


4µA, Rail-to-Rail Input/ Output Low Power Amplifier

#### Features

- Ultra low power: 4µA per channel
- Unity Gain Stable
- Gain Bandwidth Product: 150kHz
- Wide supply range: 1.8V to 5.5V
- Available in SOT23-5, SOT23-6, SOIC-8, MSOP-8, SOP-14 and TSSOP-14 packages
- Temperature Range:
   -Industrial: -40°C to +85°C
   -Extended: -40°C to +125°C

#### **Typical Applications**



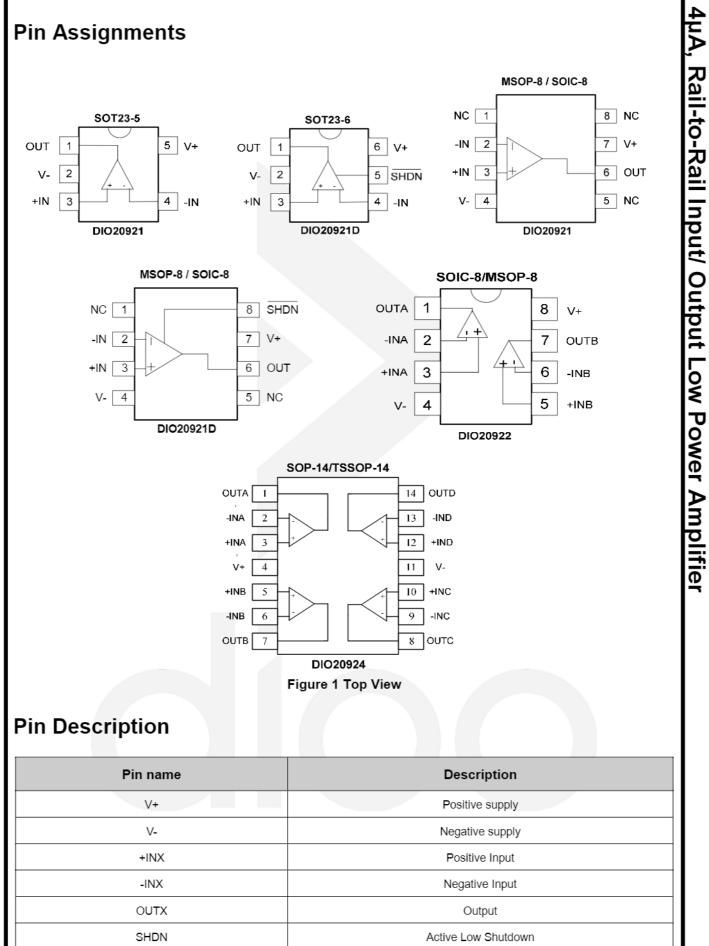
#### Applications

- Portable Equipment
- Active Filters
- Data Acquisition
- Portable Equipment

# **Ordering Information**

#### Descriptions

DIO2092x is a family of ultra low power operational amplifier, with rail-to-rail CMOS input/output and single/dual channels selectable. DIO2092x family has a gain-bandwidth product of 150kHz, wide operating supply voltage from 1.8V to 5.5V and broad output voltage swing.


DIO2092x consumes ultra low power, with each channel  $4\mu$ A of bias current, which makes DIO2092x be ideal for battery powered device, temperature-sense device, etc.

The DIO2092x operational amplifier family is available in single (DIO20921/1D), and dual (DIO20922), and quad (DIO20924) configurations. Furthermore, the DIO20921 is offered in the 5-lead SOT23 package. All types of amplifiers are fully specified over the extended -40°C to +125°C temperature range.

- Test Equipment
- Broadband Communication
- Process Control
- Audio and Video Processing

| Order Part<br>Number | Top Marking |               | TA            | Package  |                   |
|----------------------|-------------|---------------|---------------|----------|-------------------|
| DIO20921ST5          | W921        | Green or RoHS | -40 to +125°C | SOT23-5  | Tape & Reel, 3000 |
| DIO20921SO8          | D20921      | Green or RoHS | -40 to +125°C | SOIC-8   | Tape & Reel, 2500 |
| DIO20921MP8          | D20921      | Green or RoHS | -40 to +125°C | MSOP-8   | Tape & Reel, 3000 |
| DIO20921DST6         | W92D        | Green or RoHS | -40 to +125°C | SOT23-6  | Tape & Reel, 3000 |
| DIO20921DSO8         | D20921D     | Green or RoHS | -40 to +125°C | SOIC-8   | Tape & Reel, 2500 |
| DIO20921DMP8         | D20921D     | Green or RoHS | -40 to +125°C | MSOP-8   | Tape & Reel, 3000 |
| DIO20922SO8          | D20922      | Green or RoHS | -40 to +125°C | SOIC-8   | Tape & Reel, 2500 |
| DIO20922MP8          | D20922      | Green or RoHS | -40 to +125°C | MSOP-8   | Tape & Reel, 3000 |
| DIO20924CS14         | D20924      | Green or RoHS | -40 to +125°C | SOP-14   | Tape & Reel, 2500 |
| DIO20924TP14         | D20924      | Green or RoHS | -40 to +125°C | TSSOP-14 | Tape & Reel, 2500 |







# Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

| Parameter                 |                         | Rating                 | Unit |  |
|---------------------------|-------------------------|------------------------|------|--|
| Supply Voltage ( V+ – V-) |                         | 7                      | V    |  |
| Input Voltage             |                         | (V-)-0.3V to (V+)+0.3V | V    |  |
| Difference Input Voltage  |                         | V+- V-                 | V    |  |
| Storage Temperature Range |                         | -65 to 150             | °C   |  |
| Junction Temperature      |                         | 150                    | °C   |  |
| Lead Temperature Rar      | nge                     | 260                    | °C   |  |
| ESD                       | HBM, JEDEC: JESD22-A114 | 8                      | kV   |  |
|                           | CDM, JEDEC: JESD22-C101 | 2                      |      |  |

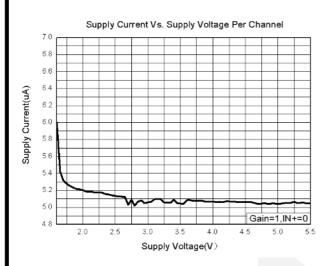
# **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

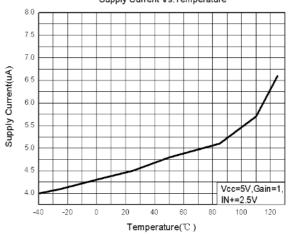
| Parameter                   | Rating     | Unit |  |
|-----------------------------|------------|------|--|
| Supply Voltage              | 1.8 to 5.5 | V    |  |
| Input Voltage               | 0 to 5     | V    |  |
| Operating Temperature Range | -40 to 125 | °C   |  |



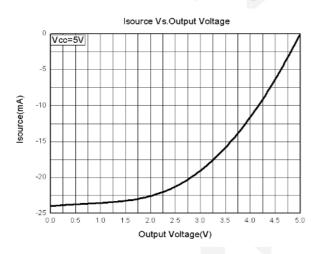
#### **Electrical Characteristics**


Typical value: V+=5V, R<sub>L</sub>=100k $\Omega$  to V+/2, V<sub>CM</sub>=1/2V+, T<sub>A</sub> = 25°C, unless otherwise specified.

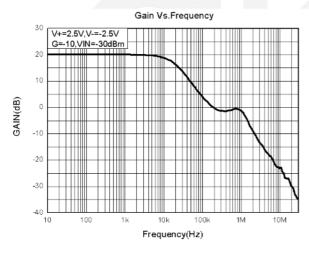
| Symbol                   | Parameter                          | Conditions                                              | Min. | Тур.  | Max.         | Unit   |  |
|--------------------------|------------------------------------|---------------------------------------------------------|------|-------|--------------|--------|--|
| INPUT CHA                | RACTERISTICS                       |                                                         |      |       |              |        |  |
| Vos                      | Input Offset Voltage               | -40°C≤T <sub>A</sub> ≤125°C, V+=1.8V to 5.5V            | -5   |       | +5           | mV     |  |
| IB                       | Input Bias Current                 | V+=1.8V to 5.5V                                         |      | 1     |              | pА     |  |
| los                      | Input Offset Current               | V+=1.8V to 5.5V                                         |      | 1     |              | pА     |  |
| V <sub>CM</sub>          | Common Mode Voltage Range          |                                                         | -0.1 |       | (V+)<br>+0.1 | V      |  |
| CMRR                     | Common Mode Rejection Ratio        | -40°C≤T <sub>A</sub> ≤125°C,                            |      | 130   |              | dB     |  |
| A <sub>OL</sub>          | Open Loop Voltage Gain             | $R_L$ =100k $\Omega$ , V <sub>0</sub> = 0.1 to (V+)-0.1 | 70   | 105   |              | dB     |  |
| $\Delta V_{OS}/\Delta_T$ | Input Offset Voltage Drift         | -40°C≤T <sub>A</sub> ≤125°C                             |      | ±5    |              | µV/°C  |  |
| OUTPUT CH                | ARACTERISTICS                      |                                                         |      |       |              |        |  |
| V <sub>OH</sub>          | Output Voltage High                | R <sub>L</sub> =100kΩ -40°C≤T <sub>A</sub> ≤125°C       |      | 4.995 |              | V      |  |
| V <sub>OL</sub>          | Output Voltage Low                 | R <sub>L</sub> =100kΩ -40°C≤T <sub>A</sub> ≤125°C       |      | 5     |              | mV     |  |
|                          |                                    | Source I <sub>SC</sub> , V+=5V                          |      | 24    |              |        |  |
| I <sub>SC</sub>          | Output Short Circuit Current       | Sink I <sub>SC</sub> , V+=5V                            |      | 24    |              | - mA   |  |
| POWER SU                 | PPLY                               |                                                         |      |       |              |        |  |
| PSRR                     | Power Supply Rejection Ration      |                                                         | 100  |       |              | dB     |  |
| IQ                       | Supply Current per Channel/Amp     | -40°C≤T <sub>A</sub> ≤125°C                             |      | 4     |              | μA     |  |
| I <sub>Q(off)</sub>      | Supply Current in Shutdown         | V <sub>SHDN</sub> =0V                                   |      | 3     |              | nA     |  |
| I <sub>SHDN</sub>        | Shutdown Pin Current               |                                                         |      | -10   |              | pА     |  |
| I <sub>LEAK</sub>        | Output Leakage Current in Shutdown | V <sub>SHDN</sub> =0V                                   |      | 3.6   |              | pА     |  |
| VIL                      | SHDN Input Low Voltage             | Disable                                                 |      |       | 0.5          | V      |  |
| VIH                      | SHDN Input High Voltage            | Enable                                                  | 1.1  |       |              | V      |  |
| DYNAMIC P                | ERFORMANCE                         |                                                         |      |       |              |        |  |
| GBP                      | Gain Bandwidth Product             | C <sub>L</sub> =100pF                                   |      | 150   |              | kHz    |  |
| SR                       | Slew Rate                          | G=1, 2V Output Step                                     |      | 70    |              | V/ms   |  |
| ts                       | Setting Time                       | G=1, 2V Output Step                                     |      | 20    |              | μs     |  |
| Θm                       | Phase Margin                       |                                                         |      | 60    |              | Deg    |  |
| tr                       | Overload Recovery Time             |                                                         |      | 166   |              | μs     |  |
| NOISE PER                | FORMANCE                           |                                                         |      |       |              |        |  |
| THD                      | Total Harmonic Distortion          | f=100Hz, 4V <sub>PP</sub> , R <sub>L</sub> =100kΩ,      |      | 0.09  |              | %      |  |
| en                       | Voltage Noise Density              | f=1kHz                                                  |      | 103   |              | nV/√Hz |  |
| Specifications           | subject to change without notice.  |                                                         |      |       |              |        |  |



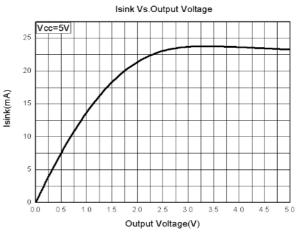

#### **Typical Performance Characteristics**


#### Supply Current vs. Supply Voltage Per Channel

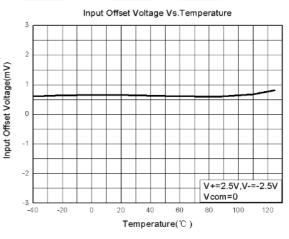



Supply Current vs. Temperature



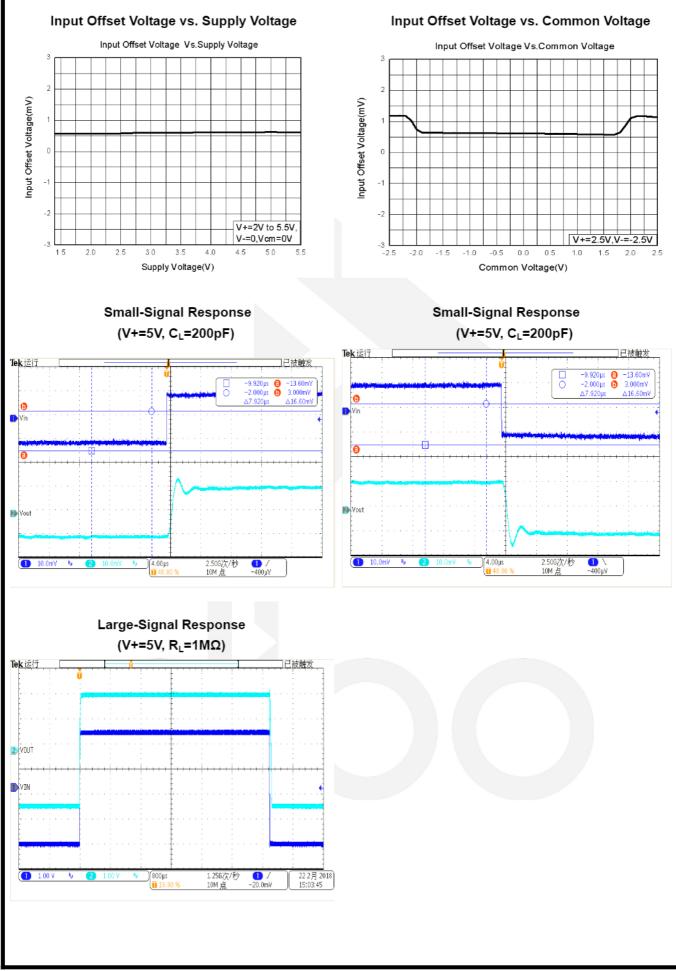

Isource vs. Output Voltage




Gain vs. Frequency



IsiNK vs. Output Voltage




Input Offset Voltage vs. Temperature



#### ISINK VS. Output Voltag







# CONTACT US

**D**ioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <a href="http://www.dioo.com">http://www.dioo.com</a> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

#### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Dioo manufacturer:

Other Similar products are found below :

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2902DTBR2G
 SC2903DR2G
 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB

 430232AB
 LM2904DR2GH
 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 SC224DR2G
 SC2902DG

 SCYA5230DR2G
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT
 NCS2004MUTAG
 NCV33202DMR2G

 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1
 AP4310AUMTR-AG1
 HA1630D02MMEL-E

 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E
 E
 M324AWPT
 HA1630Q06TELL-E