrm{C}$-bus system, pull-up resistors are required to provide the logic HIGH levels on the translator's bus. The PI6ULS5V9306 has a standard open-collector configuration of the $I^{2} \mathrm{C}$-bus. The size of these pull-up resistors depends on the system, but each side of the translator must have a pull-up resistor. The device is designed to work with Standard-mode, Fast-mode and Fast mode Plus $\mathrm{I}^{2} \mathrm{C}$-bus devices in addition to SMBus devices.

When the SDA1 or SDA2 port is LOW, the clamp is in the ON-state and a low resistance connection exists between the SDA1 and SDA2 ports. When the higher voltage is on the SDA2 port, and the SDA2 port is HIGH, the voltage on the SDA1 port is limited to the voltage set by VREF1. When the SDA1 port is HIGH, the SDA2 port is pulled to the drain pullup supply voltage (VDPU) by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user without the need for directional control. The SCL1/SCL2 channel also functions as the SDA1/SDA2 channel.
All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is symmetrical. The translator provides excellent ESD protection to lower voltage devices, and at the same time protects less ESD-resistant devices.

Pin Configuration

MSOP-8L/SOIC-8L(Top View)

TDFN2x3-8L(Top View)

UQFN1.6x1.6-8L(Top View)

Pin Description

Pin No	Name	Description
1	GND	ground (0 V)
2	VREF1	low-voltage side reference supply voltage for SCL1 and SDA1
3	SCL1	serial clock, low-voltage side; connect to VREF1 through a pull-up resistor
4	SDA1	serial data, low-voltage side; connect to VREF1 through a pull-up resistor
5	SDA2	serial data, high-voltage side; connect to VREF2 through a pull-up resistor
6	SCL2	serial clock, high-voltage side; connect to VREF2 through a pull-up resistor
7	VREF2	high-voltage side reference supply voltage for SCL2 and SDA2
8	EN	switch enable input; connect to VREF2 and pull-up through a high resistor

Block Diagram

EN	Function
H	SCL1 = SCL2; SDA1 $=$ SDA 2
L	disabled

Figure.1Block Diagram

Maximum Ratings

```
Storage Temperature
``` \(\qquad\)
``` \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Reference Voltage \({ }^{(2)}\)
``` \(\qquad\)
``` -0.5 V to +6.0 V
Reference bias voltage. -0.5 V to +6.0 V
DC Input Voltage
``` \(\qquad\)
```

Control Input Votage(EN) -0.5 V to +6.0 V
channel current (DC). -0.5 V to +6.0 V
Input clamping Current. $-50 \mathrm{~mA}$
ESD: HBM Mode 4000 V

```

\section*{Note:}

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

\section*{Recommended Operation Conditions}

VCC \(=2.7 \mathrm{~V}\) to \(5.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\); unless otherwise specified
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline Symbol & Parameter & Test Conditions & Min. & Typ. & Max. & Unit \\
\hline \(\mathrm{V}_{\mathrm{I} / \mathrm{O}}\) & Voltage on an input/output pin & SCL1, SDA1, SCL2, SDA2 & 0 & - & 5 & V \\
\hline \(\mathrm{~V}_{\text {REF1 }}\) & Reference voltage (1) & VREF1 & 0 & - & 5 & V \\
\hline \(\mathrm{~V}_{\text {REF2 }}\) & Reference bias voltage (2) & VREF2 & 0 & - & 5 & V \\
\hline \(\mathrm{~V}_{\mathrm{I}(\mathrm{EN})}\) & Input voltage on pin EN & - & 0 & - & 5 & V \\
\hline \(\mathrm{I}_{(\text {pass })}\) & Pass switch current & - & - & - & 64 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Ambient temperature & - & -40 & - & 85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{DC Electrical Characteristics}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\); unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & Description & \multicolumn{2}{|r|}{Test Conditions \({ }^{(1)}\)} & Min & Typ. \({ }^{(2)}\) & Max & Unit \\
\hline \multicolumn{8}{|l|}{Input and output SDAB and SCLB} \\
\hline \(\mathrm{V}_{\text {IK }}\) & input clamping voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V}\)} & - & - & -1.2 & V \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & HIGH-level input current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V}\)} & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{\mathrm{i}(\mathrm{EN})}\) & input capacitance on pin EN & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}\) or 0 V} & - & 11 & - & pF \\
\hline \(\mathrm{C}_{\mathrm{io} \text { (off) }}\) & off-state input/output capacitance
(SCLn, SDAn) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}\) or \(0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V}\)} & - & 4 & - & pF \\
\hline \(\mathrm{C}_{\text {io(on) }}\) & on-state input/output capacitance (SCLn, SDAn) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}\) or \(0 \mathrm{~V} ; \mathrm{V}_{\text {I(EN) }}=3 \mathrm{~V}\)} & - & 10.5 & - & pF \\
\hline \multirow{7}{*}{Ron} & \multirow{7}{*}{\[
\begin{aligned}
& \text { ON-state resistance }{ }^{(2)} \\
& \text { (SCLn, SDAn) }
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{gathered}
\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \\
\mathrm{I}_{\mathrm{O}}=64 \mathrm{~mA}
\end{gathered}
\]} & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=4.5 \mathrm{~V}\) & - & 3.5 & 5.5 & \(\Omega\) \\
\hline & & & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3 \mathrm{~V}\) & - & 4.7 & 7.0 & \(\Omega\) \\
\hline & & & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=2.3 \mathrm{~V}\) & - & 6.3 & 9.5 & \(\Omega\) \\
\hline & & & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=1.5 \mathrm{~V}\) & - & 60 & 140 & \(\Omega\) \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
\mathrm{V}_{\mathrm{I}} & =2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}} \\
& =15 \mathrm{~mA}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=4.5 \mathrm{~V}\) & 1 & 6 & 15 & \(\Omega\) \\
\hline & & & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3 \mathrm{~V}\) & 20 & 60 & 140 & \(\Omega\) \\
\hline & & \[
\begin{aligned}
& \hline \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V} ; \\
& \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=2.3 \mathrm{~V}\) & 20 & 60 & 140 & \(\Omega\) \\
\hline
\end{tabular}

Notes:
1) All typical values are at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
2) Measured by the voltage drop between the SCL1 and SCL2, or SDA1 and SDA2 terminals at the indicated current through the switch. ON-state resistance is determined by the lowest voltage of the two terminals.

\section*{Dynamic Characteristics}
\(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\); unless otherwise specified. Values guaranteed by design.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|l|}{\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multicolumn{2}{|l|}{\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)} & \multicolumn{2}{|l|}{\(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow{2}{*}{Unit} \\
\hline & & & Min & Max & Min & Max & Min & Max & \\
\hline \multicolumn{10}{|l|}{Dynamic characteristics (translating down)} \\
\hline \multicolumn{10}{|l|}{\(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=1.15 \mathrm{~V}\)} \\
\hline \(\mathrm{t}_{\text {PLH }}\) & LOW-to-HIGH
propagation delay & from (input) SCL2 or SDA2 to (output) SCL1 or SDA1 & 0 & 0.8 & 0 & 0.6 & 0 & 0.3 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \[
\begin{aligned}
& \text { HIGH-to-LOW } \\
& \text { propagation delay }
\end{aligned}
\] & \begin{tabular}{l}
from (input) SCL2 or SDA2 \\
to (output) SCL1 or SDA1
\end{tabular} & 0 & 1.2 & 0 & 1 & 0 & 0.5 & ns \\
\hline \multicolumn{10}{|l|}{\(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V}\)} \\
\hline \(\mathrm{t}_{\text {PLH }}\) & LOW-to-HIGH
propagation delay & from (input) SCL2 or SDA2 to (output) SCL1 or SDA1 & 0 & 1 & 0 & 0.7 & 0 & 0.4 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & HIGH-to-LOW
propagation delay & from (input) SCL2 or SDA2 to (output) SCL1 or SDA1 & 0 & 1.3 & 0 & 1 & 0 & 0.6 & ns \\
\hline \multicolumn{10}{|l|}{Dynamic characteristics (translating up)} \\
\hline \multicolumn{10}{|l|}{\(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{T}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=1.15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega\)} \\
\hline \(\mathrm{t}_{\text {PLH }}\) & \[
\begin{aligned}
& \text { LOW-to-HIGH } \\
& \text { propagation delay }
\end{aligned}
\] & ffrom (input) SCL1 orSDA1 to (output) SCL2 or SDA2 & 0 & 0.9 & 0 & 0.6 & 0 & 0.4 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \[
\begin{aligned}
& \text { HIGH-to-LOW } \\
& \text { propagation delay }
\end{aligned}
\] & \[
\begin{aligned}
& \text { from (input) SCL1 or SDA1 } \\
& \text { to (output) SCL2 or SDA2 } \\
& \hline
\end{aligned}
\] & 0 & 1.4 & 0 & 1.1 & 0 & 0.7 & ns \\
\hline \multicolumn{10}{|l|}{\(\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{T}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega\)} \\
\hline \(\mathrm{t}_{\text {PLH }}\) & LOW-to-HIGH
propagation delay & from (input) SCL1 orSDA1 to (output) SCL2 or SDA2 & 0 & 1 & 0 & 0.6 & 0 & 0.4 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \[
\begin{aligned}
& \text { HIGH-to-LOW } \\
& \text { propagation delay }
\end{aligned}
\] & from (input) SCL1 or SDA1 to (output) SCL2 or SDA2 & 0 & 1.3 & 0 & 1.3 & 0 & 0.8 & ns \\
\hline
\end{tabular}

\section*{PARAMETER MEASUREMENT INFORMATION}

\begin{tabular}{|c|c|}
\hline USAGE & SWITCH \\
\hline Translating up & S1 \\
Translating down & S2 \\
\hline
\end{tabular}

TRANSLATING UP

NOTES: A. \(C_{L}\) includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR \(\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{4}} \leq 2 \mathrm{~ns}\).
C. The outputs are measured one at a time, with one transition per measurement.

Figure. 2 Load Circuit for Outputs

\section*{Functional Description}

The PI6ULS5V9306 is a dual bidirectional \(\mathrm{I}^{2} \mathrm{C}\)-bus and SMBus voltage-level translator with an enable (EN) input, and is operational from 1.2 V to 3.3 V (VREF1) and 1.8 V to 5.5 V (VREF2).
The PI6ULS5V9306 allows bidirectional voltage translations between 1.2 V and 5 V without the use of a direction pin. The low ON-state resistance (Ron) of the switch allows connections to be made with minimal propagation delay. When EN is HIGH, the translator switch is on, and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O respectively, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between ports.
The PI6ULS5V9306 is not a bus buffer that provides both level translation and physically isolates to either side of the bus when both sides are connected. The PI6ULS5V9306 only isolates both sides when the device is disabled and provides voltage level translation when active.
The PI6ULS5V9306 can also be used to run two buses, one at 400 kHz operating frequency and the other at 100 kHz operating frequency. If the two buses are operating at different frequencies, the 100 kHz bus must be isolated when the 400 kHz operation of the other bus is required. If the master is running at 400 kHz , the maximum system operating frequency may be less than 400 kHz because of the delays added by the translator.
As with the standard \(\mathrm{I}^{2} \mathrm{C}\)-bus system, pull-up resistors are required to provide the logic HIGH levels on the translator's bus. The PI6ULS5V9306 has a standard open-collector configuration of the \(\mathrm{I}^{2} \mathrm{C}\)-bus. The size of these pull-up resistors depends on the system, but each side of the translator must have a pull-up resistor. The device is designed to work with Standard-mode, Fastmode and Fast mode Plus \(\mathrm{I}^{2} \mathrm{C}\)-bus devices in addition to SMBus devices.
When the SDA1 or SDA2 port is LOW, the clamp is in the ON-state and a low resistance connection exists between the SDA1 and SDA2 ports. When the higher voltage is on the SDA2 port, and the SDA2 port is HIGH, the voltage on the SDA1 port is limited to the voltage set by VREF1. When the SDA1 port is HIGH, the SDA2 port is pulled to the drain pull-up supply voltage (VDPU) by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user without the need for directional control. The SCL1/SCL2 channel also functions as the SDA1/SDA2 channel.
All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or

PI6ULS5V9306
propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is symmetrical. The translator provides excellent ESD protection to lower voltage devices, and at the same time protects less ESDresistant devices.

\section*{Application Information}

Figure. 3 Typical Open Drain Application Circuit (Switch Always Enabled)

Figure. 4 Typical Open Drain Application Circuit (Switch Enabled Control)

\section*{Open Drain Application}

For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to VREF2 and both pins pulled to high-side VDPU through a pull-up resistor (typically \(200 \mathrm{k} \Omega\)). This allows VREF2 to regulate the EN input. A filter capacitor on VREF2 is recommended.

PI6ULS5V9306

Figure. 5 Typical push-pull Application Circuit (Switch Enabled Control)

\section*{Push Pull Application}

If used in push-pull system, the pull-up resistors on REF side are also needed. The data must be unidirectional or the outputs must be 3-stateable and be controlled by some direction-control mechanism to prevent high-to-low contentions in either direction.

\section*{Operating Voltage}

Refer to Figure 2
\begin{tabular}{|c|c|c|c|c|}
\hline & & MIN TYP & MAX & UNIT \\
\hline VDPU & Ref2 side pull-up voltage on \(200 \mathrm{k} \Omega\) & VREF1 + 0.62 .1 & 5 & V \\
\hline EN & Enable input voltage & VREF1 + 0.62 .1 & 5 & V \\
\hline VREF1 & Reference voltage & \(0 \quad 1.5\) & 4.4 & V \\
\hline IPASS & Pass switch current & 14 & & mA \\
\hline IREF & Reference-transistor current & & & \(\mu \mathrm{A}\) \\
\hline TA & Operating free-air temperature & -40 & 85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{The pass through current: I_pass}

I_pass is determined by the pull-up and the low voltage added on the PI6LS5V9306
In figure 6, I_pass \(=\left(\mathrm{V}_{\text {REF1 }}-\mathrm{V}_{\text {OL1_9306 }}\right) / \mathrm{R}_{\text {PU1 }}\)

When V_IN is 0V, the PI6ULS5V9306 can support as large as 64mA pass through current in theory. But we recommend it's better to limit the I_pass in 15 mA

Figure 6. Typical Open Drain Application Circuit
(1) The sink current : I_sink

The device would sink the total current from both pull-up resistors.
For example, in figure bellow, when the SDA2 is pulled low by the I2C device, the sink current of the I2C device I_sink=Ipass+I_2=I_1+I_2. The same thing will happen when I2C master pull low the I2C bus.
The I_sink should be limited to not larger than the tolerance of the I2C devices.
(2) \(V_{\mathrm{IL}}, V_{\text {OL }}\) of the external drive and \(V_{\text {OL }}\) of PI6ULS5V9306

In normal application, the \(\mathrm{V}_{\mathrm{IL}}\) of external devices should always be larger than the \(\mathrm{V}_{\mathrm{OL}}\) of PI6ULS5V9306.
The value of PI6ULS5V9306's \(V_{\text {OL }}\) is determined by the pass through current and the low voltage added on the SDA, SCL pins. The \(V_{\text {OL_} _306}=V_{\text {IN_L }}+V_{U P}\left(V_{U P}\right.\) is mainly determined by the \(I_{-}\)pass, it always less than 0.35 V .)

\section*{(3) Low VREF application}

The PI6ULS5V9306 can support very low Vref1 application in theory, but we recommend not lower than 0.9 V .Because when VREF1 is less than 1.8 V , the \(\mathrm{V}_{\mathrm{OL}}\) of REF1 side is a concern in system.
For example, in figure 6, if VREF \(1=0.9 \mathrm{~V}\), VDPU \(=3.3 \mathrm{~V}\) he \(\mathrm{V}_{\text {IL }}\) of the REF1 side I2C master is normally \(0.3^{*} \mathrm{VREF} 1=0.25 \mathrm{~V}\), but the \(\mathrm{V}_{\mathrm{OL}}\) of REF2 side can up to \(0.1^{*} \mathrm{VDPU}=0.36 \mathrm{~V}\) sometimes.
The system designer must make sure this situation doesn't happen. A limit for the \(\mathrm{V}_{\text {OL }}\) of REF2 side devices is required then.

The bellow table shows the requirement for \(\mathrm{V}_{\text {OL }}\) of VREF2 side devices when using PI6ULS5V9306
(Requirement for Vol_Device in figure 6)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The \(\mathrm{V}_{\text {OL }}\) requirement of \(\mathrm{V}_{\text {REF2 }}\) side external devices \\
\(\left(\right.\) Temp \(=25^{\circ} \mathrm{C}\), Assume the \(\mathrm{V}_{\text {IL }}\) of \(\mathrm{V}_{\text {REF1 }}\) side devices is \(\left.0.3 * \mathrm{~V}_{\text {REF1 }}\right)\)
\end{tabular}} \\
\hline & \(\leq 3 \mathrm{~mA}\) & 10 mA & 15 mA \\
\hline \(\mathrm{~V}_{\text {REF1 }}\) & I_pass & \(\leq 0.15 \mathrm{~V}\) & \(\leq 0.1 \mathrm{~V}\) \\
\hline 0.9 V & \(\leq 0.2 \mathrm{~V}\) & \(\leq 0.15 \mathrm{~V}\) & Not Recommended \\
\hline 1.2 V & & Not Recommended \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 1.5 V & \(\leq 0.3 \mathrm{~V}\) & \(\leq 0.25 \mathrm{~V}\) & \(\leq 0.2 \mathrm{~V}\) \\
\hline 1.8 V & \(\leq 0.4 \mathrm{~V}\) & \(\leq 0.35 \mathrm{~V}\) & \(\leq 0.3 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{Pull-up resistors and minimum values}

Sizing the pull-up resistor on an open-drain bus is specific to the individual application and is dependent on the following driver characteristics:
- The driver sink current
- The Vol of driver
- The \(\mathrm{V}_{\mathrm{OL}}\) of thePI6ULS5V9306
- The \(\mathrm{V}_{\text {IL }}\) of the driver
- Frequency of operation

The following tables can be used to estimate the pull-up resistor value in different use cases so that the minimum resistance for the pull-up resistor can be found.
Tables in bellow contain suggested minimum values of pull-up resistors for the PI6ULS5V9306 with typical voltage translation levels and drive currents.
The calculated values assume that both drive currents are the same.
\(\mathrm{V}_{\mathrm{oL}}=\mathrm{V}_{\mathrm{IL}}=0.1^{\star} \mathrm{VCC}\) and accounts for a \(5 \% \mathrm{VCC}\) tolerance of the supplies, \(1 \%\) resistor values. It should be noted that the resistor chosen in the final application should be equal to or larger than the values shown in the table to ensure that the pass voltage is less than \(10 \%\) of the VCC voltage, and the external driver should be able to sink the total current from both pull-up resistors.
Pull-up resistor minimum values, 3 mA driver sink current for PI6ULS5V9306
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{A Side} & \multicolumn{5}{|c|}{B side} \\
\hline & 1.5 V & 1.8 V & 2.5 V & 3.3 V & 5.0V \\
\hline 0.9 V & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=859 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=859 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=970 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=970 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPI2 }}=896 \Omega \\
& \text { Or both } 1.23 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPU2 }}=1.19 \mathrm{k} \Omega \\
& \text { Or both } 1.53 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPI } 2}=1.82 \mathrm{k} \Omega \\
& \text { Or both } 2.16 \mathrm{k} \Omega
\end{aligned}
\] \\
\hline 1.2 V & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=1.07 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=1.07 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPI2 }}=886 \Omega \\
& \text { Or both } 1.33 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPU2 }}=1.18 \mathrm{k} \Omega \\
& \text { Or both } 1.63 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPI } 2}=1.81 \mathrm{k} \Omega \\
& \text { Or both } 2.26 \mathrm{k} \Omega
\end{aligned}
\] \\
\hline 1.5 V & & & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPUI}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPI} 2}=875 \Omega \\
& \text { Or both } 1.43 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPU } 2}=1.17 \mathrm{k} \Omega \\
& \text { Or both } 1.73 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\text {RPUI }}=\text { none } \\
& \mathrm{R}_{\text {RPI } 2}=1.8 \mathrm{k} \Omega \\
& \text { Or both } 2.36 \mathrm{k} \Omega
\end{aligned}
\] \\
\hline 1.8 V & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=1.53 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=1.53 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPU1 }}=\text { none } \\
& \mathrm{R}_{\text {RPU2 }}=1.16 \mathrm{k} \Omega \\
& \text { Or both } 1.82 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\text {RPU1 }}=\text { none } \\
& \mathrm{R}_{\text {RPU2 } 2}=1.79 \mathrm{k} \Omega \\
& \text { Or both } 2.46 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] \\
\hline 2.5 V & & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=2.06 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=2.06 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \mathrm{R}_{\text {RPU1 }}=\text { none } \\
\mathrm{R}_{\text {RPU2 }}=1.77 \mathrm{k} \Omega \\
\text { Or both } 2.69 \mathrm{k} \Omega \\
\hline
\end{array}
\] \\
\hline 3.3 V & & & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPL} 2}=1.74 \mathrm{k} \Omega \\
& \text { Or both } 2.96 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

Pull-up resistor minimum values, 10 mA driver sink current for PI6ULS5V9306
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{A Side} & \multicolumn{5}{|c|}{B side} \\
\hline & 1.5 V & 1.8 V & 2.5 V & 3.3 V & 5.0 V \\
\hline 0.9V & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=258 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=258 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=291 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=291 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=269 \Omega \\
& \text { Or both } 369 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=358 \Omega \\
& \text { Or both } 458 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=546 \Omega \\
& \text { Or both } 646 \Omega
\end{aligned}
\] \\
\hline 1.2 V & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=321 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=321 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=266 \Omega \\
& \text { Or both } 399 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=355 \Omega \\
& \text { Or both } 488 \Omega
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=543 \Omega
\end{aligned}
\] \\
Or both \(677 \Omega\)
\end{tabular} \\
\hline 1.5 V & & & \[
\begin{aligned}
& \mathrm{R}_{\text {RPU } 1}=\text { none } \\
& \mathrm{R}_{\text {RPU } 2}=263 \Omega \\
& \text { Or both } 429 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\text {RPU } 1}=\text { none } \\
& \mathrm{R}_{\text {RPU } 2}=352 \Omega \\
& \text { Or both } 518 \Omega
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=540 \Omega
\end{aligned}
\] \\
Or both \(707 \Omega\)
\end{tabular} \\
\hline 1.8 V & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=460 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=460 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=348 \Omega \\
& \text { Or both } 548 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=537 \Omega \\
& \text { Or both } 737 \Omega
\end{aligned}
\] \\
\hline 2.5 V & & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=619 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=619 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=521 \Omega \\
& \text { Or both } 808 \Omega
\end{aligned}
\] \\
\hline 3.3 V & & & & & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=522 \Omega \\
& \text { Or both } 889 \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

Pull-up resistor minimum values, 15 mA driver sink current for PI6ULS5V9306
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{A Side} & \multicolumn{5}{|c|}{B side} \\
\hline & 1.5 V & 1.8 V & 2.5 V & 3.3V & 5.0 V \\
\hline 0.9V & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=172 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=172 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=194 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=194 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=179 \Omega \\
& \text { Or both } 246 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=238 \Omega \\
& \text { Or both } 305 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=364 \Omega \\
& \text { Or both } 431 \Omega
\end{aligned}
\] \\
\hline 1.2 V & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=214 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=214 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=177 \Omega \\
& \text { Or both } 266 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\text {RPU1 }}=\text { none } \\
& \mathrm{R}_{\text {RPU } 2}=236 \Omega \\
& \text { Or both } 325 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=362 \Omega \\
& \text { Or both } 451 \Omega
\end{aligned}
\] \\
\hline 1.5 V & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=175 \Omega \\
& \text { Or both } 286 \Omega
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=234 \Omega
\end{aligned}
\] \\
Or both \(345 \Omega\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=360 \Omega \\
& \text { Or both } 471 \Omega
\end{aligned}
\] \\
\hline 1.8 V & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=306 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=306 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=232 \Omega \\
& \text { Or both } 366 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=358 \Omega \\
& \text { Or both } 492 \Omega
\end{aligned}
\] \\
\hline 2.5 V & & & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU} 1}=413 \Omega \\
& \mathrm{R}_{\mathrm{RPU} 2}=413 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{RPU1}}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=354 \Omega \\
& \text { Or both } 539 \Omega
\end{aligned}
\] \\
\hline 3.3 V & & & & & \[
\begin{aligned}
& \hline \mathrm{R}_{\mathrm{RPU} 1}=\text { none } \\
& \mathrm{R}_{\mathrm{RPU} 2}=348 \Omega \\
& \text { Or both } 593 \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Max Frequency Application}

The maximum frequency is limited by the minimum pulse width LOW and HIGH as well as rise time and fall time.
\[
f(\max)=\frac{1}{\mathrm{tLOW}(\min)+\operatorname{tHIGH}(\min)+\operatorname{tr}(\text { actual })+\mathrm{tf}(\text { actual })}
\]

The rise and fall times are dependent upon translation voltages, the drive strength, the total node capacitance (CL) and the pull-up resistors (RPU) that are present on the bus. The node capacitance is the addition of the PCB trace capacitance and the device capacitance that exists on the bus.
Because of the dependency of the external components, PCB layout and the different device operating states the calculation of rise and fall times is complex and has several inflection points along the curve.
The main component of the rise and fall times is the RC time constant of the bus line when the device is in its two primary operating states: when device is in the ON state and it is low-impedance, the other is when the device is OFF isolating the A-side from the B -side.
There are some basic guidelines to follow that will help maximize the performance of the device:
- Keep trace length to a minimum by placing the PI6ULS5V9306 close to the processor.
- The signal round trip time on trace should be shorter than the rise or fall time of signal to reduce reflections.
- The faster the edge of the signal, the higher the chance for ringing.
- The higher drive strength controlled by the pull-up resistor (up to 15 mA), the higher the frequency the device can use.

The system designer must design the pull-up resistor value based on external current drive strength and limit the node capacitance (minimize the wire, stub, connector and trace length) to get the desired operation frequency result.

PI6ULS5V9306

\section*{Part Marking}

W Package Cu

Z: Die Rev
Y: Date Code (Year)
W: Date Code (Workweek)
1st X: Assembly Site Code
2nd X: Wafer Fab Site Code
Bar above fab code means Cu wire

W Package Au

Z: Die Rev
AB: Date Code (Year \& Workweek)
K: Assembly Site Code
G: Wafer Fab Site Code

U Package

Z: Die Rev
Y: Date Code (Year)
W: Date Code (Workweek)
1st X: Assembly Site Code 2nd X: Wafer Fab Site Code Bar above fab code means Cu wire

Note: Bar above "I" means Fab3 og MGN

ZE Package

J: Assembly Site Code
G: Fab Site Code
XX: Date Code (Year \& Workweek)
Bar above "A" means Fab3 of MGN

XT Package

Y: Year
W: Workweek

\section*{Packaging Mechanical}

TDFN-8 (ZE)

13-0155

Recommended Land pattern for TDFN2x3-8L

Note:
All linear dimensions are in millimeters

MSOP-8(U)

PI6ULS5V9306

SOIC-8(W)

\begin{tabular}{|c|c|c|c|}
\hline SYMBOLS & MIN. & NOM. & MAX. \\
\hline A & - & - & 1.75 \\
\hline A1 & 0.10 & - & 0.25 \\
\hline A2 & 1.25 & - & - \\
\hline b & 0.31 & - & 0.51 \\
\hline c & 0.10 & - & 0.25 \\
\hline D & 4.80 & 4.90 & 5.00 \\
\hline E & 5.80 & 6.00 & 6.20 \\
\hline E1 & 3.80 & 3.90 & 4.00 \\
\hline e & \multicolumn{3}{|c|}{1.27 BSC } \\
\hline L & 0.40 & - & 1.27 \\
\hline h & 0.25 & - & 0.50 \\
\hline\(\theta^{\circ}\) & 0 & - & 8 \\
\hline
\end{tabular}

A Product Line of Diodes Incorporated

PI6ULS5V9306

UQFN-8 (XT)

TOP VIEW

SIDE VIEW
Note
Ref: JEDEC MO-288B

BOTTOM VIEW
\begin{tabular}{|c|c|}
\hline P) PERICOM & DATE: 06181813 \\
\hline \multicolumn{2}{|l|}{DEECRRIPTION: 8.Pin, UaFN, 1.6x1.6, col} \\
\hline PACCAGE CODE: XT (XTB) & \\
\hline DOCUMENT CONTROL\# PD-2132 & Revision - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ PKG. DIMENSIONS(MM) } \\
\hline SYMBOL & Min & Max \\
\hline A & 0.45 & 0.55 \\
\hline A1 & 0.00 & 0.05 \\
\hline A3 & \multicolumn{2}{|c|}{0.15 REF } \\
\hline D & 1.55 & 1.65 \\
\hline E & 1.55 & 1.65 \\
\hline D1 & 0.30 & 0.50 \\
\hline E1 & 0.30 & 0.50 \\
\hline b & 0.15 & 0.25 \\
\hline e & \multicolumn{2}{|c|}{0.50 TYP } \\
\hline e1 & \multicolumn{2}{|c|}{0.55 TYP } \\
\hline L & 0.25 & 0.35 \\
\hline b1 & 0.25 & 0.35 \\
\hline L1 & \multicolumn{2}{|c|}{0.15 REF } \\
\hline
\end{tabular}

13-0171

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

\section*{Ordering Information}
\begin{tabular}{|l|c|l|}
\hline Part Number & Package Code & \multicolumn{1}{|c|}{ Package Description } \\
\hline PI6ULS5V9306ZEEX & ZE & 8-Pin, 2X3 (TDFN) \\
\hline PI6ULS5V9306UEX & U & 8-Pin, Mini Small Outline Package (MSOP) \\
\hline PI6ULS5V9306WEX & W & 8-Pin,150 mil Wide (SOIC) \\
\hline PI6ULS5V9306XTEX & XT & 8-pin, 1.6x1.6, COL (UQFN) \\
\hline
\end{tabular}

Notes:
- EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- \(\quad \mathrm{E}=\mathrm{Pb}-\) free and Green
- \(\quad\) X suffix \(=\) Tape/Reel

A Product Line of Diodes Incorporated

\section*{IMPORTANT NOTICE}

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.
Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.
Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

\section*{LIFE SUPPORT}

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:
1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Signal Buffers, Repeaters category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
PI6ULS5V9509UEX PI3HDMI101-BZHEX PI3EQX12904AZHEX PI6ULS5V9306WEX PI3EQX1004EZTFEX PI6ULS5V9509WEX 48705-3001R2 48705-6501R2 DS280BR820ZBLT PCA9617ADPJ PI6ULS5V9515AWEX PI3HDMI101ZHE LTC4315CDE\#PBF LTC4300-1CMS8\#PBF DS110DF1610FB/NOPB LTC4301LCDD\#PBF LTC4303IDD\#PBF LTC4315IMS\#TRPBF LTC4304IMS\#PBF DS280DF810ABVT LTC4315IDE\#PBF LTC4300-1IMS8\#PBF LTC4313IMS8-3\#TRPBF LTC4300-2IMS8\#PBF LTC4300A-1CMS8\#PBF PCA9515AD, 118 LTC4307CMS8-1\#TRPBF LTC4304CDD\#PBF PI3EQX1002B1ZLEX LTC4301LIMS8 LTC4313IDD-3\#TRPBF LTC4309IGN\#PBF LTC4309CGN\#PBF MAX9169EUE+ LTC4302IMS-2\#PBF LTC4302CMS-1\#PBF PI6ULS5V9306UEX LTC4300A1CMS8\#TRPBF P82B715TD,112 PCA9507DP,118 PCA9509DP,118 PCA9509GM,125 PCA9515ADP,118 PCA9517AD,118 PCA9517ADP,118 PCA9517DP,118 P82B715TD,118 PI6ULS5V9511AWEX PI1EQX512AXUAEX PI2EQX502TZHEX```

