SUPER E-LINE

TABLE 3: HIGH CURRENT SUPER E-LINE TRANSISTORS (PD=1.2 Watts)

This range of devices is rated at 1.2 Watts and offers extremely low saturation voltages coupled with high continuous and pulsed current capability. Typical application areas to benefit from these products are emergency lighting, lap top computer power supplies, automotive circuits and flash gun converters.

PART NO.	$\begin{gathered} V_{\text {CBO }} \\ \mathrm{V} \end{gathered}$	$\begin{gathered} V_{\text {CEO }} \\ \mathrm{V} \\ \hline \end{gathered}$	IC A	$\begin{gathered} \hline \mathrm{ICM} \\ \mathrm{~A} \end{gathered}$	$V_{\text {CE(sat) }}$ max@ V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & I_{B} \\ & m A \end{aligned}$	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \min @ \end{gathered}$		$\begin{gathered} V_{C E} \\ V \end{gathered}$	$\begin{gathered} \mathbf{h}_{\mathrm{FE}} \\ \min @ \end{gathered}$	$\begin{aligned} & \text { IC } \\ & \text { A } \end{aligned}$	$\begin{gathered} V_{C E} \\ V \end{gathered}$	$\begin{gathered} \mathrm{fT}^{\prime} \\ \text { typ@ } \\ \mathrm{MHz} \end{gathered}$		$\begin{aligned} & \text { PIN } \\ & \text { OUT } \\ & 123 \end{aligned}$
									$\begin{aligned} & \text { IC } \\ & \text { A } \\ & \hline \end{aligned}$						$\begin{gathered} \mathrm{I}_{\mathrm{C}} \\ \mathrm{~mA} \end{gathered}$	
NPN																
ZTX858*	400	400	2	6	0.20	0.3	100	50	0.01	10	30	0.5	10	80	100	CBE
2TX857	330	300	3	10	0.25	3	600	100	0.5	10	15	2	10	80	100	CBE
ZTX855	250	150	4	10	0.26	4	400	100	1.0	5	35	4	5	90	100	CBE
ZTX853	200	100	4	10	0.20	4	400	100	2.0	2	20	10	2	130	100	CBE
ZTX851	150	60	5	20	0.25	5	200	100	2.0	1	25	10	1	130	100	CBE
ZTX849	80	30	5	20	0.22	5	200	100	1.0	1	30	20	1	100	100	CBE
ZTX869	60	25	5	20	0.22	5	100	250	5.0	1	40	20	1	100	100	CBE
PNP																
ZTX958	-400	-400	-0.5	-1.5	-0.40	-0.5	-100	100	-0.5	-10	10	-1	-10	85	-100	CBE
ZTX957	-330	-300	-1	-2	-0.20	-1	-300	100	-0.5	-10	90	-1	-10	85	-100	CBE
ZTX956	-220	-200	-2	-5	-0.25	-2	-400	100	-1.0	-5	50	-2	-5	110	-100	CBE
ZTX955	-180	-140	-3	-10	-0.33	-3	-300	100	-1.0	-5	75	-3	-5	110	-100	CBE
ZTX953	-140	-100	-3.5	-10	-0.33	-4	-400	100	-1.0	-1	30	-4	-1	125	-100	CBE
ZTX951	-100	-60	-4	-15	-0.30	-4	-400	100	-1.0	-1	10	-10	-1	120	-100	CBE
2TX949	-50	-30	-4.5	-20	-0.32	-5	-300	100	-1.0	-1	75	-5	-1	100	-100	CBE
ZTX948	-40	-20	-4.5	-20	-0.31	-5	-300	100	-1.0	-1	15	-20	-1	80	-100	CBE
ZTX968	-15	-12	-4.5	-20	-0.30	-5	-200	300	-0.5	-1	150	-10	-1	85	-100	CBE

* Development Sample Data

TABLE 4: HIGH PERFORMANCE DARLINGTON TRANSISTORS (P'D= upto 1 Watt)
The devices shown in this table are designed for applications requiring very high current gain at current levels up to 1A and power dissipation upto 1 Watt. They are ideal for lamp, relay and solenoid drivers in wide ranging applications from dot matrix printers to harsh environments such as automotive circuits.

$\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$	$\mathrm{V}_{\mathrm{CBO}}$	$\mathrm{V}_{\text {CEO }}$	$\begin{aligned} & \mathrm{I} \mathrm{C} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{I} \mathrm{CM} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CE} \text { (sat) }} \\ \text { max } @ \\ V \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \\ & \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{~mA} \end{gathered}$	$\overline{\mathrm{h}_{\mathrm{FE}}}$ @	$\begin{aligned} & \mathrm{IC} \\ & \mathrm{~mA} \end{aligned}$	V_{CE}	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \min @ \end{gathered}$	$\begin{aligned} & \mathrm{IC} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} V_{C E} \\ V \end{gathered}$		$\begin{gathered} \mathrm{I} C \\ \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { PIN } \\ \text { OUT } \\ 123 \\ \hline \end{gathered}$
$\begin{array}{r} \text { NPN } \\ \text { ZTX601 } \end{array}$	180	160	1	4	1.2	1000	10	2K-100K	500	10	1 K	1	10	150	100	CBE
ZTX601A	180	160	1	4	1.2	1000	10	2K-20K	500	10	1K	1	10	150	100	CBE
ZTX601B	180	160	1	4	1.2	1000	10	10K-100K	500	10	5K	1	10	150	100	CBE
FXT601B	180	160	1	4	1.2	1000	10	$10 \mathrm{~K}-100 \mathrm{~K}$	500	10	5K	1	10	150	100	BCE
2TX600	160	140	1	4	1.2	1000	10	2K-100K	500	10	1K	1	10	150	100	CBE
ZTX600A	160	140	1	4	1.2	1000	10	2K-20K	500	10	1K	1	10	150	100	CBE
ZTX600B	160	140	1	4	1.2	1000	10	10K-100K	500	10	5K	1	10	150	100	CBE
ZTX605	140	120	1	4	1.5	1000	1	5K	500	5	0.5K	2	5	150	100	CBE
FXT605	140	120	1	4	1.5	1000	1	5K	500	5	0.5K	2	5	150	100	BCE
ZTX604	120	100	1	4	1.5	1000	1	5K	500	5	0.5K	2	5	150	100	CBE
ZTX614	120	100	0.8	2	1.25	800	8	5K	100	5	10K	0.5	5	-	-	CBE
FXT614	120	100	0.8	2	1.25	800	8	5K	100	5	10K	0.5	5	-	-	BCE
BC372P	100	100	1	2	1	250	0.25	8K	100	5	10K	0.25	5	100	100	CBE
ZTX603	100	80	1	4	1	1000	1	5K	500	5	0.5K	2	5	150	100	CBE
FXT603	100	80	1	4	1	1000	1	5K	500	5	0.5K	2	5	150	100	BCE
ZTX602	80	60	1	4	1	1000	1	5K	500	5	0.5K	2	5	150	100	CBE
BCX38A	80	60	0.8	2	1.25	800	8	0.5K	100	5	1K	0.5	5	-	-	CBE
BCX38B	80	60	0.8	2	1.25	800	8	2K	100	5	4K	0.5	5	-	-	CBE
BCX38C	80	60	0.8	2	1.25	800	8	5K	100	5	10K	0.5	5	-	-	CBE
FXT38C	80	60	0.8	2	1.25	800	8	5K	100	5	10K	0.5	5	-	-	BCE
2N6725	60	50	1	2	1	200	2	15K	500	5	4K	1	5	-	-	CBE
2N6724	50	40	1	2	1	200	2	15K	500	5	4K	1	5	-	-	CBE
$\begin{array}{r} \text { PNP } \\ \text { ZTX705 } \end{array}$	-140	-120	-1	-4	-1.3	-1000	-1	3K	-100	-5	2K	-2	-5	$160{ }^{\text {\# }}$	-100	CBE
FXT705	-140	-120	-1	-4	-1.3	-1000	-1	3K	-100	-5	2K	-2	-5	160 \#	-100	BCE
2TX704	-120	-100	-1	-4	-1.3	-1000	-1	3K	-100	-5	2K	-2	-5	160 \#	-100	CBE
FXT704	-120	-100	-1	-4	-1.3	-1000	-1	3K	-100	-5	2K	-2	-5	160 \#	-100	BCE
ZTX712	-80	-60	-0.8	-2	-1.25	-800	-8	5K	-100	-5	10K	-0.5	-5	-	-	CBE
MPSA77P	-80	-60	-0.5	-2	-1.5	-100	-0.1	10K	-10	-5	10K	-0.1	-5	-	-	CBE

\#Typical Values

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 2N6383 ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 2SB852KT146B 2SD2560 TIP112TU BCV27 MMSTA28T146 NJVNJD35N04T4G MJD127T4 FJB102TM BSP61H6327XTSA1 BU941ZPFI 2SD1980TL NTE2350 NTE245 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261 NTE262 NTE263 NTE264 NTE269 NTE2317 NTE271 NTE2341 NTE2342 MMBT6427LT1G MMBTA13LT1G BCV29.115 BCV49.115

