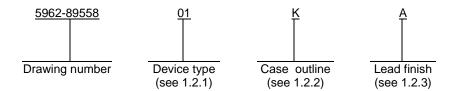
REVISIONS							
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED				
Α	Update to reflect latest changes in format and requirements. Editorial changes throughoutles	05-03-01	Raymond Monnin				
В	Update drawing as part of 5 year reviewjt	12-02-28	Charles Saffle				
С	Update drawing to current MIL-PRF-38535 requirementsrdc	18-05-22	Charles Saffle				

THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED.



REV																
SHEET																
REV																
SHEET																
REV STATUS	REV		С	С	С	С	С	С	С	С	С	С	С	С		
OF SHEETS	SHEET		1	2	3	4	5	6	7	8	9	10	11	12		
PMIC N/A	PREPARE Tim H. I								DLA I							
STANDARD MICROCIRCUIT DRAWING	CHECKED Raymor		nin			COLUMBUS, OHIO 43218-3990 http://www.dla.mil/landandmaritime										
THIS DRAWING IS AVAILABLE FOR USE BY ALL	APPROVED BY Michael A. Frye				MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED SCHOTTKY TTL, TRANSCEIVERS/REGISTERS, MONOLITHIC											
DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE	DRAWING APPROVAL DATE 89-05-05					ANS(ICON		ERS/I	REGI	STE	RS, I	MON	OLIT	HIC		
AMSC N/A	REVISION	REVISION LEVEL C			SI.	ZE A		GE CO 67268			5	5962-	8955	8		
							SH	IEET		1 0	F 12					

DSCC FORM 2233 APR 97

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type</u>. The device type identify the circuit function as follows:

Device type	Generic number	Circuit function
01	54F652	Octal transceiver/register with three-state output

1.2.2 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
K	GDFP2-F24 or CDFP3-F24	24	flat
L	GDIP3-T24 or CDIP4-T24	24	dual-in-line
3	CQCC1-N28	28	leadless chip carrier

1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.

1.3 Absolute maximum ratings.

Absolute maximum ratings.	
Supply voltage range	-0.5 V dc to +7.0 V dc
Input voltage range	-0.5 V dc to +7.0 V dc
Input current range	-30 mA to +5.0 mA
Voltage applied to any output in the disabled state	-0.5 V dc to +5.5 V dc
Voltage applied to any output in the high state	-0.5 V dc to Vcc
Current into any output in the low state	96 mA
Storage temperature range	-65°C to +150°C
Maximum power dissipation (P _D) 1/	825 mW
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction-to-case (θ _{JC})	See MIL-STD-1835
Junction temperature (T _J)	+175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	+4.5 V dc minimum to +5.5 V dc maximum
Minimum high level input voltage (V _{IH})	2.0 V dc
Maximum low level input voltage (V _{IL})	0.8 V dc
Case operating temperature range (Tc)	-55°C to +125°C

1/ Maximum power dissipation is defined as Vcc x Icc, and must withstand the added Pb due to short-circuit test; e.g., Ios.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 2

1.4 Recommended operating conditions - Continued.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094).

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 3

- 3.2.3 Truth table. The truth table shall be as specified on figure 2.
- 3.2.4 Test circuit and switching waveforms. The test circuit and switching waveforms shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 Marking. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 Certification/compliance mark. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used
- 3.6 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 Notification of change. Notification of change to DLA Land and Maritime -VA shall be required for any change that affects this drawing.
- 3.9 Verification and review. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 4

4

TABLE I. <u>Electrical performance characteristics</u>.

Test Symbol		unless otherwise specified		Group A subgroups	Device type	Limits		Unit
						Min	Max	<u></u>
High level output voltage		V _{CC} = 4.5 V, I _{OH} = - V _{IL} = 0.8 V, V _{IH} = 2		1, 2, 3	All	2.0		V
Low level output voltage			$V_{CC} = 4.5 \text{ V}, I_{OL} = 48 \text{ mA},$		All		0.55	V
Input clamp voltage	Vıc		V _{CC} = 4.5 V, I _{IN} = -18 mA		All		-1.2	V
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$	2.7 V (non-I/O pins)	1, 2, 3	All		20	μА
<u>1</u> /	I _{IH2}	Vcc = 5.5 V, V _{IN} =	7.0 V				100	
	Іінз	$V_{CC} = 5.5 \text{ V}, V_{IN} = 9$	5.5 V (I/O pins)				1.0	mA
Low level input current 1/	IIL	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 6$	0.5 V (non-I/O pins)	1, 2, 3	All		-600	μА
Short circuit output current	los	Vcc = 5.5 V, Vout =	= 0.0 V <u>2</u> /	1, 2, 3	All	-100	-225	mA
Off state output current	lozh	Vcc = 5.5 V,	V _{IN} = 2.7 V	1, 2, 3	All		70	μА
	lozL	V _{IH} = 2.0 V	V _{IN} = 0.5 V				-650	
Supply current	Іссн	Vcc = 5.5 V		1, 2, 3	All		135	mA
	Iccl						150	
	Iccz						150	
Functional tests		See 4.3.1c	<u>3</u> /	7, 8	All			

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 5

5

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	unloss otherwise specified		Group A subgroups	Device type	Limits		Unit
						Min	Max	
Propagation delay time,	t _{PLH1}	$C_L = 50 pF$,	$V_{CC} = 5.0 \text{ V}$	9	All	1	7	ns
from An, Bn to Bn, An		$R_1 = 500 \Omega$,	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	8	
	t _{PHL1}	$R_2 = 500 \Omega$,	$V_{CC} = 5.0 \text{ V}$	9	All	1	6.5	ns
		See figure 3	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	8	
Propagation delay time,	t _{PLH2}		$V_{CC} = 5.0 \text{ V}$	9	All	2	7	ns
from CPBA, CPAB to			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	8.5	
An, Bn	tPHL2		$V_{CC} = 5.0 \text{ V}$	9	All	2	8	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	9.5	
Propagation delay time, from SBA, SAB to An, Bn	t _{PLH3}		Vcc = 5.0 V	9	All	2	8.5	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	11	
	t _{PHL3}		$V_{CC} = 5.0 \text{ V}$	9	All	2	8	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	10	
Output enable time,	t _{PZH1}		$V_{CC} = 5.0 \text{ V}$	9	All	2	8.5	ns
from OEBA to An			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	10	
	t _{PZL1}		Vcc = 5.0 V	9	All	2	8.5	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	10	
Output enable time,	t _{PZH2}		Vcc = 5.0 V	9	All	2	8.5	ns
from OEBA to Bn			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	10	
	t _{PZL2}		Vcc = 5.0 V	9	All	2	10	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		2	12	
Output disable time,	t _{PHZ1}		$V_{CC} = 5.0 \text{ V}$	9	All	1	7.5	ns
from OEBA to An			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	9	
	t _{PLZ1}		Vcc = 5.0 V	9	All	1	7.5	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	9	
Output disable time,	t _{PHZ2}		$V_{CC} = 5.0 \text{ V}$	9	All	1	7.5	ns
from OEBA to Bn			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	9	
	t _{PLZ2}		$V_{CC} = 5.0 \text{ V}$	9	All	1	10	ns
			$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	10, 11		1	12	

^{1/} For I/O ports the parameters I_{IH} and I_{IL} include the off-state output current.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 6

^{2/} Not more than one output will be shorted at one time and the duration of the test condition shall not exceed 1 second.

 $[\]underline{3}$ / Functional tests shall be conducted at input test conditions of GND \leq V_{IL} \leq V_{OL} and V_{OH} \leq V_{IH} \leq V_{CC}.

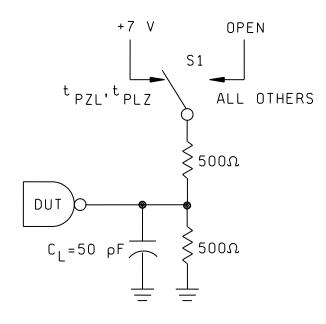
Device type	()1
Case outlines	K and L	3
Terminal number	Terminal symbol	Terminal symbol
1	CPAB	NC
2 3	SAB	CPAB
3	OEAB	SAB
4	A1	OEAB
5	A2	A1
6	A3	A2
7	A4	A3
8	A5	NC
9	A6	A4
10	A7	A5
11	A8	A6
12	GND	A7
13	B8	A8
14	B7	GND
15	B6	NC
16	B5	B8
17	B4	B7
18	B3	B6
19	B2	B5
20	B1	B4
21	OEBA	B3
22	SBA	NC
23	CPBA	B2
24	Vcc	B1
25		OEBA
26		SBA
27		CPBA
28		V _{CC}

FIGURE 1. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 7

Inputs I		Inputs/out	tputs <u>1</u> /	Operating				
OEBA	OEBA	CPAB	СРВА	SAB	SBA	A0 thru A7	B0 thru B7	mode
L	Н	H/L	H/L	Χ	Х	Input	Input	Isolation
L	Н	1	↑	Χ	Χ	Input	Input	Store A and B data
X	Н	1	H/L	Χ	Χ	Input	Not specified	Store A, hold B
Н	Н	1	↑	Χ	Χ	Input	Output	Store A in both registers
L	X	H/L	<u> </u>	Х	X	Not specified	Input	Hold A, store B
L	L	↑	<u> </u>	Х	X	Output	Input	Store B in both registers
L	L	X	X	Χ	L	Output	Input	Real time B data to A bus
L	L	X	H/L	Х	Н	Output	Input	Store B data to A bus
Н	Н	Х	X	L	Χ	Input	Output	Real time A data to B bus
Н	Н	H/L	Х	Н	Х	Input	Output	Stored A data to B bus
Н	L	H/L	H/L	Н	Н	Output	Output	Stored A data to B bus and
								stored B data to A bus

H = High voltage level
L = Low voltage level


X = Irrelevant

↑ = Low to high clock transition H/L = High or low voltage level

1/ The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low to high transition on the clock inputs.

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A REVISION LEVEL C 8

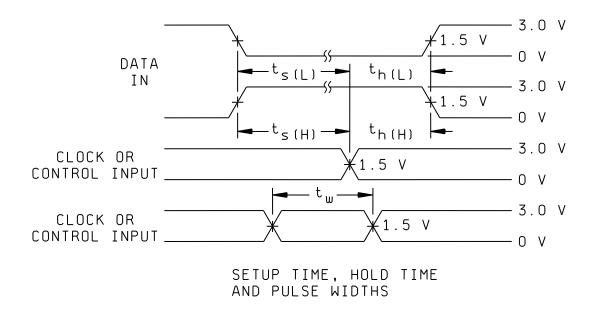
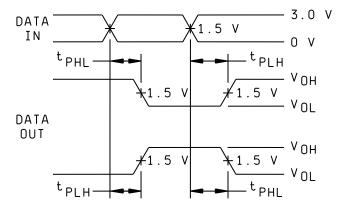
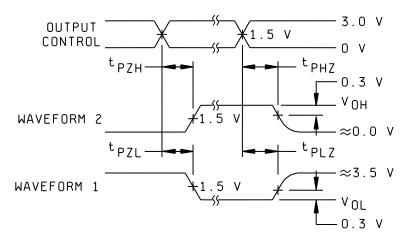




FIGURE 3. Test circuit and switching waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 9

PROPAGATION DELAY TIME

THREE-STATE OUTPUT HIGH AND LOW ENABLE AND DISABLE TIMES

NOTES:

- 1. C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input pulses have the following characteristics: PRR = 1 MHz, $t_r = t_f = 2.5 \text{ ns}$, duty cycle = 50%.
- 4. When measuring propagation delay times of three-state outputs, switch S1 is open.
- 5. When measuring pulse widths $t_r = t_f \le 1$ ns.
- 6. The outputs are measured one at a time with one input transition per measurement.

FIGURE 3. Test circuit and switching waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 10

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9,10, 11
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9 , 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89558
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 11

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD			
MICROCIRCUIT DRAWING			
DLA LAND AND MARITIME			

COLUMBUS, OHIO 43218-3990

SIZE A		5962-89558
	REVISION LEVEL C	SHEET 12

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 18-05-22

Approved sources of supply for SMD 5962-89558 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at: https://landandmaritimeapps.dla.mii/programs/smcr/.

Standard microcircuit drawing	Vendor CAGE	Vendor similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-8955801KA	OC7V7	54F652FMQB
5962-8955801LA	OC7V7	54F652SDMQB
5962-89558013A	OC7V7	54F652LMQB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2/</u> <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGEVendor namenumberand address

OC7V7 Teledyne e2v, Inc. 765 Sycamore Drive

Milpitas, CA 95035

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by E2v manufacturer:

Other Similar products are found below:

74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8 74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG 74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR 74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115 TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK