

October 9, 2007

CMOS Dual Peripheral Drivers QP1631 – AND QP1632 – NAND QP1633 – OR QP1634 – NOR

General Description

The QP163x series of dual peripheral drivers are designed to be a universal set of interface components for CMOS circuits.

Each circuit has CMOS compatible inputs with thresholds that track as a function of VCC (approximately 1/2 VCC). The inputs are PNPs providing the high impedance necessary for interfacing with CMOS.

Outputs have high voltage capability; minimum breakdown voltage is 56V at 250 uA.

The outputs are Darlington connected transistors. This allows high current operation (300 mA max) at low internal VCC current levels since base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply.

Typical VCC = 5V power is 28 mW with both outputs ON.

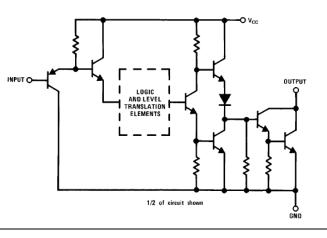
VCC operating range is 4.5V to 15V.

The circuit also features output transistor protection, if the VCC supply is lost, by forcing the output into the high impedance OFF state with the same breakdown levels as when VCC was applied.

Pin-outs are the same as the respective logic functions found in the popular series of circuits; DS75451, DS75461. This feature allows direct conversion of present systems to the MM74C CMOS family and DS163x series circuits with great power savings.

The QP163x series is also TTL compatible at VCC = 5V.

The device type(s) features:


- CMOS compatible inputs
- High impedance inputs; PNP's
- High output voltage breakdown 56V min
- High output current capability 300 mA max
- Same pin-outs and logic functions as DS75451 and DS75461 series circuits
- Low VCC power dissipation (~28 mW both outputs ``ON" at 5V)

The device/family is constructed using High Voltage Bi-Polar processing.

QP Semiconductor products are not authorized for use in any space applications. The inclusion of QP Semiconductor products in space applications implies that the space application manufacturer assumes all risk of such use and in doing so indemnifies QP Semiconductor against all charges.

Block Diagrams -(Dual-In-Line and Metal Can Packages)

QP163x **Equivalent Circuit**

Pin #	Function	Pin #	Function
Pin 1	A1 – Input	Pin 5	X2 – Ouput
Pin 2	B1 – Input	Pin 6	A2 – Input
Pin 3	X1 – Output	Pin 7	B2 – Input
Pin 4	Ground	Pin 8	Vcc

rest rable

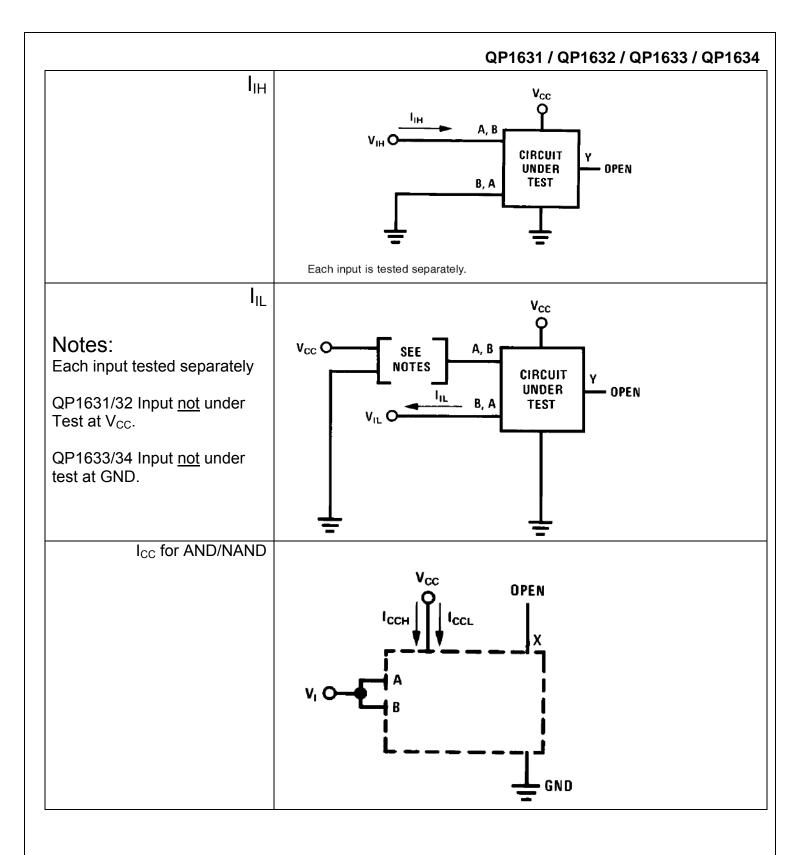
	Input	Other	Output		
Device	Under Test	Input	Apply	Measure	
QP1631	V _{IH}	V _{IH}	V _{OH}	I _{OH}	
	V _{IL}	V _{CC}	I _{OL}	V _{OL}	
QP1632	V _{IH}	V _{IH}	I _{OL}	V _{oL}	
	V _{IL}	V _{CC}	V _{OH}	I _{OH}	
QP1633	V _{IH}	GND	V _{OH}	I _{OH}	
	V _{IL}	V _{IL}	I _{OL}	V _{OL}	
QP1634	V _{IH}	GND	I _{OL}	V _{oL}	
	V _{IL}	V _{IL}	V _{OH}	I _{oн}	

Truth Table

Input		Out			
Α	В	1631	1632	1633	1634
0	0	0	1	0	1
0	1	0	1	1	0
1	0	0	1	1	0
1	1	1	0	1	0

Absolute Maximum Ratings Stresses above the AMR may cause permanent damage, extended operation at AMR may degrade performance and affect reliability

Condition		Units	Notes
Power Supply and Input Voltage	-0.5 to +16.0	Volts DC	
Voltage at Inputs	- 0.3 to Vcc+0.3	Volts DC	
Output Voltage	56	Volts	
Storage Temperature Range	-65 to +150	°C	
Lead Temperature (soldering, 10 seconds)	+260	°C	
Junction Temperature (T _J)	+175	°C	
Maximum Power Dissipation Hermetic DIP	1133	mW	/1
Maximum Power Dissipation Hermetic CAN	787	mW	/2


Condition		Units	Notes
Supply Voltage Range (V _{CC})	4.5 to 15	Volts DC	
Operating Range (T_c)	-55C to +125	°C	/1 /2

/2 – Derate 5.2 mW/°C above 25°C

TABLE I – ELECTRICAL	PERFORMAN	ICE CHARACTERISTICS			
Test	Symbol	Conditions -55°C ≤TA≤+125°C Unless Otherwise Specified	Min	Max	Unit
_					
Input High Voltage	V _{IH}	$V_{CC} = 5V$	3.5		V
		V _{CC} = 10V	8.0		V
		V _{CC} = 15V	12.5		V
Input Low Voltage	V _{IL}	$V_{CC} = 5V$		1.5	V
		V _{CC} = 10V		2.0	V
		V _{CC} = 15V		2.5	V
Input Low Current	IIL	$V_{CC} = 5V, V_{IN} = 0.4V$		-115.5	μA
		V _{CC} = 15V, V _{IN} = 0.4V		-360	μA
Output High Voltage	V _{OH}	V _{CC} = 15V, I _{OH} = 250uA	56		V
Output Low Voltage	V _{OL}	V _{CC} = 4.5V, I _{OH} = 100mA		1.1	V
		V _{CC} = 4.5V, I _{OH} = 300mA		1.4	V

			1 / QP1632	2 / QP1633 /	/ QP1634
TABLE I – ELECTRICAL I Test	PERFORMAN Symbol	ICE CHARACTERISTICS Conditions	Min	Max	Unit
Test	Symbol	-55°C ≤TA≤+125°C Unless Otherwise Specified	IVIIII	Wax	Onit
Power Supply Current	I _{CCL}				
$V_{IH}=V_{CC}, V_{IL}=GND$	QP1631	V_{CC} = 5V, Vout = Low		11	mA
		V_{CC} = 15V, Vout = Low		20	mA
	QP1632	V_{CC} = 5V, Vout = Low		12	mA
		V_{CC} = 15V, Vout = Low		23	mA
	QP1633	V_{CC} = 5V, Vout = Low		12	mA
		V_{CC} = 15V, Vout = Low		23	mA
	QP1634	V_{CC} = 5V, Vout = Low		12	mA
		V_{CC} = 15V, Vout = Low		23	mA
	I _{CCH}				
	QP1631	V_{CC} = 5V, Vout = High		3	mA
		V_{CC} = 15V, Vout = High		10	mA
	QP1632	V_{CC} = 5V, Vout = High		3.5	mA
		V_{CC} = 15V, Vout = High		14	mA
	QP1633	V_{CC} = 5V, Vout = High		4	mA
		V_{CC} = 15V, Vout = High		15	mA
	QP1634	V_{CC} = 5V, Vout = High		5	mA
		V_{CC} = 15V, Vout = High		18	mA
Propagation Delay, Input to Output	QP1631				
	t _{PDL} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.50	us
	t _{PDL} -55⁰C, 125⁰C	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.88	us
	t _{PDH} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.20	us
	t _{PDH} -55℃, 125℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.50	us

Propagation Delay,	QP1632				
Input to Output	t _{PDL} 25°C	V _{CC} = 5.0V C _L = 15pf R _L =50Ω	0.01	1.20	us
	25°C	Vout=10V			
	t _{PDL} -55⁰C, 125⁰C	$V_{CC} = 5.0V$ $C_{L} = 15pf R_{L} = 50\Omega$	0.01	1.55	us
	,	Vout=10V			
	t _{PDH} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.20	us
	t _{PDH} -55°С, 125°С	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	1.50	us
	QP1633				
	t _{PDL} 25⁰C	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	2.00	US
	t _{PDL} -55℃, 125℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	2.00	US
	t _{PDH} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.001	0.75	US
	t _{PDH} -55℃, 125℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.001	0.75	US
	QP1634				
	t _{PDL} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	2.00	us
	t _{PDL} -55℃, 125℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.01	2.00	US
	t _{PDH} 25℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.001	0.75	us
	t _{PDH} -55℃, 125℃	$V_{CC} = 5.0V$ $C_L = 15pf R_L = 50\Omega$ Vout=10V	0.001	0.75	US

Ordering Information		
Part Number	Package (Mil-Std-1835)	Generic
5962-8863101GA	G – MACY1-X8 – 8 Lead Can	QP1631
5962-8863101PA	P – GDIP1-T8 or CDIP2-T8	QP1631
5962-9052201GA	G – MACY1-X8 – 8 Lead Can	QP1632
5962-9052201PA	P – GDIP1-T8 or CDIP2-T8	QP1632
QP1633/GA	G – MACY1-X8 – 8 Lead Can	QP1633
QP1633/PA	P – GDIP1-T8 or CDIP2-T8	QP1633
5962-8982101GA	G – MACY1-X8 – 8 Lead Can	QP1634
5962-8982101PA	P – GDIP1-T8 or CDIP2-T8	QP1634

QP Semiconductor supports Source Control Drawing (SCD), and custom package development for this product family.

Notes:

Package outline information and specifications are defined by Mil-Std-1835 package dimension requirements.

"-MIL" products manufactured by QP Semiconductor are compliant to the assembly, burn-in, test and quality conformance requirements of Test Methods 5004 & 5005 of Mil-Std-883 for Class B devices. This datasheet defines the electrical test requirements for the device(s).

The listed drawings, Mil-PRF-38535, Mil-Std-883 and Mil-Std-1835 are available online at http://www.dscc.dla.mil/

Additional information is available at our website http://www.qpsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by E2v manufacturer:

Other Similar products are found below :

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7