LTR DESCRIPTION DATE (YR-MO-DA) APPROVED A Add vendor CAGE 75569. Technical changes throughout mbk 92-02-10 M. A. Fye B Update the bolierplate to the current requirements of MIL-PRF-38535. 07-12-17 Thomas M. Hess C Correct feet condition for total power supply current (toc) and add MIL-PRF-38535 requirements MAA. 10-08-11 Thomas M. Hess REV	REVISIONS																			
A Add vendor CAGE 75693. Technical changes throughout mbk 92:02:10 M. A. Frye B Update the bolierplate to the current requirements of MIL-PRF-38535. 07:12:17 Thomas M. Hess C Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current 10:08:11 Thomas M. Hess REV Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update bolierplate paragraphs to current Image: Correct test condition for total power supply current (icc) and add tothole 0 in table 1. Update 1.	LTR		DESCRIPTION								DA	TE (YI	R-MO-	DA)		APPR	OVED)		
B Update the boilerplate to the current requirements of MIL-PRF-38535. 07.12-17 Thomas M. Hess C Correct test condition for total power supply current (lcc) and add footnole 6 in table 1. Update boilerplate paragraphs to current 10-08-11 Thomas M. Hess REV Image: Correct test condition for total power supply current (lcc) and add footnole 6 in table 1. Update boilerplate paragraphs to current 10-08-11 Thomas M. Hess REV Image: Correct test condition for total power supply current (lcc) and add footnole 6 in table 1. Update boilerplate paragraphs to current 10-08-11 Thomas M. Hess SHEET Image: Correct test condition for total power supply current (lcc) and add footnole 6. Image: Correct test condition for total power supply current (lcc) and add footnole 6. Image: Correct test condition for total power supply current (lcc) and add footnole 6. SHEET Image: Correct test condition for total power supply current footnole 6. Image: Correct test condition for total power supply correct footnole 6. Image: Correct test condition for total power supply correct footnole 6. SHEET Image: Correct test condition for total power supply correct footnole 6. Image: Correct test condition for total power supply correct footnole 6. Image: Correct test condition footnole 6. SHEET Image: Correct test condition footnole 6. Image: Correct test correct footnole 6. Im	А	Add	Add vendor CAGE 75569. Technical changes throughout						ghout.	· mbk			92-0)2-10			M. A	. Frye		
C Correct lest condition for total power supply current (icc) and add MIL-PRF-38535 requirements. – MAA. 10-08-11 Thomas M. Hess REV Image: Control of Provide	В	Upd - JA	ate the	e boile	rplate to t	he cur	rent req	uireme	ents of	MIL-P	RF-38	535.		07-1	2-17		Tł	nomas	M. He	ess
REV Image: Constraint of the second sec	С	Corr footr MIL-	ect te note 6 PRF-3	st cond / in tab 38535	dition for t le I. Upd requirem	otal po ate bo ents. –	wer su ilerplate MAA.	pply cu parag	irrent (graphs	l _{cc}) an to curr	d add ent			10-0)8-11		Tł	nomas	M. He	ess
REV Image: Constraint of the sector of the sec																				
SHEET I	REV																			
REV Image: Constraint of the sector of t	SHEET																			
SHEET REV C </td <td>REV</td> <td></td>	REV																			
REV C	SHEET																			
OF SHEETS SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PMIC N/A PREPARED BY Monica L. Poelking PREPARED BY Monica L. Poelking 10 11 12 13 14 PMIC N/A PREPARED BY Monica L. Poelking DEFENSE SUPPLY CENTER COLUMBUS, OHIO 43218-3990 http://www.dscc.dla.mil DUBUS OHIO 43218-3990 http://www.dscc.dla.mil <	REV STATUS	S			REV		С	С	С	С	С	С	С	С	С	С	С	С	С	С
PMIC N/A PREPARED BY Monica L. Poelking STANDARD MICROCIRCUIT DRAWING CHECKED BY Monica L. Poelking DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 http://www.dscc.dla.mil THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE APPROVED BY Wm J. Johnson MICROCIRCUIT, DIGITAL, FAST CMOS, 8-BIT LATCHED TRANSCEIVER, MONOLITHIC SILICON AMSC N/A REVISION LEVEL C SIZE A CAGE CODE 67268 5962-89730	OF SHEETS				SHEET	Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14
STANDARD MICROCIRCUIT DRAWINGCHECKED BY Monica L. PoelkingCOLUMBUS, OHIO 43218-3990 http://www.dscc.dla.milTHIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSEAPPROVED BY Wm J. JohnsonMICROCIRCUIT, DIGITAL, FAST CMOS, 8-BIT LATCHED TRANSCEIVER, MONOLITHIC SILICONAMSC N/AREVISION LEVEL CSIZE ACAGE CODE A5962-89730SHEET 1 OF 14	PMIC N/A PREPARED BY Monica L. Poelking				DI	EFEN	SE S	UPPL	Y CE	NTER	COL	.UMB	US							
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE APPROVED BY Wm J. Johnson MICROCIRCUIT, DIGITAL, FAST CMOS, 8-BIT LATCHED TRANSCEIVER, MONOLITHIC SILICON AMSC N/A DRAWING APPROVAL DATE 90-03-13 MICROCIRCUIT, DIGITAL, FAST CMOS, 8-BIT LATCHED TRANSCEIVER, MONOLITHIC SILICON AMSC N/A REVISION LEVEL C SIZE A CAGE CODE 67268 5962-89730 SHEET 1 OF 14	STANDARD CHECKED BY MICROCIRCUIT Monica L. Poelking DRAWING Monica L. Poelking					http://www.dscc.dla.mil														
AMSC N/A REVISION LEVEL C C SIZE A CAGE CODE A 5962-89730 SHEET 1 OF 14	THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			APPROVED BY Wm J. Johnson DRAWING APPROVAL DATE				MI(8-E MC	MICROCIRCUIT, DIGITAL, FAST CMOS, 8-BIT LATCHED TRANSCEIVER, MONOLITHIC SILICON											
REVISION LEVEL SIZE CAGE CODE 5962-89730 C A 67268 SHEET 1 OF 14	A 8.4					90-03	3-13			<u> </u>		<u> </u>								
SHEET 1 OF 14	AMSC N/A				REVISI	ON LE	VEL C			SI	ZE A	CA	GE CO 67268	DDE B		5	962-	8973	80	
												<u>I</u>		SHEE	T 1	OF 14				

1. SCOPE 1.1 Scope. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A. 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example: 5962-89730 01 Drawing number Case outline Lead finish Device type (see 1.2.1) (see 1.2.2) (see 1.2.3) 1.2.1 Device type(s). The device type(s) identify the circuit function as follows: Device type Generic number Circuit function 01 54FCT543 8-bit octal latched transceiver, non-inverting, with three-state outputs, TTL compatible 02 54FCT543A 8-bit octal latched transceiver, non-inverting, with three-state outputs, TTL compatible 1.2.2 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: Terminals Package style **Outline letter** Descriptive designator Dual-in-line Κ GDIP1-T24 or CDIP2-T24 24 L GDFP1-F24 or CDFP2-F24 24 Flat pack 3 CQCC1-N28 28 Square leadless chip carrier 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A. 1.3 Absolute maximum ratings. 1/ Supply voltage range (V_{CC})..... -0.5 V dc to +7.0 V dc Output and I/O voltage range (V_{OUT})..... -0.5 V dc to V_{CC} + 0.5 V dc 2/ DC input diode current (I_{IK}) –20 mA DC output current ±100 mA Storage temperature range (T_{STG}) -65°C to +150°C Lead temperature (soldering, 10 seconds) +300°C 1.4 Recommended operating conditions. Supply voltage range (V_{CC})..... +4.5 V dc to +5.5 V dc Maximum low level input voltage (VIL)...... 0.8 V dc Minimum high level input voltage (VIH)..... 2.0 V dc Output voltage range (V_{OUT})...... 0.0 V to V_{CC} Case operating temperature range (T_C)..... -55°C to +125°C 1/ All voltages are referenced to ground. <u>2</u>/ For $V_{CC} \ge 6.5$ V dc, the upper bound is limited to V_{CC} . 3/ Must withstand the added P_D due to short circuit test, I_{OS}. SIZE STANDARD 5962-89730 Α MICROCIRCUIT DRAWING

REVISION LEVEL

С

SHEET

2

DSCC FORM 2234 APR 97

DEFENSE SUPPLY CENTER COLUMBUS

COLUMBUS, OHIO 43218-3990

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

- 3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein.
- 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
- 3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.
- 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.2.5 Test circuit and switching waveforms. The test circuit and switching waveforms shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full (case or ambient) operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89730
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 4

$Conditions -55^{\circ}C \le T_C \le +1$ less otherwise sp $V_{IL} = 0.8 \text{ V}$ $V_{IL} = 0.8 \text{ V}$	S 125°C pecified <u>1</u> / I _{OH} = -300 μA I _{OH} = -12 mA	Group A subgroups 1, 2, 3	Device types All	Lin Min	nits Max	Unit
$-55^{\circ}C \le T_{C} \le +1$ less otherwise sp $V_{IL} = 0.8 V$ $V_{IL} = 0.8 V$	$I_{25^{\circ}C}$ becified <u>1</u> / $I_{OH} = -300 \ \mu A$ $I_{OH} = -12 \ m A$	subgroups 1, 2, 3	All	Min	Max	
V _{IL} = 0.8 V V _{IL} = 0.8 V	I _{OH} = -300 μA I _{OH} = -12 mA	1, 2, 3	All			
V _{IL} = 0.8 V	I _{OH} = -12 mA			4.3		V
V _{IL} = 0.8 V				2.4		
	I _{OH} = 300 μA	1, 2, 3	All		0.2	V
	I _{OH} = 48 mA				0.55	
l _{IN} = -18 mA		1	All		-1.2	V
V_{CC} = 5.5 V, V_{IN} = 5.5 V, (except I/O pins)			All		5.0	μA
V _{IN} = 5.5 V, (I/O p	oins only)	1, 2, 3 All 15.0				μA
V_{CC} = 5.5 V, V_{IN} = 5.5 V, (except I/O pins)			All		-5.0	μA
V_{CC} = 5.5 V, V_{IN} = 5.5 V, (I/O pins only)			All		-15.0	μA
V _{CC} = 4.5 V, V _{OUT} = GND			All	60		mA
$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} \leq 0.2 \ V \ \text{or} \ V_{\text{IN}} \geq 5.3 \ V \\ V_{\text{CC}} = 5.5 \ V, \ f_i = f_{\text{CP}} = 0 \ \text{MHz} \end{array}$			All		1.5	mA
V _{CC} = 5.5 V V _{IN} = 3.4 V			All		1.5	mA
V_{CC} = 5.5 V, $V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V Outputs open, One bit toggling, 50% duty cycle $\overline{CEAB} = \overline{OEAB} = GND$, $\overline{CEBA} = V_{CC}$			All		0.25	mA/ MHz
10 MHz n, 50% duty cycle	$V_{IN} \geq 5.3~V~or$ $V_{IN} \leq 0.2~V$	1, 2, 3	All		4.0	mA
ing at f _i = 5 MHz B = GND, CEBA= N	V _{IN} =3.4 V or V _{IN} = GND	1, 2, 3	All		6.0	mA
10 MHz n, 50% duty cycle	$\label{eq:VIN} \begin{array}{l} V_{IN} \geq 5.3 \ V \ \text{or} \\ V_{IN} \leq 0.2 \ V \end{array}$	1, 2, 3	All		12.8 <u>7</u> /	mA
gling at f _i = 5 MH: B = GND, CEBA= \	z V _{CC} V _{IN} =3.4 V or V _{IN} = GND	1, 2, 3	All		21.8 <u>7</u> /	mA
	$I_{IN} = -18 \text{ mA}$ $V_{IN} = 5.5 \text{ V}, \text{ (exc}$ $V_{IN} = 5.5 \text{ V}, \text{ (I/O p}$ $V_{IN} = 5.5 \text{ V}, \text{ (exce}$ $V_{IN} = 5.5 \text{ V}, \text{ (I/O p}$ $V_{OUT} = \text{GND}$ $T V_{IN} \ge 5.3 \text{ V} \text{ or } V_{IN}$ $T V_{IN} \ge 5.3 \text{ or } V_{IN}$	$I_{OH} = 48 \text{ mA}$ $I_{IN} = -18 \text{ mA}$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $V_{OUT} = \text{GND}$ $r \text{ V}_{IN} \ge 5.3 \text{ V} \text{ or } V_{IN} \le 5.3 \text{ V} \text{ or } V_{IN} \ge 5.3 \text{ V} \text{ or } V_{IN} \le 5.3 \text{ V} \text{ or } V_{IN} = \text{ GND}$ 10 MHz $n, 50\% \text{ duty cycle} \text{ ing at } f_i = 5 \text{ MHz}$ $n, 50\% \text{ duty cycle} \text{ ing at } f_i = 5 \text{ MHz}$ $n, 50\% \text{ duty cycle} \text{ of } M \text{ or } V_{IN} \ge 5.3 \text{ V} \text{ or } V_{IN} \le 5.3 \text{ V} \text{ or } V_{IN} \le 0.2 \text{ V}$ $n, 50\% \text{ duty cycle} \text{ of } M \text{ or } V_{IN} = \text{ GND}$ 10 MHz $n, 50\% \text{ duty cycle} \text{ of } M \text{ or } V_{IN} = \text{ GND}$ $V_{IN} = \text{ GND}$	$I_{OH} = 48 \text{ mA}$ $I_{IN} = -18 \text{ mA}$ $I_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $I, 2, 3$ $V_{IN} = 5.5 \text{ V}, (I/O \text{ pins only})$ $I, 2, 3$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $I, 2, 3$ $V_{IN} = 5.5 \text{ V}, (except I/O \text{ pins})$ $I, 2, 3$ $V_{IN} = 5.5 \text{ V}, (I/O \text{ pins only})$ $I, 2, 3$ $V_{OUT} = \text{GND}$ $I, 2, 3$ $V_{OUT} = \text{GND}$ $I, 2, 3$ $I, 3$ I	I _{OH} = 48 mA 1 All $V_{IN} = 5.5 V$, (except I/O pins) 1, 2, 3 All $V_{IN} = 5.5 V$, (I/O pins only) 1, 2, 3 All $V_{IN} = 5.5 V$, (I/O pins only) 1, 2, 3 All $V_{IN} = 5.5 V$, (except I/O pins) 1, 2, 3 All $V_{IN} = 5.5 V$, (except I/O pins only) 1, 2, 3 All $V_{IN} = 5.5 V$, (I/O pins only) 1, 2, 3 All $V_{IN} = 5.5 V$, (I/O pins only) 1, 2, 3 All $V_{OUT} = GND$ 1, 2, 3 All $V_{OUT} = GND$ 1, 2, 3 All $V_{OUT} = GND$ 1, 2, 3 All $r V_{IN} \ge 5.3 V$ or $V_{IN} \le 0.2 V$ 1, 2, 3 All $r_{I} = f_{CP} = 0$ MHz 1, 2, 3 All $V_{IN} \ge 5.3 V$ or $V_{IN} \le 0.2 V$ 1, 2, 3 All $V_{IN} \ge 5.3 V$ or $V_{IN} \le 0.2 V$ 1, 2, 3 All $V_{IN} \ge 5.3 V$ or $V_{IN} \le 0.2 V$ 1, 2, 3 All $V_{IN} \ge 0.2 V$ $V_{IN} \ge 0.2 V$ 1, 2, 3 All $V_{IN} = 3.4 V$ or $V_{IN} \ge 0.2 V$ 1, 2, 3 A	I _{OH} = 48 mA 1 AII $V_{IN} = 5.5$ V, (except I/O pins) 1, 2, 3 AII $V_{IN} = 5.5$ V, (except I/O pins) 1, 2, 3 AII $V_{IN} = 5.5$ V, (except I/O pins) 1, 2, 3 AII $V_{IN} = 5.5$ V, (except I/O pins) 1, 2, 3 AII $V_{IN} = 5.5$ V, (except I/O pins only) 1, 2, 3 AII $V_{IN} = 5.5$ V, (I/O pins only) 1, 2, 3 AII $V_{OUT} = GND$ 1, 2, 3 AII $V_{OUT} = S.3$ V or $V_{IN} \le 0.2$ V 1, 2, 3 AII $V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V 1, 2, 3 AII $N_{ODE} BAE V_{CC}$ $V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V 1, 2, 3 AII 10 MHz $V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V 1, 2, 3 AII $N_{IN} \equiv GND$, $\overline{CEBA} = V_{CC}$ $V_{IN} \ge 5.3$ V or $V_{IN} \le 0.2$ V 1, 2, 3 AII $I0$ MHz	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

see footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		5962-89730
	REVISION LEVEL C	SHEET 5

Test	Symbol	$Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C$	Group A	Device types	Lir	nits	Unit
		uniess otherwise specified <u>1</u> /	subgroups	typee	Min	Max	
Functional test		See 4.3.1d	7, 8	All			
Input capacitance	C _{IN}	See 4.3.1c	4	All		10	pF
I/O capacitance	CI/O	See 4.3.1c	4	All		12	pF
Propagation delay	t _{PHL1} ,	R _L = 500Ω	9, 10, 11	01	2.5	10.0	ns
mode, An to Bn, Bn to An	t _{PLH1} <u>5</u> /	C _L = 50 pF See figure 4		02	2.5	7.5	
Propagation delay	t _{PHL2} ,	R _L = 500Ω	9, 10, 11	01	2.5	14.0	ns
time, LEBA to An, LEAB to Bn	t _{PLH2}	C∟ = 50 pF See figure 4		02	2.5	9.0	
Output enable time, $\overline{\text{OEBA}}$ or $\overline{\text{OEAB}}$ to	t _{PZH} , t _{PZL}	$R_L = 500\Omega$ $C_L = 50 pF$	9, 10, 11	01	2.0	14.0	ns
An or Bn, \overline{CEBA} or \overline{CEAB} to An or Bn		See figure 4		02	2.0	10.0	
Output disable time, \overline{OERA} or \overline{OEAR} to	t _{PHZ} ,	$R_{L} = 500\Omega$	9, 10, 11	01	2.0	13.0	ns
An or Bn, \overline{CEBA} or \overline{CEAB} to An or Bn	ιPLZ	See figure 4		02	2.0	8.5	
Setup time, An to	t _s		9, 10, 11	01	3.0		ns
LEBA to LEAB, Bn to <u>LEBA</u> to <u>LEAB</u>				02	2.0		
Hold time, An to	t _h		9, 10, 11	01	2.0		ns
$\overline{\text{LEBA}}$ to $\overline{\text{LEAB}}$, Bn to $\overline{\text{LEBA}}$ to $\overline{\text{LEAB}}$				02	2.0		
Pulse width	t _w		9, 10, 11	01	5.0		ns
LEBA to LEAB				02	5.0		

TABLE I. Electrical performance characteristics - Continued.

1/ Not more than one output should be shorted at one time and the duration of the short circuit condition shall not exceed 1 second.

 $\underline{2}$ / TTL driven input, V_{IN} = 3.4 V, all other inputs at V_{CC} or GND.

3/ This parameter is not directly testable, but is derived for use in total power supply calculations.

5/ The minimum limits for the propagation delay times are guaranteed, if not tested, to the limits specified in table I.

6/ For total current supply (I_{CCT}) test in an ATE environment, the effect of parasitic output capacitive loading from the test environment must be taken into account, as its effect is not intended to be included in the test results. The impact must be characterized and appropriate offset factors must be applied to the test result.

7/ These limits are guaranteed but not tested.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89730
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 6

Device type	01 and 02			
Case outline	K and L	3		
Terminal number	Terminal symbol	Terminal symbol		
1	LEBA	<u>NC</u>		
2	OEBA	LEBA		
3	A0	OEBA		
4	A1	A0		
5	A2	A1		
6	A3	A2		
7	A4	A3		
8	A5	NC		
9	A6	A4		
10	A7	A5		
11	CEAB	A6		
12	GND	A7		
13	OEAB	CEAB		
14	LEAB	GND		
15	B7	NC		
16	B6	OEAB		
17	B5	LEAB		
18	B4	B7		
19	B3	B6		
20	B2	B5		
21	B1	B4		
22	B0	NC		
23	CEBA	B3		
24	V _{cc}	B2		
25		B1		
26		B0		
27		CEBA		
28		V _{CC}		

Terminal symbol	Terminal description
OEAB	A-to-B output enable input (active low)
OEBA	B-to-A output enable input (active low)
CEAB	A-to-B enable input (active low)
CEBA	B-to-A enable input (active low)
LEAB	A-to-B latch enable input (active low)
LEBA	B-to-A latch enable input (active low)
A0 - A7	A-to-B data inputs to B-to-A three-state outputs
B0 - B7	B-to-A data inputs to A-to-B three-state outputs

FIGURE 1. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89730
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	7

Inputs			Latch status	Output buffers
CEAB	LEAB	OEAB	A to B	B0 - B7
Н	х	х	Storing	High Z
х	Н	-	Storing	-
х	-	н	-	High Z
L	L	L	Transparent	Current A inputs
L	Н	L	Storing	*Previous A inputs

H = High voltage level L = Low voltage level X = Irrelevant

* = Before LEAB low-to-high transition. A-to-B data flow shown: B-to-A flow control is the same except using CEBA, LEBA, and OEBA.

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 8

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 10

ENABLE TIMES

Test	Switch
t _{PLZ}	Closed
t _{PZL}	Closed
Open drain	Closed
All other	Open

1. C_L includes probe and jig capacitance.2. R_T = termination resistance and should be equal to Z_{OUT} of the pulse generator.3. $t_r = t_f = 2.5$ ns (10% to 90%), unless otherwise specified.

FIGURE 4. Test circuit and switching waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 12

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{I/O} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Capacitance shall be measured between the designated terminal and GND at a frequency of 1 MHz. Test all applicable pins on 5 devices with zero failures.
 - d. Subgroups 7 and 8 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 13

- 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-89730
		REVISION LEVEL C	SHEET 14

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 10-08-11

Approved sources of supply for SMD 5962-89730 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-89730013A	0C7V7	IDT54FCT543LB
5962-8973001KA	0C7V7	IDT54FCT543EB
5962-8973001LA	0C7V7	IDT54FCT543DB
5962-89730023A	0C7V7	IDT54FCT543ALB
5962-8973002KA	0C7V7	IDT54FCT543AEB
5962-8973002LA	0C7V7	IDT54FCT543ADB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

0C7V7

QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by E2v manufacturer:

Other Similar products are found below :

 74LS645N
 DS8838
 FXL4TD245UMX
 IDT74CBTLV3257PGG
 74LVT245BBT20-13
 5962-8683401DA
 PCA9617ADMR2G
 5962

 8953501KA
 5962-86834012A
 5962-7802301Q2A
 5962-7802002MFA
 5962-7802001MFA
 74VHCV245FT(BJ)
 NCV7349D13R2G

 TC74VCX164245(EL,F
 MC74LCX245MNTWG
 TC7WPB8306L8X,LF(S
 TC7WPB9307FC(TE85L
 74FCT16245CTPVG8

 74FCT16543CTPVG
 74FCT245CTPYG8
 MM74HC245AMTCX
 74LVCH16245APVG
 74LVX245MTC
 5962-9221405M2A
 NTS0102DP

 Q100H
 74ALVC16245MTDX
 74ALVCH32245BF
 74FCT163245APVG
 74FCT245CTQG
 74FCT3245AQG

 74LCXR162245MTX
 74VHC245M
 TC7WPB9306FC(TE85L
 TC7WPB9306FK(T5L,F
 JM38510/65553BRA
 ST3384EBDR

 74LVC1T45GF,132
 74AVC4TD245BQ,115
 PQJ7980AHN/C0JL,51
 MC100EP16VBDG
 FXL2TD245L10X
 74LVC1T45GM,115

 TC74AC245P(F)
 PSB21150F S LLHR
 SNJ54AHC245J
 SNJ54AHC245J KNJ54AHC245J
 SNJ54AHC245J