MPPS™ Miniature Package Power Solutions 20V PNP LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY

PNP Transistor — V_{CEO} =-20V; R_{SAT} = 64m Ω ; I_C = -3.5A Schottky Diode — V_R = 40V; V_F = 500mV (@1A); I_C =1A

DESCRIPTION

Packaged in the new innovative 3mm x 2mm MLP this combination dual comprises an ultra low saturation PNP transistor and a 1A Schottky barrier diode. This excellent combination provides users with highly efficient performance in applications including DC-DC and charging circuits.

Users will also gain several other key benefits:

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

PCB area and device placement savings

Lower package height (0.9mm nom)

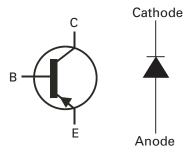
Reduced component count

FEATURES

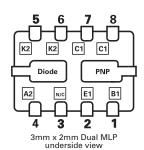
- Extremely Low Saturation Voltage (-220mV @-1A)
- H_{FF} characterised up to -6A
- I_C = -3.5A Continuous Collector Current
- Extremely Low V_F, fast switching Schottky
- 3mm x 2mm MLP

APPLICATIONS

- DC DC Converters
- Mobile Phones
- Charging Circuits
- Motor control


ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZX3CD2S1M832TA	7′′	8mm	3000
ZX3CD2S1M832TC	13′′	8mm	10000


DEVICE MARKING

2S1

3mm x 2mm Dual Die MLP

PINOUT

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Transistor			
Collector-Base Voltage	V _{CBO}	-25	V
Collector-Emitter Voltage	V _{CEO}	-20	V
Emitter-Base Voltage	V _{EBO}	-7.5	V
Peak Pulse Current	I _{CM}	-6	Α
Continuous Collector Current (a)(f)	I _C	-3.5	Α
Base Current	I _B	1000	mA
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	P _D	1.5 12	W mW/°C
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2.45 19.6	W mW/°C
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	P _D	1 8	W mW/°C
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	P _D	1.13 9	W mW/°C
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.7 13.6	W mW/°C
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P _D	3 24	W mW/°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	Tj	150	°C

THERMAL RESISTANCE

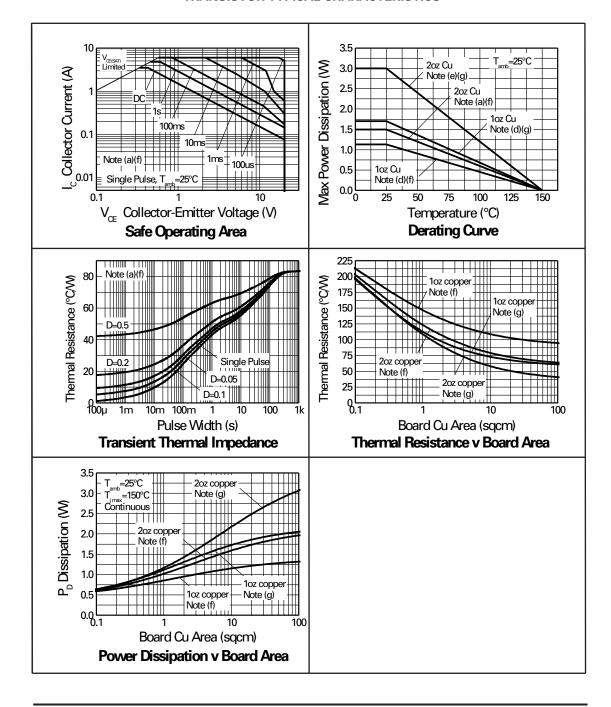
PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$R_{\theta JA}$	83	°C/W
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	°C/W
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.


(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

TRANSISTOR TYPICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Schottky Diode			
Continuous Reverse Voltage	V _R	40	V
Forward Voltage @ I _F =1000mA(typ)	V _F	425	mV
Forward Current	I _F	1850	mA
Average Peak Forward Current D=50%	I _{FAV}	3	Α
Non Repetitive Forward Current $t \le 100 \mu s$ $t \le 10 ms$	I _{FSM}	12 7	A A
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	P _D	1.2 12	W mW/°C
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2 20	W mW/°C
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	P _D	0.8 8	W mW/°C
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	P _D	0.9 9	W mW/°C
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.36 13.6	W mW/°C
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P_{D}	2.4 24	W mW/°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	Ti	125	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT	
Junction to Ambient (a)(f)	$R_{\theta JA}$	83	°C/W	
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	°C/W	
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W	
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W	
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W	
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W	

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

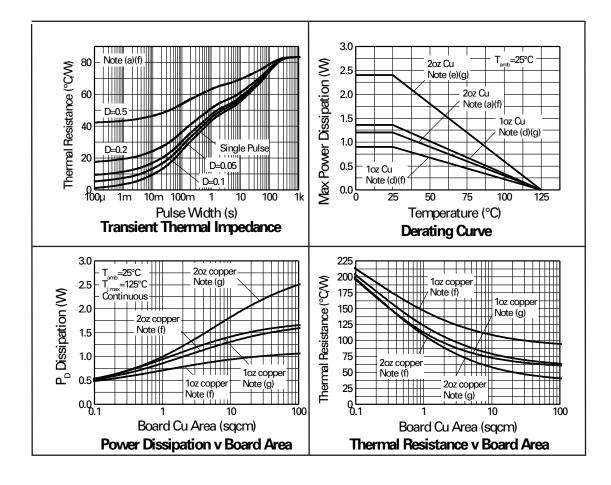
(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

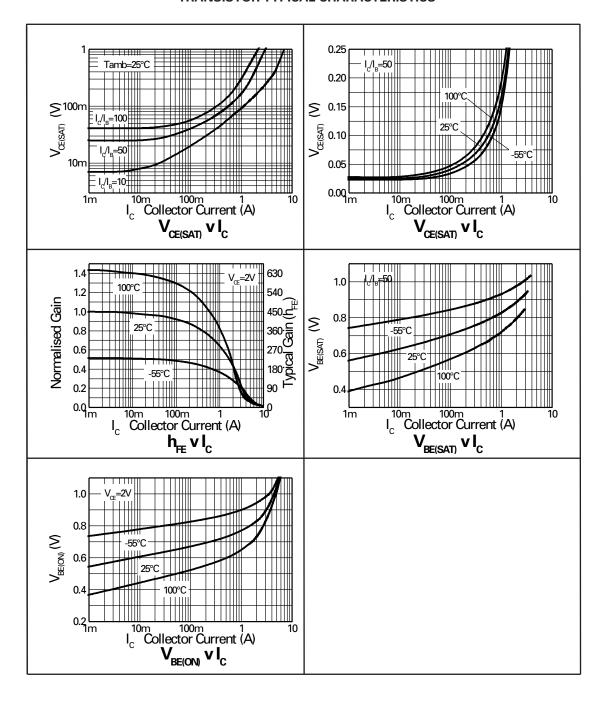
(f) For a dual device with one active die.


(g) For dual device with 2 active die running at equal power.

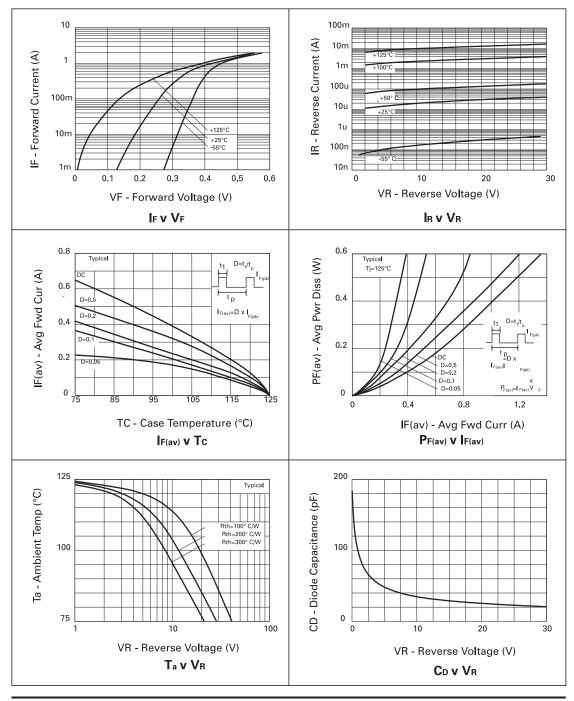
 $(h) \ Repetitive \ rating \ - \ pulse \ width \ limited \ by \ max \ junction \ temperature. \ Refer \ to \ Transient \ Thermal \ Impedance \ graph.$

(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 400mW.

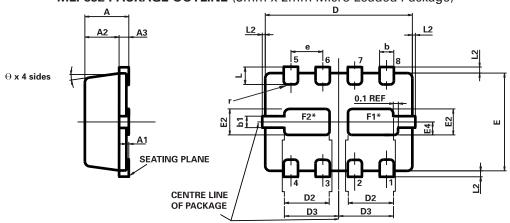
SCHOTTKY TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
TRANSISTOR ELECTRICAL CHARA	CTERISTICS	·			'	•
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-25	-35		V	Ι _C =-100μΑ
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-20	-25		V	I _C =-10mA*
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-7.5	-8.5		V	Ι _Ε =-100μΑ
Collector Cut-Off Current	I _{CBO}			-25	nA	V _{CB} =-20V
Emitter Cut-Off Current	I _{EBO}			-25	nA	V _{EB} =-6V
Collector Emitter Cut-Off Current	I _{CES}			-25	nA	V _{CES} =-16V
Collector-Emitter Saturation Voltage	V _{CE(sat)}		-19 -170 -190 -240 -225	-30 -220 -250 -350 -300	mV mV mV mV	I _C =-0.1A, I _B =-10mA* I _C =-1A, I _B =-20mA* I _C =-1.5A, I _B =-50mA* I _C =-2.5A, I _B =-150mA* I _C =-3.5A, I _B =-300mA*
Base-Emitter Saturation Voltage	V _{BE(sat)}		-1.10	-1.075	V	I _C =-3.5A, I _B =-350mA*
Base-Emitter Turn-On Voltage	V _{BE(on)}		-0.87	-0.950	V	I _C =-3.5A, V _{CE} =-2V*
Static Forward Current Transfer Ratio	h _{FE}	300 300 150 15	475 450 230 30			I _C =-10mA, V _{CE} =-2V* I _C =-0.1A, V _{CE} =-2V* I _C =-2A, V _{CE} =-2V* I _C =-6A, V _{CE} =-2V*
Transition Frequency	f _T	150	180		MHz	I _C =-50mA, V _{CE} =-10V f=100MHz
Output Capacitance	C _{obo}		21	30	pF	V _{CB} =-10V, f=1MHz
Turn-On Time	t _(on)		40		ns	V _{CC} =-10V, I _C =-1A
Turn-Off Time	t _(off)		670		ns	I _{B1} =I _{B2} =-50mA
SCHOTTKY DIODE ELECTRICAL CH	IARACTERIST	rics				
Reverse Breakdown Voltage	V _{(BR)R}	40	60		V	$I_R=300\mu A$
Forward Voltage	V _F		240 265 305 355 390 425 495 420	270 290 340 400 450 500 600	mV mV mV mV mV mV	I _F =50mA* I _F =100mA* I _F =250mA* I _F =500mA* I _F =750mA* I _F =1000mA* I _F =1000mA* I _F =1000mA,T _a =100°C*
Reverse Current	I _R		50	100	μΑ	V _R =30V
Diode Capacitance	C _D		25		pF	f=1MHz,V _R =25V
Reverse Recovery Time	t _{rr}		12		ns	switched from $I_F = 500$ mA to $I_R = 500$ mA Measured at $I_R = 50$ mA


^{*}Measured under pulsed conditions.

TRANSISTOR TYPICAL CHARACTERISTICS



SCHOTTKY TYPICAL CHARACTERISTICS

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

 $[\]hbox{*Exposed Flags. Solder connection to improve thermal dissipation is optional.}$

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

	MILLIMETRES		INCHES			MILLIN	IETRES	INC	HES
DIM	MIN.	MAX.	MIN.	MAX.	DIM	MIN.	MAX.	MIN.	MAX.
Α	0.80	1.00	0.031	0.039	е	0.65	REF	0.025	6 BSC
A1	0.00	0.05	0.00	0.002	Е	2.00	BSC	0.0787	7 BSC
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
А3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2		0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075	BSC	0.002	9 BSC
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex plc 2002

© Zotox pio Zooz			
Europe		Americas	Asia Pacific
Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	Hauppauge, NY11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4422	Telefon: (49) 89 45 49 49 0	Telephone: (631) 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4420	Fax: (49) 89 45 49 49 49	Fax: (631) 360 8222	Fax: (852) 24250 494
uksales@zetex.com	europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\boldsymbol{www.zetex.com}$

F1 at collector 1 potential

F2 at collector 2 potential

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G

NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T
TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC4731T-AY 2SC5488A-TL-H

2SD2150T100R SP000011176 FJPF5304DTU FMC5AT148 FMMTA92QTA 2N2369ADCSM 2SB1202S-TL-E 2SB1324-TD-E

2SC2412KT146S 2SC3332T 2SC3902S 2SC4618TLN 2SC5231C8-TL-E 2SC5490A-TL-H 2SD1685F 2SD1816S-TL-E 2SD1816T-TL-E

CMXT2207 TR CPH6501-TL-E MCH4021-TL-E TTC012(Q) BULD128DT4 US6T6TR