	REVISIONS																			
LTR					[DESCR	RIPTION	١					DA	TE (YF	R-MO-D	DA)		APPR	OVED	
A	Update boilerplate to MIL-PRF-38535 requirements. Edito throughout jak						Editori	al chan	ges			03-0	6-10		т	homas	M. He	SS		
REV																				
SHEET																				
REV																				
SHEET																				
REV STATUS			•	REV	/		А	А	А	А	А	А	А	А	А	А	А	А		
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12		
PMIC N/A PREPARED BY Christopher A. Raush						DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216 http://www.dscc.dla.mil														
	WIN					W. J. J	lohnsor	1												
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			APPROVED BY Michael A. Frye DRAWING APPROVAL DATE					10- ST/	BIT I ATE	D-TY OUT	OUIT, PE F PUT	LIP- S, T	FLO TL C	P WI OMF	TH T PATIE	THRE		OS,		
	SC N/A					89-0 LEVEL	2-09			SIZ A	ZE	CA	ONOL GE CO 67268	DE				887	05	
										SHEI	El		1	OF	12					

1. S	COPE								
	<u>Scope</u> . This drawing de ance with MIL-PRF-385		for MIL-STD-883	compliant, non-JAN class level	B microcircuits in				
1.2	Part or Identifying Numb	per (PIN). The complete PIN	is as shown in the	e following example:					
	<u>5962-88705</u>	<u>01</u>	<u>K</u>	A					
	Drawing number	Device type (see 1.2.1)	Case outline (see 1.2.2)	Lead finish (see 1.2.3)					
1.2.1	1.2.1 <u>Device types</u> . The device types identify the circuit function as follows:								
	Device type	<u>Generic numbe</u>	Circuit function						
	01	54ACT821		10-bit D-type flip-flop with t TTL compatible inputs	hree state outputs,				
1.2.2	Case outlines. The ca	ase outlines are as designate	d in MIL-STD-183	5 and as follows:					
	Outline letter	Descriptive designator	<u>Terminals</u>	Package style					
		GDFP2-F24 or CDFP3-F24 GDIP3-T24 or CDIP4-T24	24 24	Flat pack Dual-in-line					
		CQCC1-N28	28	Square leadless chip	carrier				
1.2.3	1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.								
1.3 <u>/</u>	Absolute maximum ratin	<u>gs</u> . <u>1</u> / <u>2</u> /							
Supply voltage range (V _{CC})0.5 V dc to +6.0 V dc maximum DC input voltage range (V _{IN})									
	DC output voltage rang	e (V _{OUT})		0.5 V dc to V _{CC} + 0.5					
		l _{ок}))							
	DC V _{CC} or GND current	t (I _{CC} or I _{GND})		±100 mA					
	Storage temperature ra	inge (T _{STG})		65°C to +150°C					
		ation (P _D) lering, 10 seconds)							
				+300°C See MIL-STD-1835					
		T _J)							
1.4 <u>F</u>	Recommended operatin	<u>g conditions</u> . <u>1</u> /							
	Supply voltage range (Vcc)		+4.5 V dc minimum t	o 5.5 V dc maximum				
		v)							
		/ _{оит}) ature range (T _c)							
	Input rise and fall rate (- · ·							
		5.5 V		0 to 8 ns/V					
		olute maximum rating may ca grade performance and affe		amage to the device. Extended	d operation at the				
<u>2</u> / l	Jnless otherwise specifi	ed, all voltages are reference	ed to ground.						
<u>3</u> / N			d except for allowa	able short duration burn-in scre	ening conditions in				
Ê		1 5004 of MIL-STD-883.							
	STAI	NDARD	SIZE						
	MICROCIRC	UIT DRAWING	Α		5962-88705				
		CENTER COLUMBUS DHIO 43216-5000		REVISION LEVEL	SHEET				
	· · · · · · · · · · · · · · · · · · ·			A	2				
DSCC E	ORM 2234								

2 APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.

3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88705
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.6 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 and QML-38535 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88705
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	4

Test and MIL-STD-883	Symbol	Test con		Group A	Limi	its <u>2</u> /	Unit
test method $\underline{1}/$		$-55^{\circ}C \le T_{C}$ 4.5 V $\le V_{C0}$ unless otherwi	$c_{\rm C} \leq 5.5 \ {\rm V}$	subgroups	Min	Max	
High-level output voltage	V _{OH}	$V_{IN} = 2.0 \text{ V or } 0.8 \text{ V}$	$V_{CC} = 4.5 V$	1, 2, 3	4.4	1	V
3006	<u>3</u> /	I _{OH} = -50 µA	$V_{CC} = 5.5 V$		5.4	1	1
	<u>3</u> /	$V_{IN} = 2.0 \text{ V or } 0.8 \text{ V}$ $V_{CC} = 4.5 \text{ V}$			3.7	1	1
		I _{OH} = -24 mA	$V_{CC} = 5.5 V$	- Г	4.7		1
		V _{IN} = 2.0 V or 0.8 V I _{OH} = -50 mA	$V_{CC} = 5.5 V$		3.85	1	
Low-level output voltage	V _{OL}	$V_{IN} = 2.0 \text{ V or } 0.8 \text{ V}$	V _{CC} = 4.5 V	1, 2, 3		0.1	V
3007	<u>3</u> /	I _{OL} = 50 μA	$V_{\rm CC} = 5.5 V$		1	0.1	1
	<u>-3</u> /	$V_{IN} = 2.0 \text{ V or } 0.8 \text{ V}$	$V_{\rm CC} = 4.5 V$	- I	Ī	0.5	1
		I _{OL} = 24 mA	$V_{CC} = 5.5 V$	- Г	Ī	0.5	1
		$V_{IN} = 2.0 \text{ V or } 0.8 \text{ V}$ $I_{OL} = 50 \text{ mA}$	$V_{\rm CC} = 5.5 \text{ V}$			1.65	
High-level input voltage	V _{IH}		$V_{CC} = 4.5 V$	1, 2, 3	2.0	1	V
	<u>4</u> /		$V_{CC} = 5.5 V$		2.0	1	1
Low-level input voltage	VIL		$V_{CC} = 4.5 V$	1, 2, 3	1	0.8	V
	<u>4</u> /		$V_{CC} = 5.5 V$		1	0.8	
Input leakage current low 3009	IIL	$V_{IN} = 0.0 V$	$V_{CC} = 5.5 V$	1, 2, 3		-1.0	μA
Input leakage current high 3010	I _{IH}	V _{IN} = 5.5 V	V _{CC} = 5.5 V	1, 2, 3		1.0	
Quiescent supply current delta, TTL input levels 3005	ΔI _{CC} <u>5</u> /	$V_{CC} = 5.5 V$ For input under test, $V_{IN} = V_{CC} - 2.1 V$ For all other inputs, $V_{IN} = V_{CC}$ or GND		1, 2, 3		1.6	mA
Quiescent supply current 3005	I _{CCL}	$V_{IN} = V_{CC} \text{ or } GND$ $V_{CC} = 5.5 \text{ V}$		1, 2, 3		160 160	μA
	Iccz	I _{OUT} = 0.0 mA			- 	160	<u> </u>
Three-state output leakage current high 3021	I _{OZH}	$\overline{OE} = 2.0 \text{ V or } 0.0 \text{ V}$ For all other inputs, V _{IN}	= V_{CC} or GND	1, 2, 3	l	10.0	μA
Three-state output leakage current low 3020	I _{OZL}	– V _{CC} = 5.5 V V _{OUT} = 5.5 V or 0.0 V				-10.0	
Input capacitance 3012	C _{IN}	See 4.3.1c		4		8.0	pF
Power dissipation capacitance	С _{РD} <u>6</u> /	See 4.3.1c		4		95.0	pF
Functional tests 3014		Tested at $V_{CC} = 4.5$ V at $V_{CC} = 5.5$ V, see 4.3.1d		7, 8	L	Н	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88705
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 5

Test and Symb MIL-STD-883				Limits <u>2</u> /		Unit
MIL-STD-883 test method <u>1</u>		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ 4.5 V $\le V_{CC} \le 5.5$ V unless otherwise specified	subgroups	Min	Max	1
Propagation delay tir CP to On 3003	me, t _{РНL,} t _{РLH} <u>Z</u> /	$V_{CC} = 4.5 V$ $C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$ See figure 4	9, 10, 11	1.0	11.5	ns
Propagation dela <u>y ti</u> r output enable, OE 3003			9, 10, 11	1.0	13.0	-
Propagation delay tir output disable, OE to On 3003	ne, t _{PHZ} , t _{PLZ} <u>7</u> /		9, 10, 11	1.0	13.5	1
Maximum frequency	f _{MAX}	-	9, 10, 11	85		MHz
Pulse width, CP	t _w		9, 10, 11	6.0		ns
Minimum set-up time	e, t _s		9	3.5		
Dn to CP			10, 11	4.0	ļ	
Minimum hold time, Dn to CP	t _h		9	2.5	ļ	
		enced MIL-STD-883 (e.g. ΔI_{CC}), utilize the ger		re under t	the conditi	ons liste
 herein. All input 2/ For negative at the direction of and maximum 3/ V_{OH} and V_{OL} shows the second second	uts and outputs nd positive volta current flow, re limits, as applica nall be tested at	enced MIL-STD-883 (e.g. ΔI_{CC}), utilize the ger shall be tested, as applicable, to the tests in the ge and current values, the sign designates the spectively; and the absolute value of the may able, listed herein. $V_{CC} = 4.5 \text{ V}$. V_{OH} and V_{OL} are guaranteed, if 5 V. Transmission driving tests are performed	table I herein. he potential differe gnitude, not the sig f not tested, for V _{C0}	ence in rel gn, is rela _c = 5.5 V.	ference to ative to the Limits sh	GND ar minimu nown app
 herein. All input 2/ For negative at the direction of and maximum 3/ V_{OH} and V_{OL} sh to operation at maximum. 	uts and outputs nd positive volta current flow, re limits, as applicanall be tested at $V_{CC} = 5.0 \text{ V} \pm 0.$	shall be tested, as applicable, to the tests in age and current values, the sign designates the spectively; and the absolute value of the may able, listed herein. $V_{CC} = 4.5 \text{ V}$. V_{OH} and V_{OL} are guaranteed, if	table I herein. he potential differe gnitude, not the sig f not tested, for V_{CC} ed at $V_{CC} = 5.5 V v$	ence in rel gn, is rela c = 5.5 V. with a 2 m	ference to ative to the Limits sh	GND ar minimu nown app
 herein. All input 2/ For negative at the direction of and maximum 3/ V_{OH} and V_{OL} sh to operation at maximum. 4/ V_{IH} and V_{IL} test 5/ This test may b V_{IN} = V_{CC} - 2.1 the alternate test 	uts and outputs ind positive volta current flow, re limits, as applicant be tested at $V_{CC} = 5.0 V \pm 0.$ ts are not require be performed eit V (alternate me est method, the i	shall be tested, as applicable, to the tests in age and current values, the sign designates the spectively; and the absolute value of the mag able, listed herein. $V_{CC} = 4.5 \text{ V}$. V_{OH} and V_{OL} are guaranteed, if 5 V. Transmission driving tests are performed	table I herein. he potential differe gnitude, not the sig f not tested, for V_{CC} ed at $V_{CC} = 5.5 V v$ for V_{OH} and V_{OL} te r with all input pins red method. When	ence in rel gn, is rela $_{\rm C}$ = 5.5 V. with a 2 m ests. s simultan n the test	ference to tive to the Limits sh s duration eously at is perform	o GND ai e minimu nown ap n
 herein. All input 2/ For negative and the direction of and maximum 3/ V_{OH} and V_{OL} sh to operation at maximum. 4/ V_{IH} and V_{IL} test 5/ This test may be V_{IN} = V_{CC} - 2.1 the alternate term and the preferr 6/ Power dissipat P_D = (C_{PD} + C_L) I_S = (C_{PD} + C_L) 	uts and outputs ind positive volta current flow, re limits, as applicant $V_{CC} = 5.0 V \pm 0.0$ ts are not require be performed eit V (alternate me est method, the ne ion capacitance) ($V_{CC} \times V_{CC}$)f + $V_{CC}f + I_{CC} + n \times 0$ d Is, n is the nur	shall be tested, as applicable, to the tests in the and current values, the sign designates the spectively; and the absolute value of the mag- able, listed herein. $V_{CC} = 4.5 \text{ V}$. V_{OH} and V_{OL} are guaranteed, if 5 V. Transmission driving tests are performed ed, and shall be applied as forcing functions ther one input at a time (preferred method) of thod). Classes Q and V shall use the preferred maximum limits are equal to the number of ir limits are guaranteed. (C_{PD}) determines the no load dynamic power $(I_{CC} \times V_{CC}) + (n \times d \times \Delta I_{CC} \times V_{CC})$. The dynamic	table I herein. he potential difference gnitude, not the signitude, not the signitude, not the signitude, for V _{CC} and t V _{CC} = 5.5 V we for V _{OH} and V _{OL} ternot the signitude of the s	ence in ref gn, is rela c = 5.5 V. with a 2 m ests. s simultan n the test L input lev	ference to tive to the Limits sh as duration teously at is perform vel times 1	nown ap ned usin

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88705
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	6

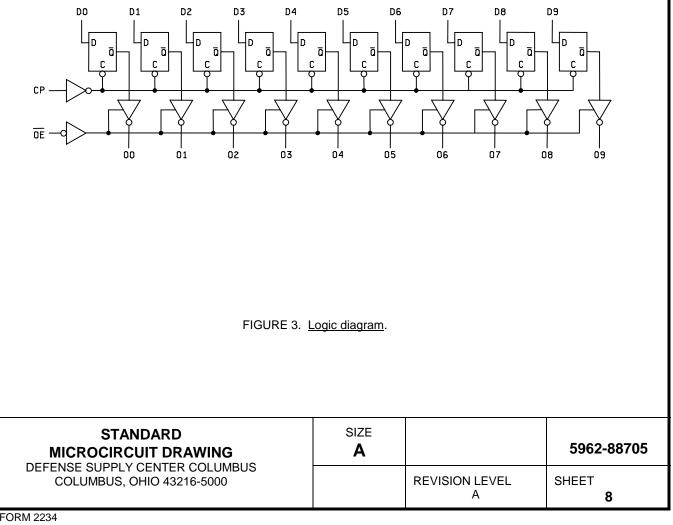
Device type	0	1	
Case outlines	K and L	3	
Terminal number	Terminal symbol		
1	OE	NC	
2	D0	OE	
3	D1	D0	
4	D2	D1	
5	D3	D2	
6	D4	D3	
7	D5	D4	
8	D6	NC	
9	D7	D5	
10	D8	D6	
11	D9	D7	
12	GND	D8	
13	CP	D9	
14	O9	GND	
15	O8	NC	
16	07	CP	
17	O6	O9	
18	O5	O8	
19	O4	07	
20	O3	O6	
21	O2	O5	
22	O1	NC	
23	O0	O4	
24	Vcc	O3	
25		O2	
26		01	
27		O0	
28		Vcc	

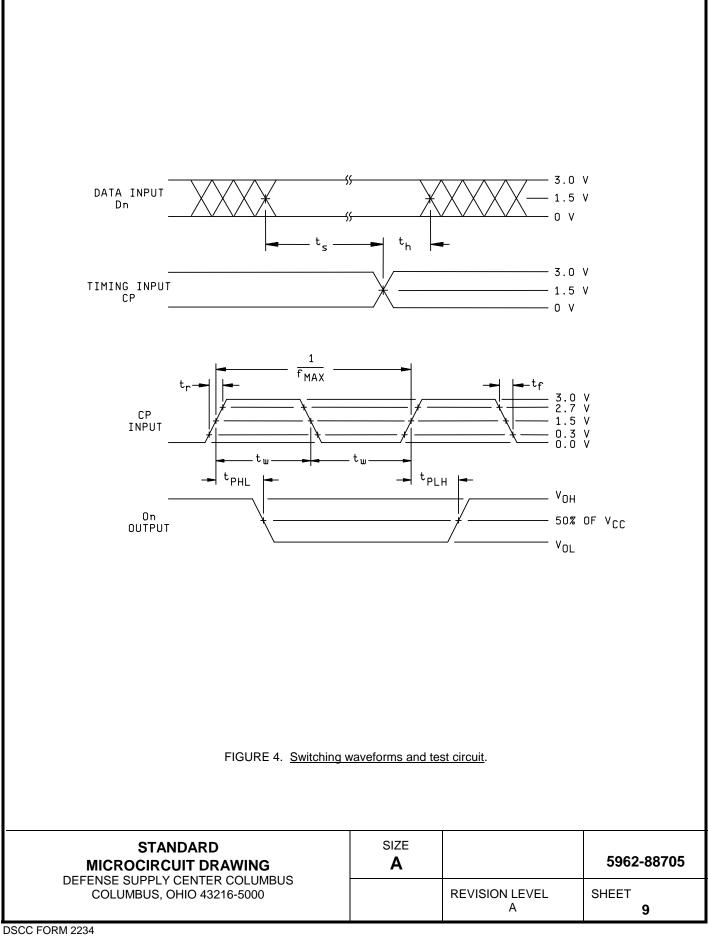
NC = No connection

FIGURE 1. Terminal connections.

	SIZE A		5962-88705
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	7

	Inputs		Outputs	Function
OE	CP	Dn	On	
Н	\uparrow	L	Z	High impedance
н	\uparrow	н	Z	High impedance
L	\uparrow	L	L	Load
L	↑	Н	Н	Load


H = High voltage level


L = Low voltage level

Z = High impedance

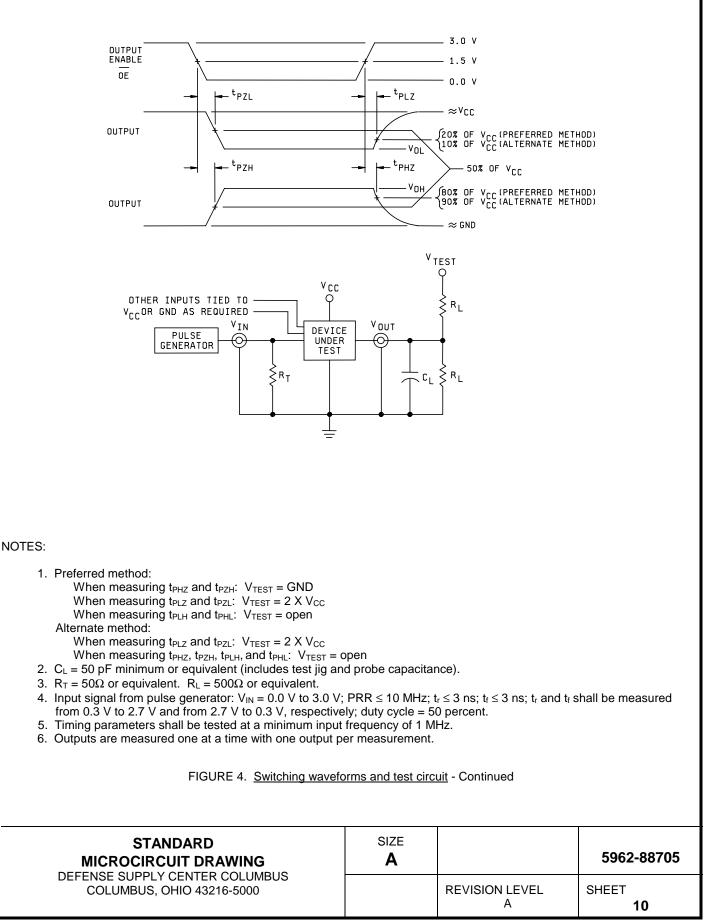

 \uparrow = Low to high transition of the clock

FIGURE 2. Truth table.

DSCC FORM 2 APR 97

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{PD} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Test all applicable pins on 5 devices with zero failures.
 - d. Subgroup 7 and 8 shall verify the truth table as specified in figure 2 herein.
- 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-88705
		REVISION LEVEL A	SHEET 11

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

1/ PDA applies to subgroup 1.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-88705
		REVISION LEVEL A	SHEET 12

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 03-06-10

Approved sources of supply for SMD 5962-88705 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8870501KA	27014	54ACT821FMQB
5962-8870501LA	27014	54ACT821DMQB
5962-88705013A	27014	54ACT821LMQB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance re]\quirements of this drawing.

Vendor CAGE <u>number</u>

27014

Vendor name and address

National Semiconductor 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip Flops category:

Click to view products by E2v manufacturer:

Other Similar products are found below :

5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG