

Connection Diagrams

Unit Loading/Fan Out
See Section 0 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathrm{OH}} / \mathbf{I}_{\mathrm{OL}}$
		$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~J}_{1}, \mathrm{~J}_{2}, \overline{\mathrm{~K}}_{1}, \overline{\mathrm{~K}}_{2}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock Pulse Inputs (Active Rising Edge)	$1.0 / 3.0$	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs (Active LOW)	$1.0 / 3.0$	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\overline{\mathrm{~S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$	Direct Set Inputs (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$	Outputs		

Truth Table

Inputs					Outputs	
$\overline{\mathbf{S}}_{\text {D }}$	$\overline{\mathrm{C}}_{\text {D }}$	CP	J	$\overline{\mathbf{K}}$	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\sim	1	1	L	H
H	H	\sim	h	1		
H	H	\sim	1	h	Q_{0}	\bar{Q}_{0}
H	H	\checkmark	h	h	H	L
H	H	L	X	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

H (h) = HIGH Voltage Level
L (I) = LOW Voltage Level
$\mathcal{J}=$ LOW-to-HIGH Transition
$X=$ Immaterial
$Q_{0}\left(\bar{Q}_{0}\right)=$ Before LOW-to-HIGH Transition of Clock
Lower case letters indicate the state of the referenced output one setup time prior to the LOW-to-HIGH clock transition.

Logic Diagram (One Half Shown)

[^0]Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
V_{cc} Pin Potential to
Ground Pin
Input Voltage (Note 4)
Input Current (Note 4)
Voltage Applied to Output

$$
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) }
$$

Standard Output
TRI-STATE ${ }^{\oplus}$ Output
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$ ESD Last Passing Voltage (Min)

4000 V

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V
Note 3: Absolute maximum ratings are values beyond which the device may	
be damaged or have its useful life impaired. Functional operation under these	
conditions is not implied.	
Note 4: Either voltage limit or current limit is sufficient to protect inputs.	

DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	V_{cc}	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{Cc}}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\overline{1_{\mathrm{IH}}}$	Input HIGH 54 F Current 74 F			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current 54 F Breakdown Test 74 F			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH 54 F Leakage Current 74 F			$\begin{gathered} 250 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage 74F Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
I_{OD}	Output Leakage 74F Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
$I_{\text {IL }}$	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\left(\mathrm{~J}_{\mathrm{n}}, \overline{\mathrm{~K}}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{C}}_{\mathrm{Dn}}, \overline{\mathrm{~S}}_{\mathrm{Dn}}\right) \end{aligned}$
l_{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{Cc}	Power Supply Current		11.7	17.0	mA	Max	$\mathrm{CP}=0 \mathrm{~V}$

AC Electrical Characteristics

See Section 0 for Waveforms and Load Configurations

Symbol	Parameter		74F						Units	Fig. No.
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=C o m \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		70		90		MHz	+4-4

www.national.com
4

AC Electrical Characteristics (Continued)										
Symbol	Parameter	74F			54F		74F		Units	Fig. No.
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{cC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.8	5.3	7.0	3.8	9.0	3.8	8.0	ns	4-4
$\mathrm{t}_{\text {PHL }}$	$C P_{n}$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$	4.4	6.2	8.0	4.4	10.5	4.4	9.2		
$t_{\text {PLH }}$	Propagation Delay	3.2	5.2	7.0	3.2	9.0	3.2	8.0		
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \overline{\mathrm{C}}_{\mathrm{D}} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } \\ & \mathrm{Q}_{\mathrm{n}} \text { or } \overline{\mathrm{Q}}_{\mathrm{n}} \end{aligned}$	3.5	7.0	9.0	3.5	11.5	3.5	10.5	ns	H-4

AC Operating Requirements

See Section 0 for Waveforms

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

	74F 109
Temperature Range Family	
74F = Commercial	
54F $=$ Military	
Device Type	
Package Code	

P = Plastic DIP

$\stackrel{\underline{C}}{\underline{X}} \quad$ Special Variations

$\mathrm{QB}=$ Military grade device with environmental and burn-in processing
$X=$ Devices shipped in $13^{\prime \prime}$ reels

D = Ceramic DIP
Temperature Range
$\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$F=$ Flatpak
$\mathrm{M}=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
L = Leadless Chip Carrier (LCC)
$\mathrm{S}=$ Small Outline SOIC JEDEC
$S J=$ Small Outline SOIC EIAJ
\qquad THIS PAGE IS IGNORED IN THE DATABOOK

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

\begin{abstract}
54F/74F109 Dual JK Positive Edge-Triggered Flip-Flop

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Tsimshatsui, Kowloon	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Hong Kong	
	Français Tel: +49 (0) 1 80-532 9358	Tel: (852) 2737-1600	
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680	Fax: (852) 2736-9960	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:

Click to view products by E 2 v manufacturer:

Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

[^0]: Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

