DIO1005

Ultra Low On-Resistance Dual, SPDT Analog Switch

Features

- Switch Type: SPDT(2X)
- Voltage Operation: 1.8 V to 4.3 V
- Ultra-Low On Resistance: 0.75 @ +4.3V
- -3dB Bandwidth: 75MHz
- High Off-isolation: -78dB@100kHz
- Low Crosstalk: -100dB@100kHz
- Excellent On Resistance Matching: 0.03Ω
- Low Total Harmonic Distortion (THD)
- Rail-to-Rail Input and Output Operation
- Break-Before-Make Switching
- Green Packaged:DFN3*3-10 and MSOP-10
- 8kV HBM ESD

Applications

- Cell-Phone/PDA
- MP3/MP4/PMP
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Descriptions

The DIO1005 is a dual Single-Pole, Double-Throw (SPDT) analog switch. DIO1005 operates from a single 1.8 V to 4.3 V supply and features an ultra-low on resistance of 0.75Ω at a +4.3 V supply and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. This device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.
DIO1005 guarantees 0.03Ω on-resistance matching between switches, on-resistance flatness over the signal range, high off-isolation and low crosstalk, which ensures excellent linearity and low distortion when switching audio signals. DIO1005 consists of two normally open and two normally close switches.

DIO1005 provides packages with Green DFN3*3-10 and MSOP-10.

Block Diagram

Ordering Information

Order Part Number	Top Marking		TA $_{A}$	Package	
DIO1005DN10	D1005	Green	-40 to $+85^{\circ} \mathrm{C}$	DFN-10	Tape \& Reel, 5000
DIO1005MP10	DIO1005	Green	-40 to $+85^{\circ} \mathrm{C}$	MSOP-10	Tape \& Reel, 3000

DIO1005

Pin Assignment

DFN-10

Figure 1 Top View

Pin Descriptions

Pin Name	Description
$\mathrm{V}_{\mathrm{cc} / \mathrm{GND}}$	Power Supply
IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
COM1, COM2	Common terminal
NO1, NO2	Normally-open terminal
NC1, NC2	Normally-closed terminal

Truth Table

IN1, IN2	NO	NC
L	OFF	ON
H	ON	OFF

DIO1005

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.3	+4.6	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	DC input Voltage	-0.3	$\left(\mathrm{~V}_{\mathrm{CC}}\right)+0.3$	V
$\mathrm{~V}_{\mathrm{SW}}$	DC input I/O Voltage	-0.3	$\left(\mathrm{~V}_{\mathrm{CC}}\right)+0.3$	V
$\mathrm{I}_{\mathbb{K}}$	DC input Diode current		-50	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
ESD	HBM, JEDEC: JESD22-A114		8000	V

Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not Recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply voltage	1.8	4.3	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control input voltage (IN1/IN2)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

DIO1005

Electrical Characteristics

All typical value are at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathbf{V}_{\mathbf{c c}} / \mathbf{V}$	Temp	Min	Typ	Max	Unit
Analog Switch Characteristics								
Ron	On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{Nc}} \text {, or } \mathrm{V}_{\mathrm{Com}}=1 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\text {сом }}=-100 \mathrm{~mA} \end{aligned}$	4.3	$+25^{\circ} \mathrm{C}$		0.75	0.85	Ω
				-40 to $85^{\circ} \mathrm{C}$			0.95	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-ResistanceMatch Between Channels	$\begin{aligned} & \mathrm{V}_{\mathrm{NO},} \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\text {сом }}=-100 \mathrm{~mA} \end{aligned}$	4.3	$+25^{\circ} \mathrm{C}$		0.03	0.15	Ω
				-40 to $85^{\circ} \mathrm{C}$			0.20	Ω
$\mathrm{R}_{\text {flat(on) }}$	On-Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\text {сом }}=1 \mathrm{~V}, 2.5 \mathrm{~V} \\ & \mathrm{I}_{\text {сом }}=-100 \mathrm{~mA} \end{aligned}$	4.3	$+25^{\circ} \mathrm{C}$		0.15	0.23	Ω
				-40 to $85^{\circ} \mathrm{C}$			0.30	Ω
$\mathrm{I}_{\mathrm{Nc}(\text { (OFF), }}$ INO(OFF)	Source OFF Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {сом }}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \end{aligned}$	4.3	-40 to $85^{\circ} \mathrm{C}$			50	nA
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON}),}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$ ICom(ON)	Channel ON Leakage Current	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V}$ or floating $\mathrm{V}_{\text {сом }}=0.3 \mathrm{~V} / 3.3 \mathrm{~V}$	4.3	-40 to $85^{\circ} \mathrm{C}$			50	nA

Digital Inputs

$\mathrm{V}_{\mathrm{INH}}$	Input High Voltage			-40 to $85^{\circ} \mathrm{C}$	1.6			V
$\mathrm{~V}_{\mathrm{INL}}$	Input Low Voltage			-40 to $85^{\circ} \mathrm{C}$			0.5	V
I_{N}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$, or 4.2 V		-40 to $85^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$

Dynamic Characteristics

ton	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V} \text { to } 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO} 1} \text { or } \mathrm{V}_{\mathrm{NO} 2} \text { or } \\ & \mathrm{V}_{\mathrm{NC} 2}=2.1 \mathrm{~V}, \end{aligned}$		$+25^{\circ} \mathrm{C}$	25	ns
toff	Turn-Off Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V} \text { to } 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO} 1} \text { or } \mathrm{V}_{\mathrm{NO} 2} \text { or } \\ & \mathrm{V}_{\mathrm{NC} 2}=2.1 \mathrm{~V}, \end{aligned}$		$+25^{\circ} \mathrm{C}$	35	ns
t_{D}	Break-Before-Make Time Delay	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=2.1 \mathrm{~V} \text { to } 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{NO} 1} \text { or } \mathrm{V}_{\mathrm{NO} 2} \text { or } \\ & \mathrm{V}_{\mathrm{NC} 2}=2.1 \mathrm{~V}, \end{aligned}$		$+25^{\circ} \mathrm{C}$	45	ns
Oiso	Off Isolation	$V_{\text {BIAS }}=2.1 \mathrm{~V},$ Signal $=0 \mathrm{dBm}$	100kHz	$+25^{\circ} \mathrm{C}$	-78	dB
			1MHz		-58	
$\mathrm{X}_{\text {talk }}$	Channel-to-Channel Crosstalk	$\begin{aligned} & \mathrm{V}_{\mathrm{BIAS}}=2.1 \mathrm{~V}, \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$	100kHz	$+25^{\circ} \mathrm{C}$	-100	dB
					-75	
BW	-3dB Bandwidth	$\mathrm{V}_{\text {BIAS }}=2.1 \mathrm{~V}$, Signal $=0 \mathrm{dBm}$		$+25^{\circ} \mathrm{C}$	75	MHz
THD	Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , $R L=32 \Omega, V_{S W}=1 V_{P P}$		$+25^{\circ} \mathrm{C}$	0.02	\%
Q	Charge Injection Select Input to Common I/O	$\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$		$+25^{\circ} \mathrm{C}$	4.0	pC
Con	Channel on Capacitance			$+25^{\circ} \mathrm{C}$	106	pF

DIO1005

Electrical Characteristics

All typical value are at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$V_{c c} / V$	Temp	Min	Typ	Max	Unit

Power Requirements

V_{CC}	Power Supply Range			-40 to $85^{\circ} \mathrm{C}$	1.8		4.3	V
I_{CC}	$\begin{array}{l}\text { Quiescent Supply } \\ \text { Current }\end{array}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	4.3	-40 to $85^{\circ} \mathrm{C}$			500	nA
	$\begin{array}{l}\text { Increase in ICC } \\ \text { Input }\end{array}$	Input at 2.6 V	4.3	-40 to $85^{\circ} \mathrm{C}$				

DIO1005

Test Diagrams

Figure 2 Switch on resistor

Figure 3 Switch Off Leakage

Figure 4 On/off Capacitance test

Figure 5 Bandwidth

Figure 6 Channel-to-channel crosstalk

Figure 7 Off-isolation

Figure 8 Break-Before-Make

Figure 9 Turn-On/Turn-Off

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http://www.dioo.com for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Dioo manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

