Lead-free Green

A product Line of Diodes Incorporated

(1) PERICOM

PS508/PS509

Precision 8-Channels, Differential 4-Channels, 36V Analog Multiplexers

Features

\rightarrow Low On-Capacitance

- PS508: 30pF
- PS509: 20pF
\rightarrow Low Input Leakage: 30pA
\rightarrow Low Charge Injection: 0.9 pC
\rightarrow Rail-to-Rail Operation
\rightarrow Wide Supply Range: $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}, 10 \mathrm{~V}$ to 36 V
\rightarrow Low On-Resistance: 125Ω
\rightarrow Transition Time: 171ns
\rightarrow Break-Before-Make Switching Action
\rightarrow EN Pin Connectable to VDD
\rightarrow Logic Levels: 2V to VDD
\rightarrow Low Supply Current: $135 \mu \mathrm{~A}$
\rightarrow ESD Protection HBM: 2000V
\rightarrow Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
\rightarrow Halogen and Antimony Free. "Green" Device (Note 3)
\rightarrow For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
https://www.diodes.com/quality/product-definitions/
\rightarrow Packaging (Pb -free \& Green):

> - 16-pin TSSOP (L)
> - 16-pin QSOP (Q)
> - 16-pin SOIC (W)

Truth Tables

PS509			
EN	A1	A0	STATE
0	X^{*}	X^{*}	All channels are off
1	0	0	Channels 1A and 1B on
1	0	1	Channels 2A and 2B on
1	1	0	Channels 3A and 3B on
1	1	1	Channels 4A and 4B on

* X denotes don't care.

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.

PS508/PS509

Pin Configuration PS508

Pin Description

Pin\#	Pin Name	Type	Description
1	A0	I	Address line 0.
16	A1	I	Address line 1.
15	A2	I	Address line 2.
8	D	I/O	Drain pin.
2	EN	I	Active high digital input. When this pin is low, all switches are turned off. When this pin is high, the A[2:0] logic inputs determine which switch is turned on.
14	GND	Power	Ground.
4	S1	I/O	Source pin 1.
5	S2	I/O	Source pin 2.
6	S3	I/O	Source pin 3.
7	S4	I/O	Source pin 4.
12	S5	I/O	Source pin 5.
11	S6	I/O	Source pin 6.
10	S7	I/O	Source pin 7.
9	S8	I/O	Source pin 8.
13	VDD	Power	Positive power supply. This pin is the most positive power-supply potential. For reliable opera- tion, connect a decoupling capacitor ranging from 0.1 μ F to 10μ F between VDD and GND.
3	VSS	Power	Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between VSS and GND.

Note: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output and $\mathrm{I} / \mathrm{O}=$ Input/Output

A product Line of Diodes Incorporated

PS508/PS509

Pin Configuration PS509

Pin Description

Pin\#	Pin Name	Type	Description
1	A0	I	Address line 0.
16	A1	I	Address line 1.
8	DA	I/O	Drain pin A. Can be an input or output.
9	DB	I/O	Drain pin B. Can be an input or output.
2	EN	I	Active high digital input. When this pin is low, all switches are turned off. When this pin is high, the $\mathrm{A}[1: 0]$ logic inputs determine which pair of switches is turned on.
15	GND	Pwr	Ground (0 V) reference
4	S1A	I/O	Source pin 1A. Can be an input or output.
5	S2A	I/O	Source pin 2A. Can be an input or output.
6	S3A	I/O	Source pin 3A. Can be an input or output.
7	S4A	I/O	Source pin 4A. Can be an input or output.
13	S1B	I/O	Source pin 1B. Can be an input or output.
12	S2B	I/O	Source pin 2B. Can be an input or output.
11	S3B	I/O	Source pin 3B. Can be an input or output.
10	S4B	I/O	Source pin 4B. Can be an input or output.
14	VDD	Pwr	Positive power supply. This pin is the most positive power supply potential. For reliable operation, connect a decoupling capacitor ranging from $0.1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ between VDD and GND.
3	VSS	Pwr	Negative power supply. This pin is the most negative power supply potential. In single supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from $0.1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ between VSS and GND.

Note: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output and $\mathrm{I} / \mathrm{O}=$ Input/Output

PS508/PS509

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD Ratings

Symbol	Parameters	Conditions	Value	Units
$\mathrm{V}_{(\text {ESD })}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS- $001^{(1)}$	Charged-device model (CDM), per JEDEC specification JESD22-C101	2000

Note:

1. JEDEC document JEP155 states that 500-V HBM allow safe manufacturing with a standard ESD control process.
2. JEDEC document JEP157 states that $250-\mathrm{V}$ HBM allow safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Symbol	Parameters		Min.	Typ.	Max.	Units
$\mathrm{V}_{\mathrm{DD}}{ }^{(1)}$	Positive power-supply voltage	Dual supply	5		18	V
		Single supply	10		36	
$\mathrm{V}_{\mathrm{Ss}}{ }^{(2)}$	Negative power-supply voltage (dual supply)		-5		-18	V
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	Supply voltage		10		36	V
VS	Source pins voltage ${ }^{(3)}$		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
VD	Drain pins voltage		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
$\mathrm{V}_{\text {EN }}$	Enable pin voltage		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
VA	Address pins voltage		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
I_{CH}	Channel current (TA $=25^{\circ} \mathrm{C}$)		-25		25	mA
TA	Operating temperature		-40		125	${ }^{\circ} \mathrm{C}$

Note:

1. When VSS $=0 \mathrm{~V}, \mathrm{VDD}$ can range from 10 V to 36 V .
2. VDD and VSS can be any value as long as $10 \mathrm{~V} \leq(\mathrm{VDD}-\mathrm{VSS}) \leq 36 \mathrm{~V}$, and VDD $\geq 5 \mathrm{~V}$.
3. VS is the voltage on all the S pins.

A product Line of Diodes Incorporated

PS508/PS509

Electrical Characteristics: Dual Supply

At $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}$ (unless otherwise noted)

Symbol	Parameters	Conditions		Min.	Typ.	Max.	Units
Analog Switch							
	Analog signal range	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
$\mathrm{R}_{\text {ON }}$	On-resistance	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1 \mathrm{~mA}$			125	170	Ω
		$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1 \mathrm{~mA}$			145	200	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			230	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			250	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-resistance mismatch between channels	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1 \mathrm{~mA}$			2.4	6	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			9	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			11	Ω
$\mathrm{R}_{\text {fLat }}$	On-resistance flatness	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, 0 \mathrm{~V},-10 \mathrm{~V}$			22	45	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			53	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			58	Ω
	On-resistance drift	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$			0.52		$\% /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$	Input leakage current	Switch state is off, $\mathrm{V}_{\mathrm{S}}=$ $\pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}^{(1)}$		-1	0.03	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-25		25	nA
$\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$	Output off leakage current	Switch state is off, $\mathrm{V}_{\mathrm{s}}=$ $\pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}^{(1)}$		-1	0.22	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-50		50	nA
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	Output on leakage current	Switch state is on, $\mathrm{V}_{\mathrm{D}}=$ $\pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=$ floating		-1	0.25	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-50		50	nA

Logic Input

V_{IH}	High-level input voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage				0.8	V
ID	Input current				0.15	$\mu \mathrm{~A}$

Switch Dynamics ${ }^{(2)}$

t_{ON}	Enable turn-on time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$		126	210	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		210	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		210	ns
$\mathrm{t}_{\text {OFF }}$	Enable turn-off time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$		125	191	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		191	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		191	ns

A product Line of Diodes Incorporated

PS508/PS509

Electrical Characteristics: Dual Supply Cont.

Symbol	Parameters	Conditions		Min.	Typ.	Max.	Units
t_{t}	Transition time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$			171	310	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			310	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			310	ns
$\mathrm{t}_{\text {BBM }}$	Break-before-make time delay	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		30	75		ns
Q ${ }_{\text {J }}$	Charge injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{s}}=0 \Omega$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		0.9		pC
			$\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}$ to +15 V		± 2		pC
	Off-isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Nonadjacent channel to $\mathrm{D}, \mathrm{DA}, \mathrm{DB}$		-96		dB
			Adjacent channel to D , DA, DB		-85		dB
	Channel-to-channel crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Nonadjacent channels		-96		dB
			Adjacent channels		-88		dB
$\mathrm{C}_{\text {S(OFF) }}$	Input off-capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$			5	7	pF
$\mathrm{C}_{\mathrm{D} \text { (ofF) }}$	Output off-capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	PS508		24	30	pF
			PS509		15	20	pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$	Input/Output on-capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	PS508		30	36	pF
			PS509		20	25	pF
Power Supply							
	V_{DD} supply current	$\begin{aligned} & \text { All } V_{\mathrm{A}}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3.3 \mathrm{~V} \end{aligned}$			135	200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {sS }}$ supply current	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3.3 \mathrm{~V} \end{aligned}$			135	200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$

Note:

1. When VS is positive, VD is negative, and vice versa.
2. Specified by design, not production tested.

A product Line of
Diodes Incorporated
(4) PERICOM

PS508/PS509

Electrical Characteristics: Single Supply

at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ (unless otherwise noted)

Symbol	Parameters	Conditions		Min.	Typ.	Max.	Units
Analog Switch							
	Analog signal range	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\mathrm{V}_{\text {ss }}$		V_{DD}	V
R_{ON}	On-resistance	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1 \mathrm{~mA}$			235	340	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			390	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			430	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-resistance mismatch between channels	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1 \mathrm{~mA}$			3.1	12	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			19	Ω
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			23	Ω
	On-resistance drift	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$			0.47		$\% /{ }^{\circ} \mathrm{C}$
$I_{\text {S(OFF) }}$	Input leakage current	$\begin{aligned} & \text { Switch state is off, } V_{S}= \\ & 1 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}} \\ & =10 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}^{(1)} \end{aligned}$		-1	0.03	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-25		25	nA
$\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$	Output off leakage current	$\begin{aligned} & \text { Switch state is off, } V_{S}= \\ & 1 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}} \\ & =10 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}^{(1)} \end{aligned}$		-1	0.22	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-50		50	nA
$I_{D(O N)}$	Output on leakage current	```Switch state is on, }\mp@subsup{V}{D}{ = 1V and 10V, V floating```		-1	0.25	1	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10		10	nA
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-50		50	nA
Logic Input							
V_{IH}	High-level input voltage			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
ID	Input current					0.15	$\mu \mathrm{A}$
Switch Dynamics ${ }^{(2)}$							
t_{ON}	Enable turn-on time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$			115	220	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			220	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			220	ns
$\mathrm{t}_{\text {OFF }}$	Enable turn-off time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$			118	200	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			200	ns
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			200	ns

A product Line of Diodes Incorporated

PS508/PS509

Electrical Characteristics: Single Supply Cont.

Symbol	Parameters	Conditions		Min.	Typ.	Max.	Units
$t_{\text {t }}$	Transition time	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$			212	418	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			418	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			418	ns
$\mathrm{t}_{\text {BBM }}$	Break-before-make time delay	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		30	120		ns
Q ${ }_{\text {J }}$	Charge injection	$\mathrm{C}_{\mathrm{L}}=\operatorname{lnF}, \mathrm{R}_{S}=0 \Omega$	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$		0.5		pC
			$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to 12 V ,		± 1.5		pC
	Off-isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Nonadjacent channel to $\mathrm{D}, \mathrm{DA}, \mathrm{DB}$		-96		dB
			Adjacent channel to D , DA, DB		-85		dB
	Channel-to-channel crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Nonadjacent channels		-96		dB
			Adjacent channels		-88		dB
$\mathrm{C}_{\text {S(OFF) }}$	Input off-capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}$			5	7	pF
$\mathrm{C}_{\mathrm{D} \text { (OFF) }}$	Output off-capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$	PS508		24	30	pF
			PS509		15	20	pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$	Input/Output oncapacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$	PS508		30	36	pF
			PS509		21	25	pF
Power Supply							
	VDD supply current	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3.3 \mathrm{~V} \end{aligned}$			104	160	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			160	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			160	$\mu \mathrm{A}$
	VSS supply current	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=3.3 \mathrm{~V} \end{aligned}$			104	160	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			160	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			160	$\mu \mathrm{A}$

Note:

1. When VS is $1 \mathrm{~V}, \mathrm{VD}$ is 10 V , and vice versa.
2. Specified by design, not production tested.

A product Line of Diodes Incorporated

PS508/PS509

Test Circuit

Figure 1. On-Resistance Measurement Setup

Figure 2. Off-Leakage Measurement Setup

Figure 3. On-Leakage Measurement Setup

Figure 4. Transition-Time Measurement Setup

Figure 5. Break-Before-Make Delay Measurement Setup

Figure 6. Turn-On and Turn-Off Time Measurement Setup

Figure 7. Charge-Injection Measurement Setup

Figure 8. Off Isolation Measurement Setup

Figure 9. Channel-to-Channel Crosstalk Measurement Setup

Part Marking

Top mark not available at this time. To obtain advance information regarding the top mark, please contact your local sales representative.

Packaging Mechanical: 16-TSSOP (L)

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
c	0.09	-	0.20
D	4.90	5.00	5.10
E1	4.30	4.40	4.50
E	6.20	6.40	6.60
e	$0.65 ~ B S C$		
L1	1.00 REF		
L	0.45	0.60	0.75
S	0.20	-	-
θ	0°	-	8°

DATE: 03/24/16

DESCRIPTION: 16-Pin, 173mil Wide TSSOP

1. ALL DIMENSIONS IN MILLIMETERS. ANGLES IN DEGREES,
2. ALL DIMENSIONS
3. JEDEC MO-153F

PACKAGE CODE: L (L16)
3. DIMENSIONS DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

Packaging Mechanical: 16-QSOP (Q)

A product Line of
Diodes Incorporated
Th PERICOM
PS508/PS509
Packaging Mechanical: 16-SOIC (W)

For latest package info.
please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PS508LEX	L	16-pin, 173mil Wide (TSSOP)
PS508QEX	Q	16-pin, 150mil Wide (QSOP)
PS508WEX	W	16-pin, 150mil Wide (SOIC)
PS509LEX	L	16-pin, 173mil Wide (TSSOP)
PS509QEX	Q	16-pin, 150mil Wide (QSOP)
PS509WEX	W	16-pin, 150mil Wide (SOIC)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{E}=\mathrm{Pb}$-free and Green
5. X suffix $=$ Tape $/$ Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated
www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZ-RL7 ADW54003-0 AD7506JNZ AD7506KNZ AD7506SQ AD8170AR AD8183ARUZ AD8184ANZ AD8185ARUZ AD8187ARUZ AD8188ARUZ AD8189ARUZ ADG1208YRUZREEL7 ADG1409YCPZ-REEL7 ADG5209FBRUZ ADG1408YRUZ-REEL7 ADG659YRUZ-REEL7

