

40V PNP MEDIUM POWER TRANSISTOR IN SOT23

Features

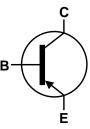
- BV_{CEO} > -40V
- BV_{ECO} > -3V
- I_C = -3A Continuous Collector Current
- V_{CE(sat)} < -85mV @ -1A
- R_{CE(sat)} = 55mΩ typical
- P_D = 1.25W
- High Power Dissipation SOT23 Package
- High Peak Current
- Low Saturation Voltage
- 3V Reverse Blocking Voltage
- Complementary Part Number: ZXTN25040DFH
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e.: parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please refer to the related automotive grade (Q-suffix) part. A listing can be found at

https://www.diodes.com/products/automotive/automotive-products/.

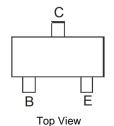
 This part is qualified to JEDEC standards (as references in AEC-Q) for High Reliability.

https://www.diodes.com/quality/product-definitions/

Mechanical Data


- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.008 grams (Approximate)

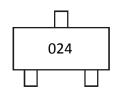
Applications


- MOSFET and IGBT gate driving
- DC-DC converters
- Motor drives
- High-side drivers

Top View

Device Symbol

Pin-Out


Ordering Information (Note 4)

Product	Marking	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXTP25040DFHTA	024	7	8	3,000

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

024 = Product Type Marking Code

Absolute Maximum Ratings @ TA = +25°C, unless otherwise specified.

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-45	V
Collector-Emitter Voltage (Forward Blocking)	V _{CEO}	-40	V
Emitter-collector voltage (Reverse Blocking)	V_{ECO}	-3	V
Emitter-Base Voltage	V_{EBO}	-7	V
Continuous Collector Current	Ic	-3	Α
Peak Pulse Current	I _{CM}	-9	A

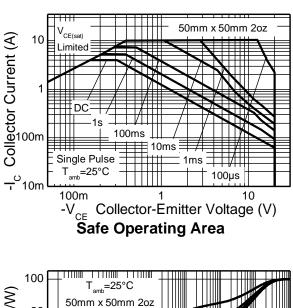
Thermal Characteristics @ $T_A = +25$ °C unless otherwise specified

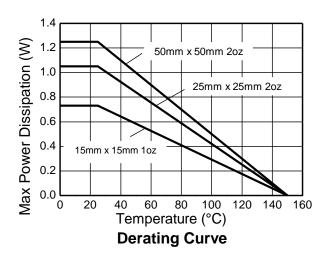
Characteristic	Symbol	Value	Unit		
	(Note 5)		0.73		
	(11010-0)		5.84		
	(Note 6)		0.78		
	(14010-0)		6.24		
Power Dissipation	(Note 7)	P_{D}	1.05	W	
Linear derating factor	(Note 1)	ט י	8.4	mW/°C	
	(Note 8)		1.25		
			9.6		
	(Note 9)		1.81		
	(14016-9)		14.5		
	(Note 5)		171		
	(Note 6)		160		
Thermal Resistance, Junction to Ambient	(Note 7)	$R_{ heta JA}$	119	°C/W	
	(Note 8)		100		
	(Note 9)		69		
Thermal Resistance, Junction to Lead	(Note 10)	$R_{ heta JL}$	74.95	°C/W	
Thermal Resistance, Junction to Case	(Note 11)	R _θ JC	45	°C/W	
Operating and Storage Temperature Range —		$T_{J_i}T_{STG}$	T _J , T _{STG} -55 to +150		

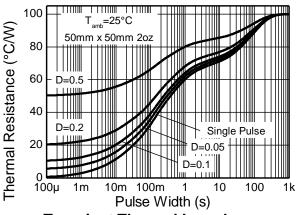
- 5. For a device surface mounted on 15mm x 15mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition.
- 6. Same as note (5), except the device is mounted on FR4 substrate PCB layout with minimum recommended pad layout.
- 7. Same as note (5), except the device is surface mounted on 25mm x 25mm with 2 oz copper. 8. Same as note (5), except the device is surface mounted on 50mm x 50mm with 2 oz copper.

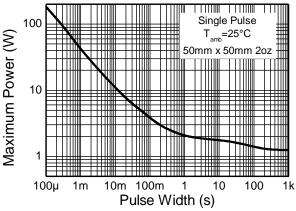
- 9. Same as note (8), except the device is measured at t<5secs.

 10. Thermal resistance from junction to solder-point (at the end of the collector lead).
- 11. Thermal resistance from junction to the top of the case.


ESD Ratings (Note 12)


Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4,000	V	3A
Electrostatic Discharge - Machine Model	ESD MM	400	V	С

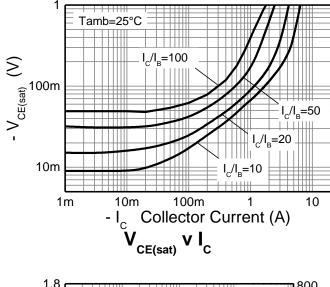

12. Refer to JEDEC specification JESD22-A114 and JESD22-A115. Note:

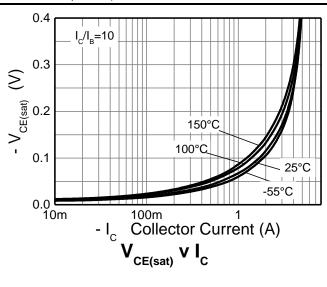


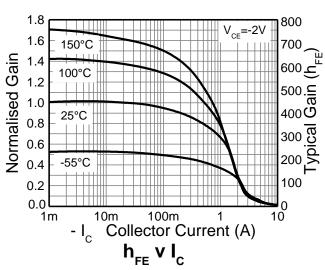
Thermal Characteristics and Derating Information

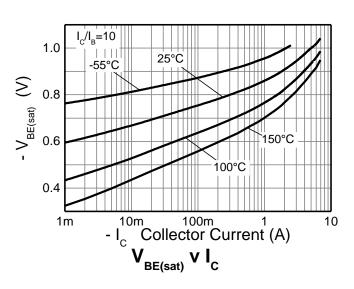
Transient Thermal Impedance

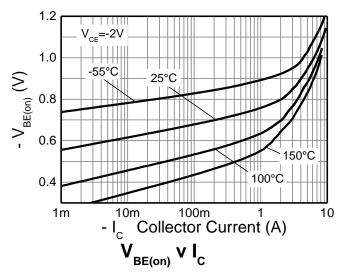
Pulse Power Dissipation

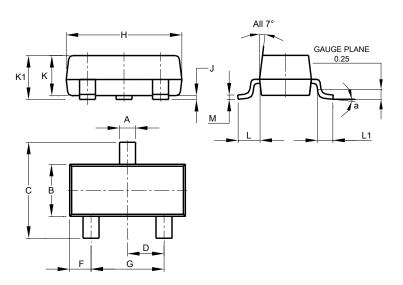

Electrical Characteristics (@ T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV _{CBO}	-45	-75	-	V	$I_{C} = -100 \mu A$
Collector-Emitter Breakdown Voltage (Note 13)	BV _{CEO}	-40	-65	-	V	$I_C = -10mA$
Emitter-Base Breakdown Voltage	BV _{EBO}	-7	-8.2	-	V	$I_E = -100 \mu A$
Emitter-Collector Breakdown Voltage	BV _{ECO}	-3	-8.7	-	V	$I_E = -100 \mu A$
Collector-Base Cutoff Current	I _{CBO}	-	< -1	-50	nA	V _{CB} = -45V
Collector-Base Cutoff Current		-	-	-0.5	μΑ	$V_{CB} = -45V, T_{amb} = +100^{\circ}C$
Emitter-Base Cutoff Current	I _{EBO}	-	< -1	-50	nA	V _{EB} = -5.6V
		300	450	900		I _C = -10mA, V _{CE} = -2V
Static Forward Current Transfer Ratio (Note 13)	h _{FE}	200	300	-	-	I _C = -1A, V _{CE} = -2V
		30	60	-		$I_C = -3A$, $V_{CE} = -2V$
		-	-170	-260		$I_C = -1A$, $I_B = -20mA$
Collector-Emitter Saturation Voltage (Note 13)	V _{CE(sat)}	-	-65	-85	mV	$I_C = -1A$, $I_B = -100mA$
		-	-165	-220		$I_C = -3A$, $I_B = -300mA$
Base-Emitter Saturation Voltage (Note 13)	V _{BE(sat)}	-	-930	-1000	mV	I _C = -3A, I _B = -300mA
Base-Emitter Saturation Voltage (Note 13)	V _{BE(on)}	-	-830	-900	mV	$I_{C} = -3A$, $V_{CE} = -2V$
Output Capacitance	C _{obo}	-	17.4		pF	V _{CB} = -10V, f = 1MHz
Transition Frequency	f⊤	-	270	-	MHz	V _{CE} = -10V, I _C = -50mA, f = 100MHz
Turn-on Time	t _(on)	-	75.5	-	ns	V _{CC} = -15V, I _C = -750mA,
Turn-off Time	t _(off)	-	320	-	ns	$I_{B1} = -I_{B2} = -15\text{mA}$


Note: 13. Measured under pulsed conditions. Pulse width \leq 300 μ s. Duty cycle \leq 2%.



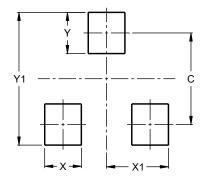

Typical Electrical Characteristics (@ TA = +25°C, unless otherwise specified.)



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23



SOT23					
Dim	Min	Max	Тур		
Α	0.37	0.51	0.40		
В	1.20	1.40	1.30		
С	2.30	2.50	2.40		
D	0.89	1.03	0.915		
F	0.45	0.60	0.535		
G	1.78	2.05	1.83		
H	2.80	3.00	2.90		
J	0.013	0.10	0.05		
K	0.890	1.00	0.975		
K 1	0.903	1.10	1.025		
١	0.45	0.61	0.55		
L1	0.25	0.55	0.40		
М	0.085	0.150	0.110		
а	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

Dimensions	Value (in mm)			
С	2.0			
Х	0.8			
X1	1.35			
Y	0.9			
Y1	29			

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

BC559C MCH4017-TL-H MMBT-2369-TR BC546/116 NJVMJD148T4G NTE16 NTE195A IMX9T110 2N4401-A 2N6728 2SA1419T-TD-H 2SB1204S-TL-E 2SC5488A-TL-H FMC5AT148 2N2369ADCSM 2N2907A 2N3904-NS 2N5769 2SC4618TLN CPH6501-TL-E BC856BW-13-F US6T6TR BAX18/A52R BC556/112 IMZ2AT108 MMST8098T146 MCH6102-TL-E BC846B-13-F 2N3879 30A02MH-TL-E NTE13 NTE282 NTE323 NTE350 NTE81 JANTX2N2920L JANSR2N2907AUB CMLT3946EG TR SNSS40600CF8T1G CMLT3906EG TR GRP-DATA-JANS2N2907AUB GRP-DATA-JANS2N2222AUA MMDT3946FL3-7 2N4240 JANS2N3019 MSB30KH-13 2N2221AUB 2SD1815T-TL-E 2N6678 2N2907Ae4