ZXTP25040DFH

40V SOT23 PNP medium power transistor

Summary

$$
\begin{aligned}
& \mathrm{BV}_{\text {CEO }}>-40 \mathrm{~V} \\
& \mathrm{BV}_{\mathrm{ECO}}>-3 \mathrm{~V} ; \\
& \mathrm{I}_{\mathrm{C}(\mathrm{CONT})}=-3 \mathrm{~A} \\
& \mathrm{R}_{\mathrm{CE}(\text { sat) })}=55 \mathrm{~m} \Omega ; \\
& \mathrm{V}_{\mathrm{CE}(\text { sat) }}<-85 \mathrm{mV} @ 1 \mathrm{~A} ; \\
& \mathrm{P}_{\mathrm{D}}=1.25 \mathrm{~W}
\end{aligned}
$$

Complementary part number ZXTN25040DFH

Description

Advanced process capability and package design have been used to maximize the power handling and performance of this small outline transistor. The compact size and ratings of this device make it ideally suited to applications where space is at a premium.

Features

- High power dissipation SOT23 package

- High peak current
- Low saturation voltage
- 3V reverse blocking voltage

Applications

- MOSFET and IGBT gate driving
- DC - DC converters
- Motor drive
- High side driver

Ordering information

Pinout - top view

Device	Reel size (inches)	Tape width	Quantity per reel
ZXTP25040DFHTA	7	8 mm	3000

Device marking

ZXTP25040DFH

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	$\mathrm{V}_{\text {CBO }}$	-45	V
Collector-emitter voltage (forward blocking)	$\mathrm{V}_{\text {CEO }}$	-40	V
Emitter-collector voltage (reverse blocking)	$\mathrm{V}_{\mathrm{ECO}}$	-3	V
Emitter-base voltage	$\mathrm{V}_{\text {EBO }}$	-7	V
Continuous collector current ${ }^{(b)}$	I_{C}	-3	A
Peak pulse current	$\mathrm{I}_{\text {CM }}$	-9	A
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (a) linear derating factor	$P_{\text {D }}$	$\begin{aligned} & 0.73 \\ & 5.84 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (b) linear derating factor	P_{D}	$\begin{gathered} 1.05 \\ 8.4 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (c) linear derating factor	$P_{\text {D }}$	$\begin{gathered} 1.25 \\ 9.6 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (d) linear derating factor	P_{D}	$\begin{aligned} & 1.81 \\ & 14.5 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and storage temperature range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ${ }^{\text {(a) }}$	$\mathrm{R}_{\text {ӨJA }}$	171	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(b) }}$	$\mathrm{R}_{\text {ӨJA }}$	119	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(c) }}$	$\mathrm{R}_{\text {ӨJA }}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to ambient $^{\text {(d) }}$	$\mathrm{R}_{\text {ӨJA }}$	69	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(a) For a device surface mounted on $15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions.
(b) Mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(c) Mounted on $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions.
(d) As (c) above measured at $\mathrm{t}<5 \mathrm{sec}$.

ZXTP25040DFH

Characteristics

ZXTP25040DFH

Electrical characteristics (at $\mathrm{T}_{\mathrm{AMB}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Collector-base breakdown voltage	$\mathrm{BV}_{\text {CBO }}$	-45	-75		V	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$
Collector-emitter breakdown voltage (base open)	$\mathrm{BV}_{\text {CEO }}$	-40	-65		V	$I_{C}=-10 m A^{(*)}$
Emitter-collector breakdown voltage (reverse blocking)	$\mathrm{BV}_{\mathrm{ECO}}$	-3	-8.7		V	$\mathrm{I}_{\mathrm{E}}=-100 \mathrm{uA}$
Emitter-base breakdown voltage	$\mathrm{BV}_{\text {EBO }}$	-7	-8.2		V	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}$
Collector cut-off current	${ }^{\text {CBO }}$		<-1	$\begin{aligned} & \hline-50 \\ & -0.5 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=-45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=-45 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C} \end{aligned}$
Emitter cut-off current	IEbo		<-1	-50	nA	$\mathrm{V}_{\mathrm{EB}}=-5.6 \mathrm{~V}$
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{gathered} -170 \\ -65 \\ -165 \end{gathered}$	$\begin{gathered} -260 \\ -85 \\ -220 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & I_{C}=-1 A, I_{B}=-20 m A^{(*)} \\ & I_{C}=-1 A, I_{B}=-100 m A^{(*)} \\ & I_{C}=-3 A, I_{B}=-300 m A^{(*)} \end{aligned}$
Base-emitter saturation voltage	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		-930	-1000	mV	$I_{C}=-3 A, I_{B}=-300 m A^{(*)}$
Base-emitter turn-on voltage	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$		-830	-900	mV	$I_{C}=-3 A, V_{C E}=-2 V^{(*)}$
Static forward current transfer ratio	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 300 \\ 200 \\ 30 \end{gathered}$	$\begin{gathered} \hline 450 \\ 300 \\ 60 \end{gathered}$	900		$\begin{aligned} & I_{C}=-10 m A, V_{C E}=-2 V^{(*)} \\ & I_{C}=-1 A, V_{C E}=-2 V^{(*)} \\ & I_{C}=-3 A, V_{C E}=-2 V^{(*)} \end{aligned}$
Transition frequency	f_{T}		270		MHz	$\begin{aligned} & I_{C}=-50 \mathrm{~mA}, V_{C E}=-10 \mathrm{~V} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$
Output capacitance	$\mathrm{C}_{\text {ово }}$		17.4		pF	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{\left({ }^{*}\right)}$
Turn-on time	$\mathrm{t}_{\text {(on) }}$		75.5		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V} . \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-15 \mathrm{~mA} . \end{aligned}$
Turn-off time	$\mathrm{t}_{\text {(off) }}$		320		ns	

NOTES:
(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2 \%$.

ZXTP25040DFH

Typical characteristics

Package outline - SOT23

Dim.	Millimeters		Inches		Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
A	-	1.12	-	0.044	e1	1.90 NOM		0.075 NOM	
A1	0.01	0.10	0.0004	0.004	E	2.10	2.64	0.083	0.104
b	0.30	0.50	0.012	0.020	E1	1.20	1.40	0.047	0.055
C	0.085	0.20	0.003	0.008	L	0.25	0.60	0.0098	0.0236
D	2.80	3.04	0.110	0.120	L1	0.45	0.62	0.018	0.024
e	0.95 NOM		0.037 NOM		-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Kustermann-Park	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81541 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	OIdham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100611	Telephone: (44) 161622 4444
Fax: (49) 89 45 49 49 49 europe.sales@zetex.com	Fax: (1) 631 360 8222 usa.sales@zetex.com	Fax: (852) 24250 494 asia.sales@zetex.com	Fax: (44) 161622 4446 hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork
This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Diodes Incorporated manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E 30A02MH-TL-E NSV40301MZ4T1G NTE13 NTE15 NTE16001 NTE16006 NTE26 NTE320

