
								I	REVISI	ONS										
LTR						DESCF	RIPTIO	N					D/	DATE (YR-MO-DA)				APPF	ROVED	
А		Pages 1, 2, 3, 4, 14, 15, 16, editorial changes. Pages 5, 6, corrections. Page 18, added vendor.					5, 6, 7	, 8, syr	nbol			81-12-09		<u> </u>		M. A	. Frye			
В		Add device type 03. Type 02 inactive for new design: Use for case Q. Type 01 and new type 03 are still active.					Use N	1IL-M-3	8510/5	2002		83-0	04-06		M. A. Frye					
С		device												84-1	0-31			M. A	. Frye	
D	Case	e tempe	erature	to +12	5°C. A	dd LCC) packa	ige, ele	ctrical t	est imp	rovem	ents.		85-1	1-12			M. A	. Frye	
Е	vend table	Case temperature to +125°C. Add LCC package, electrical test improvements. Change to military drawing format. Add device type 06, changes to 1.4, add vendor CAGE number 66958, delete vendor CAGE number 34335, changes to table I, changes to figures 1, 2, and 3. Editorial changes throughout. Change Code Ident. No. to 67268.						es to		87-1	2-17		M. A. Frye							
F		ate boile ate dev				8535 r	equiren	nents.	Correct	drawir	ng title	to		03-0	06-11		Thomas M. Hess			
G	Corre	ect mar PRF-38	king re 3535 re	quirem quirem	ents in ents	3.5. U PHN.	Jpdate I	ooilerpl	ate in a	ccorda	nce wit	h		05-0	3-23		7	Thomas	M. He	ss
THE ORIGINA REV SHEET REV	AL FIRST	SHEE	T OF T	HIS DI	RAWIN	G HAS	S BEEN	REPL/	ACED.	F	F	F								
REV SHEET										F 24	F 25	F 26								
REV SHEET REV	F 15	F	F	F	F 19	F	F	F	F				F	F	F	F	F	F	F	F
REV SHEET REV SHEET	F 15	F	F	F 18	F 19	F	F 21	F 22	F 23	24	25	26	F 7	F 8	F 9	F 10	F 11	F 12	F 13	F 14
REV SHEET REV SHEET REV STATUS	F 15	F	F	F 18 RE\	F 19	F 20	F 21 G	F 22 F	F 23	24 G	25 F	26 F	1		ļ -			1	<u> </u>	
REV SHEET REV SHEET REV STATUS OF SHEETS	F 15	F	F	F 18 RE\ SHE	F 19 /	F 20	F 21 G	F 22 F	F 23	24 G	25 F 5	26 F 6	7 SE SI	8 UPPL	9 Y CE	10	11 COL	12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 REV SHE PRE Ray	F 19 / EET	F 20	F 21 G	F 22 F	F 23	24 G	25 F 5	26 F 6	7 SE SI	8 UPPL IBUS,	9 Y CE	10 NTER O 432	11 COL 218-39	12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 RE\ SHE PRE Ray CHE	F 19 / EET PARED	F 20 DBY	F 21 G	F 22 F	F 23	24 G	25 F 5	26 F 6	7 SE SI	8 UPPL IBUS,	9 Y CE	10	11 COL 218-39	12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 REV SHE PRE Ray CHE	F 19 / EET PAREE Monnir	F 20 DBY BY using	F 21 G	F 22 F	F 23	24 G	25 F 5	26 F 6	7 SE SI	8 UPPL IBUS,	9 Y CE	10 NTER O 432	11 COL 218-39	12 .UMB	13	
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRI DR	F 15 S	F 16 RD CUIT G	F 17	F 18 REV SHE PRE Ray CHE Char	F 19 / EET PAREE Monnir CKED	F 20 D BY BY using D BY	F 21 G	F 22 F	F 23	24 G 4	25 F 5 DI	26 F 6	SE SI DLUM http	8 UPPL IBUS o://ww	y CE, OHIO	NTER O 432 cc.dla	COL 218-3: a.mil	12 .UMB 990	us NEL	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRI DR	F 15 15 S ANDAF OCIRCLAWIN USE BY ARTMEN ENCIES (F 16 CUIT G VAILAI ALL ITS OF THE	F 17	F 18 REV SHE Ray CHE Char	F 19 / EET PAREE Monnir CKED rles Rei	F 20 D BY BY using D BY Frye	F 21 G 1	F 22 F 2	F 23	G 4 MIC SIN	25 F 5 DI	26 F 6 EFEN CC	SE SI DLUM http	8 UPPL IBUS o://ww	y CE, OHIO	NTER O 432	COL 218-3: a.mil	12 .UMB 990	us NEL	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR THIS DRAW FOR U DEPA AND AGE DEPARTME	F 15 15 S ANDAF OCIRCLAWIN USE BY ARTMEN ENCIES (F 16 RD CUIT G VAILAI ALL ITS OF THE	F 17	F 18 REV SHE PRE Ray CHE Char APF Mich	F 19 / EET PARED Monnin CKED rles Rei	F 20 D BY BY using D BY Frye APPR(F 21 G 1	F 22 F 2	F 23	G 4 MIC SIN SIL	25 F 5 DI	26 F 6 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	SE SI DLUM http	8 UPPLIBUS, D://ww	y CE, OHIO	NTER O 432 cc.dla	2 COL 218-33 a.mil N-Cl	12 .UMB 990	us NEL	14

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Frequency</u>	Circuit function
01	Z8001	4.0 MHz	16-Bit N-channel single-chip microprocessor
02	Z8002	4.0 MHz	16-Bit N-channel single-chip microprocessor
03	Z8001A	6.0 MHz	16-Bit N-channel single-chip microprocessor
04	Z8001B	10.0 MHz	16-Bit N-channel single-chip microprocessor
05	Z8002B	10.0 MHz	16-Bit N-channel single-chip microprocessor
06	Z8002A	6.0 MHz	16-Bit N-channel single-chip microprocessor

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Q	GDIP1-T40 or CDIP2-T40	40	Dual-in-line
U	CQCC1-N52	52	Square leadless chip carrier
Χ	See figure 1	48	Dual-in-line
Υ	CQCC1-N44	44	Square leadless chip carrier
Z	CQCC1-N68	68	Square leadless chip carrier

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage range with respect to ground (V _{CC})	-0.3 V dc to +7.0 V dc
Storage temperature range	-65°C to +150°C
Maximum power dissipation (P _D) (per device)	
Lead temperature (soldering, 5 seconds)	
Maximum junction temperature (T _J)	
Thermal resistance, junction-to-case (θ_{JC}):	
Case X	14°C/W
Cases Q, U, Y, Z	See MIL-STD-1835

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 2

1.4 Recommended operating conditions.

Supply voltage range (V _{CC})	+4.5 V dc to +5.5 V dc
Minimum high level input voltage (V _{IH}):	
Logic inputs	+2.2 V dc to V _{CC} + 0.3 V dc
Clock input	$V_{CC} - 0.4 \text{ V dc to } V_{CC} + 0.3 \text{ V dc}$
RESET (NMI)	2.4 V dc to V _{CC} + 0.3 V dc
Maximum low level input voltage (V _{IL}):	
Logic inputs	0.3 V dc to +0.8 V dc
Clock input	0.3 V dc to +0.45 V dc
Frequency of operation:	
01, 02	0.5 MHz to 4.0 MHz
03, 06	0.5 MHz to 6.0 MHz
04, 05	0.5 MHz to 10.0 MHz
Case operating temperature range (T _C)	55°C to +125°C
Clock rise time (t _r):	
01, 02	20 ns maximum
03, 06	15 ns maximum
04, 05	10 ns maximum
Clock fall time (t _f):	
01, 02	20 ns maximum
03, 06	10 ns maximum
04, 05	15 ns maximum

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

STANDARD
MICROCIRCUIT DRAWING

SIZE A		8003
	REVISION LEVEL G	SHEET 3

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein and on figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Logic functions. The logic functions shall be as specified on figure 3.
 - 3.2.4 Timing waveforms. The timing waveforms shall be as specified on figure 4.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.
- 3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
 - 3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD					
MICROCIRCUIT DRAWING					
DEFENSE SUPPLY CENTER COLUMBU					

SIZE A		8003
	REVISION LEVEL G	SHEET 4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions $-55^{\circ}C \le T_C \le +125^{\circ}C$	Group A	Device	Lir	nits	Unit
		$+4.5 \text{ V} \le \text{V}_{\text{CC}} \le +5.5 \text{ V}$ unless otherwise specified	subgroups	type	Min	Max	†
Clock input low voltage	V _{IL1}	Driven by external clock generator.	1, 2, 3	All	-0.3 <u>1</u> /	0.45	V
Clock input high voltage	V _{IH1}		1, 2, 3	All	V _{CC} - 0.4	V _{CC} + 0.3	V
Input low voltage	V_{IL2}		1, 2, 3	All	-0.3 <u>1</u> /	0.8	V
Input high voltage	V _{IH2}		1, 2, 3	All	2.4	V _{CC} + 0.3	V
Reset input high voltage (NMI)	V _{IH3}		1, 2, 3	All	2.4	V _{CC} + 0.3	V
High level output voltage all outputs	V_{OH}	$I_{OH} = -250 \mu A$ $V_{CC} = 4.5 V$	1, 2, 3	All	2.4		V
Low level output voltage all outputs	V_{OL}	I_{OL} = +2.0 mA V_{CC} = 4.5 V	1, 2, 3	All		0.4	V
High-impedance (off-state) output current (High) (In Float)	lzн	$V_{IN} = 2.4 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	1, 2, 3	All	–1 0	+10	μΑ
High-impedance (off-state) output current (Low) (In Float)	I _{ZL}	V _{IN} = 0.4 V V _{CC} = 5.5 V	1, 2, 3	All	-10	+10	μА
High level input current (input and bi-directional)	Іін	V _{IN} = 2.4 V V _{CC} = 5.5 V	1, 2, 3	All	-10	+10	μА
Low level input current (input and bi-directional)	I _{IL}	V _{IN} = 0.4 V V _{CC} = 5.5 V	1, 2, 3	All	-10	+10	μА
Low level input current (SEGT)	I _{ILS}	$0.4 \text{ V} \le \text{V}_{\text{IN}} \le 2.4 \text{ V}$ $4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$	1, 2, 3	01, 03, 04		+200	μА
Supply current	Icc	V _{CC} = 5.5 V	1, 2, 3	All		400	mA
Functional tests		See 4.3.1c	7, 8	All			

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions $ -55^{\circ}C \le T_C \le +125^{\circ}C \\ +4.5 \text{ V} \le V_{CC} \le +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Lir Min	mits Max	Unit
Clock pulse	t _{cyc}	See figure 4.	9, 10, 11	01, 02	250	2000	ns
Olook pulso	Сус	See Reference No. 1 2/	3, 10, 11	03, 06	165	2000	- ''3
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	100	2000	-
Clock pulse width	t _{PWL1}	See figure 4.	9, 10, 11	01, 02	105	2000	ns
(Low)	CF VVL I	See Reference No. 2 2/	0, 10, 11	03, 06	70		1
(==:.,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	40		1
Clock pulse width	t _{PWH1}	See figure 4.	9, 10, 11	01, 02	105		ns
(High)	1 11111	See Reference No. 3 2/		03, 06	70		1
,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	40		1
Clock ↑ to segment	TdC(SNv)	See figure 4.	9, 10, 11	01		130	ns
number valid	<u>3</u> / <u>4</u> /	See Reference No. 6 2/		03		110	1
	-	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04		90	1
Clock ↑ to segment	TdC(SNn)	See figure 4.	9, 10, 11	01	20		ns
number not valid	<u>4</u> /	See Reference No. 7 2/		03	10		1
	<u> </u>	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs	'	04	0		1
Clock ↑ to bus float	TdC(Bz)	See figure 4.	9, 10, 11	01, 02		65	ns
	<u>1</u> /	See Reference No. 8 2/		03, 06		55]
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50]
Clock ↑ to address	TdC(A)	See figure 4.	9, 10, 11	01, 02		100	ns
valid		See Reference No. 9 2/		03, 06		75	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	
Clock ↑ to address	TdC(Az)	See figure 4.	9, 10, 11	01, 02		65	ns
float	<u>1</u> /	See Reference No. 10 2/		03, 06		55	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50	
Address valid to	TdA(DR)	See figure 4.	9, 10, 11	01, 02		475	ns
data in required		See Reference No. 11 2/	<u>5</u> /	03, 06		305	
valid	<u> </u>	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs	<u> </u>	04, 05		180	
Data to CLK \downarrow	TsDR(C)	See figure 4.	9, 10, 11	01, 02	30		ns
setup time	'	See Reference No. 12 2/		03, 06	20		
	<u> </u>	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		

STANDARD MICROCIRCUIT DRAWING	SIZE A	
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL

COLUMBUS, OHIO 43218-3990

A		8003
	REVISION LEVEL F	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Lir	mits	Unit
					Min	Max	
DS ↑ to address	TdDS(A)	See figure 4.	9, 10, 11	01, 02	80		ns
active		See Reference No. 13 2/	<u>5</u> /	03, 06	45		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	20		
Clock ↑ to data out	TdC(DW)	See figure 4.	9, 10, 11	01, 02		100	ns
valid		See Reference No. 14 2/		03, 06		75	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		60	
Data in to DS ↑	ThDR(DS)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 15 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		
Data out valid to	TdDW(DS)	See figure 4.	9, 10, 11	01, 02	295		ns
 DS ↑ delay		See Reference No. 16 2/	<u>5</u> /	03, 06	195		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	110		
Address valid to	TdA(MR)	See figure 4.	9, 10, 11	01, 02	55		ns
MREQ ↓ delay		See Reference No. 17 2/	<u>5</u> /	03, 06	35		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	20		1
Clock ↓ to MREQ ↓	TdC(MR)	See figure 4.	9, 10, 11	01, 02		80	ns
delay		See Reference No. 18 2/		03, 06		70	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50	
MREQ width (High)	TwMRh	See figure 4.	9, 10, 11	01, 02	210		ns
		See Reference No. 19 2/	<u>5</u> /	03, 06	135		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	80		1
MREQ ↓ to	TdMR(A)	See figure 4.	9, 10, 11	01, 02	70		ns
address not active	<u>1</u> /	See Reference No. 20 2/	<u>5</u> /	03, 06	35		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	15		
Data out valid to	TdDW	See figure 4.	9, 10, 11	01, 02	55		ns
DS ↓ (Write Delay)	(DSW)	See Reference No. 21 2/	<u>5</u> /	03, 06	35		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	15		
MREQ ↓ to data in	TdMR(DR)	See figure 4.	9, 10, 11	01, 02		370	ns
required valid		See Reference No. 22 2/	<u>5</u> /	03, 06		230	
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		140	

STANDARD
MICROCIRCUIT DRAWING

SIZE A		8003
	REVISION LEVEL F	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> - Continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ unless \text{ otherwise specified} \end{array} $	Group A subgroups	Device type	Lir	mits	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Min	Max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clock ↓ to MREQ ↑	TdC(MR)	See figure 4.	9, 10, 11	01, 02		80	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	delay		See Reference No. 23 2/		03, 06		60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		50	<u>]</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clock ↑ to AS ↓	TdC(ASf)	See figure 4.	9, 10, 11	01, 02		80	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	delay		See Reference No. 24 2/		03, 06		60]
	•		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		45	1
	Address valid to	TdA(AS)	See figure 4.	9, 10, 11	01, 02	55		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	— AS ↑ delay		See Reference No. 25 2/		03, 06	35		1
Clock ↓ to \overline{AS} ↑ delay TdC(ASr) See figure 4. See Figure 4. See Reference No. 26 2 / See Reference No. 26 2 / See Reference No. 26 2 / See Figure 4. See Figure 4. See Figure 4. See Reference No. 27 2 / See Reference No. 27 2 / See Reference No. 27 2 / See Figure 4. See Figure 4. See Figure 4. See Figure 4. See Reference No. 28 2 / See Figure 4. See Figur	-		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs			20		1
	Clock ↓ to AS ↑	TdC(ASr)		9, 10, 11			90	ns
		` ′					80	1
\overline{AS} ↑ to data in required valid TdAS(DR) See figure 4. See Reference No. 27 $\underline{2}$ / $\underline{5}$ / $\underline{03}$, 06 $\underline{220}$ 360 $\underline{5}$ / $\underline{03}$, 06 $\underline{220}$ \overline{DS} ↑ to \overline{AS} ↓ delay TdDS(AS) See figure 4. See Reference No. 28 $\underline{2}$ / $\underline{5}$ / $\underline{03}$, 06 $\underline{35}$ $\underline{04}$, 05 $\underline{15}$ \overline{AS} width (Low) TwAS See figure 4. See figure 4. See figure 4. See Reference No. 29 $\underline{2}$ / $\underline{5}$ / $\underline{03}$, 06 $\underline{55}$ 9, 10, 11 $\underline{01}$, 02 $\underline{85}$ \overline{AS} width (Low) TwAS See figure 4. See Reference No. 29 $\underline{2}$ / $\underline{5}$ / $\underline{03}$, 06 $\underline{55}$ $\overline{C_L}$ = 50 pF to 100 pF ±10%, all outputs $\underline{5}$ / $\underline{03}$, 06 $\underline{55}$ $\overline{C_L}$ = 50 pF to 100 pF ±10%, all outputs $\underline{5}$ / $\underline{04}$, 05 $\underline{30}$			$C_L = 50$ pF to 100 pF ±10%, all outputs				45	
required valid See Reference No. 27 $\ 2/$ $\ C_L = 50 \ pF \ to \ 100 \ pF \pm 10\%$, all outputs $\ 03, \ 06$ $\ 220$ $\ 04, \ 05$ $\ 140$ $\ \overline{DS} \uparrow \ to \ \overline{AS} \downarrow$ $\ TdDS(AS)$ See figure 4. $\ See \ Reference \ No. 28 \ 2/$ $\ See \ Reference \ No. 28 \ 2/$ $\ 03, \ 06$ $\ 35$ $\ C_L = 50 \ pF \ to \ 100 \ pF \pm 10\%$, all outputs $\ \overline{AS} \ width \ (Low)$ TwAS See figure 4. $\ See \ Reference \ No. 29 \ 2/$ $\ 03, \ 06$ $\ 55$ $\ C_L = 50 \ pF \ to \ 100 \ pF \pm 10\%$, all outputs $\ 04, \ 05$ $\ 30$	AS ↑ to data in	TdAS(DR)		9, 10, 11			360	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		`						
			$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs				140	
	DS ↑ to AS ↓	TdDS(AS)		9, 10, 11		70		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,						1
AS width (Low) TwAS See figure 4. See Reference No. 29 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 85 03, 06 55 04, 05 30			$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs	- '				1
See Reference No. 29 2/ 5/ 03, 06 55 C _L = 50 pF to 100 pF ±10%, all outputs 04, 05 30	AS width (Low)	TwAS		9. 10. 11				ns
$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%, \text{ all outputs}$ 04, 05 30	,10	1						
			$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs	_ '	<u> </u>			1
	 AS ↑ to address	TdAS(A)	See figure 4.	9, 10, 11	01, 02	70		ns
not active delay $1/$ See Reference No. 30 $2/$ $03, 06$ 45		` '						1
$C_L = 50 \text{ pF to } 100 \text{ pF} \pm 10\%, \text{ all outputs}$ 04, 05 15			<u> </u>	<u> </u>				-
	Address float to DS	TdAz(DSR)		9. 10, 11				ns
(Read) ↓ delay 1/ See Reference No. 31 2/ 03, 06 0		` ,						1
$C_L = 50 \text{ pF to } 100 \text{ pF} \pm 10\%, \text{ all outputs}$ 04, 05 0	(1361)		_					-
	$\overline{AS} \uparrow to \overline{DS} \downarrow$	TdAS(DSR)		9. 10. 11				ns
(Read) delay See Reference No. 32 2/ 5/ 03, 06 55		1 0, 15(2 51 1,	_					1
$C_L = 50 \text{ pF to } 100 \text{ pF} \pm 10\%, \text{ all outputs}$	(Noda) dolaj		<u> </u>					-

STANDARD					
MICROCIRCUIT DRAWING					

SIZE A		8003
	REVISION LEVEL F	SHEET 8

TABLE I. <u>Electrical performance characteristics</u> - Continued.

	1	Conditions					
Test	Symbol	Conditions $ -55^{\circ}C \le T_{C} \le +125^{\circ}C \\ +4.5 \text{ V} \le V_{CC} \le +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Lir	nits	Unit
					Min	Max	1
DS (Read) ↓ to	TdDSR(DR)	See figure 4.	9, 10, 11	01, 02		205	ns
data in required		See Reference No. 33 2/	<u>5</u> /	03, 06		130	
valid		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		70	
Clock ↓ to DS ↑	TdC(DSr)	See figure 4.	9, 10, 11	01, 02		70	ns
delay		See Reference No. 34 2/		03, 06		65]
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50]
DS ↑ to data out	TdDS(DW)	See figure 4.	9, 10, 11	01, 02	75		ns
not valid	<u>1</u> /	See Reference No. 35 2/	<u>5</u> /	03, 06	45		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	25		1
Address valid to	TdA(DSR)	See figure 4.	9, 10, 11	01, 02	180		ns
 DS (Read) ↓	'	See Reference No. 36 <u>2</u> /	<u>5</u> /	03, 06	110		1
delay		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	65		1
Clock ↑ to DS	TdC(DSR)	See figure 4.	9, 10, 11	01, 02		120	ns
(Read) ↓ delay		See Reference No. 37 <u>2</u> /		03, 06		85	1
, ,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	1
DS (Read) width	TwDSR	See figure 4.	9, 10, 11	01, 02	275		ns
(Low)		See Reference No. 38 2/	<u>5</u> /	03, 06	185		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	110		1
Clock ↓ to DS	TdC(DSW)		9, 10, 11	01, 02		95	ns
(Write) ↓ delay	, ;	See Reference No. 39 <u>2</u> /		03, 06		80	1
, ,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	1
DS (Write) width	TwDSW	See figure 4.	9, 10, 11	01, 02	185		ns
(Low)		See Reference No. 40 2/	<u>5</u> /	03, 06	110		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	75		1
DS (Input) ↓ to	TdDSI(DR)	See figure 4.	9, 10, 11	01, 02		330	ns
data in required		See Reference No. 41 2/	<u>5</u> /	03, 06		210	1
valid		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		120	1
Clock ↓ to DS	TdC(DSf)	See figure 4.	9, 10, 11	01, 02		120	ns
(l₀) ↓ delay		See Reference No. 42 2/		03, 06		90	1
(=, ,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		70	1
		·	l.			L	

STANDARD					
MICROCIRCUIT DRAWING					
DEFENDE OUDDLY OFNITED COLUMN					

SIZE A		8003
	REVISION LEVEL F	SHEET 9

TABLE I. <u>Electrical performance characteristics</u> - Continued.

		Conditions					
Test	Symbol	-55°C \leq T _C \leq +125°C +4.5 V \leq V _{CC} \leq +5.5 V unless otherwise specified	Group A subgroups	Device type	Limits		Unit
					Min	Max	Ī
DS (I/O) width	TwDS	See figure 4.	9, 10, 11	01, 02	410		ns
(Low)		See Reference No. 43 2/	<u>5</u> /	03, 06	255		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	160		
AS ↑ to DS	TdAS(DSA)	See figure 4.	9, 10, 11	01, 02	1065		ns
(Acknowledge) ↓		See Reference No. 44 2/	<u>5</u> /	03, 06	690		
delay		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	410		
Clock ↑ to DS	TdC(DSA)	See figure 4.	9, 10, 11	01, 02		120	ns
(Acknowledge)↓		See Reference No. 45 2/		03, 06		85	
delay		$C_L = 50$ pF to 100 pF ±10%, all outputs		04, 05		70	
DS (Acknowledge) ↓	TdDSA(DR)	See figure 4.	9, 10, 11	01, 02		455	ns
to data in required		See Reference No. 46 2/	<u>5</u> /	03, 06		295	
delay		$C_L = 50$ pF to 100 pF ±10%, all outputs		04, 05		165	
Clock ↑ to status	TdC(S)	See figure 4.	9, 10, 11	01, 02		110	ns
valid delay		See Reference No. 47 2/		03, 06		85	
	<u> </u>	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	1
Status valid to	TdS(AS)	See figure 4.	9, 10, 11	01, 02	50		ns
AS ↑ delay		See Reference No. 48 2/	<u>5</u> /	03, 06	30		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		
RESET to clock ↑	TsR(C)	See figure 4.	9, 10, 11	01, 02	180		ns
set-up time		See Reference No. 49 2/		03, 06	70		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50]
RESET to clock ↑	ThR(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 50 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0]
NMI width (Low)	TwNMI	See figure 4.	9, 10, 11	01, 02	100		ns
		See Reference No. 51 2/		03, 06	70		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50]
NMI to clock ↑	TsNMI(C)	See figure 4.	9, 10, 11	01, 02	140		ns
set-up time		See Reference No. 52 2/		03, 06	70		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		Ī

STANDARD				
MICROCIRCUIT DRAWING				

SIZE A		8003
	REVISION LEVEL F	SHEET 10

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Limits		Unit
					Min	Max	
VI, NVI to clock ↑	TsVI(C)	See figure 4.	9, 10, 11	01, 02	110		ns
set-up time		See Reference No. 53 2/		03, 06	50		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	40		
VI, NVI to clock ↑	ThVI(C)	See figure 4.	9, 10, 11	01, 02	20		ns
hold time		See Reference No. 54 2/		03, 06	20		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		
SEGT to clock ↑	TsSGT(C)	See figure 4.	9, 10, 11	01	70		ns
set-up time	<u>4</u> /	See Reference No. 55 2/		03	55		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04	40		
SEGT to clock ↑	ThSGT(C)	See figure 4.	9, 10, 11	01	0		ns
hold time	<u>4</u> /	See Reference No. 56 2/		03	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04	0		
MI to clock ↑	TsMI(C)	See figure 4.	9, 10, 11	01, 02	180		ns
set-up time		See Reference No. 57 2/		03, 06	140		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	80		
MI to clock ↑	ThMI(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 58 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		
Clock ↑ to MO	TdC(MO)	See figure 4.	9, 10, 11	01, 02		120	ns
delay time		See Reference No. 59 2/		03, 06		85	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		80	
STOP to clock ↓	TsSTP(C)	See figure 4.	9, 10, 11	01, 02	140		ns
set-up time		See Reference No. 60 2/		03, 06	100		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		
\overline{STOP} to clock \downarrow	ThSTP(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 61 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		

STANDARD			
MICROCIRCUIT DRAWING			

SIZE A		8003
	REVISION LEVEL F	SHEET 11

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ unless otherwise specified \end{array} $	Group A subgroups	Device type	Limits		Unit
				Min	Max	
TsW(C)	See figure 4.	9, 10, 11	01, 02	50		ns
	See Reference No. 62 2/		03, 06	30		
	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	20		
ThW(C)	See figure 4.	9, 10, 11	01, 02	10		ns
	See Reference No. 63 2/		03, 06	10		
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	5		1
TsBRQ(C)	See figure 4.	9, 10, 11	01, 02	90		ns
	See Reference No. 64 2/		03, 06	80]
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	60		1
ThBRQ(C)	See figure 4.	9, 10, 11	01, 02	10		ns
	See Reference No. 65 2/		03, 06	10]
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	5		<u></u>
TdC(BAKr)	See figure 4.	9, 10, 11	01, 02		100	ns
	See Reference No. 66 2/		03, 06		75]
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	<u>]</u>
TdC(BAKf)	See figure 4.	9, 10, 11	01, 02		100	ns
	See Reference No. 67 2/		03, 06		75	
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	
TwA	See figure 4.	9, 10, 11	01, 02	150		ns
	See Reference No. 68 2/	<u>5</u> /	03, 06	95		
	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		
TdDS(s)	See figure 4.	9, 10, 11	01, 02	80		ns
<u>1</u> /	See Reference No. 69 2/	<u>5</u> /	03, 06	55		
	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	30		
	TsW(C) ThW(C) TsBRQ(C) ThBRQ(C) TdC(BAKr) TdC(BAKf) TwA	Symbol $\begin{array}{c} -55^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq +125^{\circ}\text{C} \\ +4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq +5.5 \text{ V} \\ \text{unless otherwise specified} \\ \end{array}$ $\text{TsW(C)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 62} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{ThW(C)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 63} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{TsBRQ(C)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 64} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{ThBRQ(C)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 65} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{TdC(BAKr)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 66} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{TdC(BAKf)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 67} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{TwA} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 68} \underline{2}/\\ \text{C}_{\text{L}} = 50 \text{ pF to 100 pF} \pm 10\%, \text{ all outputs} \\ \end{array}$ $\text{TdDS(s)} \qquad \begin{array}{c} \text{See figure 4.} \\ \text{See Reference No. 69} \underline{2}/\\ \end{array}$	Symbol $^{-55^{\circ}\text{C}} \le ^{\circ}\text{C} \le ^{\circ}\text{1.25^{\circ}\text{C}}$ $+4.5 \ \text{V} \le ^{\circ}\text{V}_{\text{CC}} \le ^{\circ}\text{5.5} \ \text{V}$ unless otherwise specified Group A subgroups TsW(C) See figure 4. See Reference No. 62 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 ThW(C) See figure 4. See Reference No. 63 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 TsBRQ(C) See figure 4. See Reference No. 64 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 ThBRQ(C) See figure 4. See Reference No. 65 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 TdC(BAKr) See figure 4. See Reference No. 66 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 TdC(BAKf) See figure 4. See Reference No. 67 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 TwA See figure 4. See Reference No. 68 2 / $C_L = 50 \ \text{pF}$ to 100 pF ±10%, all outputs 9, 10, 11 TdDS(s) See figure 4. See Reference No. 69 2 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5	Symbol $^{-55^{\circ}}$ C ≤ $^{\circ}$ C ⇒ $^{\circ}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

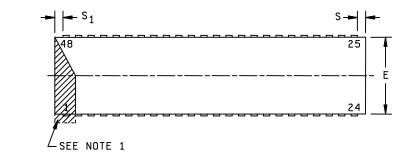
See footnotes on next sheet.

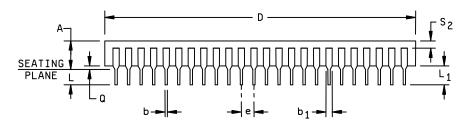
STANDARD				
MICROCIRCUIT DRAWING				
DEEENOE OUDDLY OFNIED OOLUMD				

SIZE A		8003
	REVISION LEVEL F	SHEET 12

TABLE I. <u>Electrical performance characteristics</u> - Continued.

- Guaranteed, if not tested.
- The waveform reference number refers to the position where the parameter appears on figure 4.


- For waveform reference number 6, C_L = 50 pF $\pm 10\%$. These parameters are for 01, 03, and 04 devices only. These waveform reference number parameters are clock dependent. The limits provided are at F_{MAX} . To determine the limits at other frequencies use the following equations:


Waveform reference number	Device types 01 and 02	Device types 03 and 06	Device types 04 and 05
11	2 t _{cyc} + t _{PWH1} - 130 ns	2 t _{cyc} + t _{PWH1} - 95 ns	2 t _{cyc} + t _{PWH1} - 60 ns
13	t _{PWL1} – 25 ns	t _{PWL1} – 25 ns	t _{PWL1} – 20 ns
16	t_{cyc} + t_{PWH1} – 60 ns	t_{cyc} + t_{PWH1} – 40 ns	t_{cyc} + t_{PWH1} – 30 ns
17	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 20 ns
19	t _{cyc} – 40 ns	t _{cyc} – 30 ns	t _{cyc} – 20 ns
20	t _{PWL1} – 35 ns	t _{PWL1} – 35 ns	t _{PWL1} – 20 ns
21	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 25 ns
22	2 t _{cyc} – 130 ns	2 t _{cyc} – 100 ns	2 t _{cyc} – 60 ns
25	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 20 ns
27	2 t _{cyc} – 140 ns	2 t _{cyc} – 110 ns	2 t _{cyc} – 60 ns
28	t _{PWL1} – 35 ns	t _{PWL1} – 35 ns	t _{PWL1} – 25 ns
29	t _{PWH1} – 20 ns	t _{PWH1} – 15 ns	t _{PWH1} – 10 ns
30	t _{PWL1} – 35 ns	t _{PWL1} – 25 ns	t _{PWL1} – 20 ns
32	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns	t _{PWL1} – 10 ns
33	t _{cyc} + t _{PWH1} - 150 ns	t_{cyc} + t_{PWH1} – 105 ns	t _{cyc} + t _{PWH1} - 70 ns
35	t _{PWL1} – 30 ns	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns
36	t _{cyc} – 70 ns	t _{cyc} – 55 ns	t _{cyc} – 35 ns
38	t_{cyc} + t_{PWH1} – 80 ns	t_{cyc} + t_{PWH1} – 50 ns	t_{cyc} + t_{PWH1} – 30 ns
40	t _{cyc} – 65 ns	t _{cyc} – 55 ns	t _{cyc} – 25 ns
41	2 t _{cyc} – 170 ns	2 t _{cyc} – 120 ns	2 t _{cyc} – 80 ns
43	2 t _{cyc} – 90 ns	2 t _{cyc} – 75 ns	2 t _{cyc} – 40 ns
44	$4 t_{\text{cyc}} + t_{\text{PWL1}} - 40 \text{ ns}$	4 t _{cyc} + t _{PWL1} – 40 ns	4 t _{cyc} + t _{PWL1} – 30 ns
46	2 t _{cyc} + t _{PWH1} - 150 ns	2 t _{cyc} + t _{PWH1} - 105 ns	2 t _{cyc} + t _{PWH1} - 75 ns
48	t _{PWH1} – 55 ns	t _{PWH1} – 40 ns	t _{PWH1} – 30 ns
68	t _{cyc} – 90 ns	t _{cyc} – 70 ns	t _{cyc} – 50 ns
69	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns	t _{PWL1} – 10 ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 13

Case Outline X

Device types 01, 03, and 04.

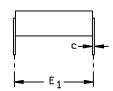


FIGURE 1. Case outlines.

STANDARD MICROCIRCUIT DRAWING

SIZE A		8003
	REVISION LEVEL F	SHEET 14

Case Outline X

Device types 01, 03, and 04.

	Inc	hes	Millimeters		
Symbol	Min	Max	Min	Max	Notes
А		.225		5.72	
b	.014	.023	0.36	0.58	7
b ₁	.030	.070	0.76	1.78	2, 7
С	.008	.015	0.20	0.38	7
D		2.480		62.99	
E	.510	.620	12.95	15.75	
E ₁	.520	.620	13.21	15.75	6
е	.100	BSC	2.54 BSC		4, 8
L	.120	.200	3.05	5.08	
L ₁	.150		3.81		
Q	.020	.060	0.51	1.52	3
S		.098		2.40	5
S ₁	.005		0.13		5
S ₂	.005		0.13		9

Notes:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The minimum limit for dimension b₁ may be .020 (0.51 mm) for leads number 1, 24, 25, and 48 only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. The basic pin spacing is .100 (2.54 mm) between centerlines. Each pin centerline shall be located within ±.010 (0.25 mm) of its exact longitudinal position relative to pins 1 and 48.
- 5. Applies to all four corners (leads number 1, 24, 25, and 48) (see MIL-STD-1835).
- 6. Lead center when α is 0°. E₁ shall be measured at the centerline of the leads.
- 7. All leads increase maximum limit by .003 (0.08 mm) measured at the center of the flat, when lead finish A is applied.
- 8. Forty-six spaces.
- 9. The top of the lead shall not exceed above the brazed pad top surface.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 SIZE A REVISION LEVEL F 15

Case outlines X and Q

Device types: 01, 03, and 04				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	AD ₀ AD ₉ AD ₁₀ AD ₁₁ AD ₁₂ AD ₁₃ STOP M ₁ AD ₁₅ AD ₁₄ V _{CC} V _I NVI SEGT NMI RESET M _C MREQ DS ST ₃ ST ₂	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44	SN ₁ SN ₀ BUSRQ WAIT BUSAK R/W N/S B/W NC AS CLOCK GND SN ₂ AD ₁ AD ₂ AD ₃ AD ₅ SN ₄ AD ₄ AD ₆ AD ₇	
22 23 24	ST₁ ST₀ SN₃	46 47 48	SN ₅ SN ₆ AD ₈	
<u> </u>	31N3	40	AD8	

Device types: 02 and 05				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	AD ₉ AD ₁₀ AD ₁₁ AD ₁₂ AD ₁₃ STOP M ₁ AD ₁₅ AD ₁₄ V _{CC} VI NVI NMI RESET M ₀ MREQ	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	ST ₀ BUSRQ WAIT BUSAK R/W N/S B/W NC AS CLOCK GND AD ₁ AD ₂ AD ₃ AD ₅ AD ₄	
17	DS	37	AD ₆	
18 19	ST₃ ST₂	38 39	AD ₇ AD ₈	
20	ST ₁	40	AD ₀	

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 16

Case outline U

Device types: 01, 03, and 04				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	AD ₀	27	SN ₁	
2	AD_9	28	SN_0	
3	AD ₁₀	29	BUSRQ	
4	AD ₁₁	30	WAIT	
5	AD ₁₂	31	BUSAK	
6	AD ₁₃	32	NC	
7	NC	33	NC	
8	STOP	34	R/W	
9	$\overline{M_{I}}$	35	N/S	
10	AD ₁₅	36	B/W	
11	AD ₁₄	37	RESERVED	
12	V _{CC}	38	AS	
13	NC	39	CLK	
14	VI	40	GND	
15	NVI	41	SN_2	
16	SEGT	42	AD ₁	
17	NMI	43	AD_2	
18	RESET	44	AD_3	
19	$\overline{M_O}$	45	AD_5	
20	MREQ	46	SN ₄	
21	DS	47	AD ₄	
22	ST ₃	48	AD_6	
23	ST ₂	49	AD ₇	
24	ST ₁	50	SN ₅	
25	ST ₀	51	SN ₆	
26	SN ₃	52	AD ₈	

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 17

Case outline Z

	Device types: 01, 03, and 04				
Terminal number	Terminal symbol	Terminal number	Terminal symbol		
1	GND	35	SN ₁		
2	+5V	36	SN_0		
3	AD_0	37	BUSRQ		
4	AD_9	38	WAIT		
5	AD ₁₀	39	BUSAK		
6	AD ₁₁	40	NC		
7	AD ₁₂	41	NC		
8	AD ₁₃	42	NC		
9	NC	43	NC		
10	NC	44	NC		
11	STOP	45	R/W		
12	$\overline{M_{I}}$	46	N/S		
13	AD ₁₅	47	B/W		
14	AD_{14}	48	RESERVED		
15	+5V	49	ĀS		
16	+5V	50	GND		
17	GND	51	CLK		
18	GND	52	+5V		
19	VI	53	GND		
20	NVI	54	SN_2		
21	SEGT	55	AD_1		
22	NMI	56	AD_2		
23	RESET	57	AD_3		
24	$\overline{M_O}$	58	AD_5		
25	MREQ	59	SN ₄		
26	NC	60	NC		
27	NC	61	NC		
28	NC	62	NC		
29	DS	63	AD_4		
30	ST ₃	64	AD_6		
31	ST ₂	65	AD ₇		
32	ST ₁	66	SN ₅		
33	ST ₀	67	SN_6		
34	SN ₃	68	AD ₈		

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 18

Case outline Y

Device types: 02, 05, and 06				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	AD ₉	23	ST ₀	
2	AD ₁₀	24	NC	
3	AD ₁₁	25	NC	
4	AD ₁₂	26	BUSRQ	
5	AD ₁₃	27	WAIT	
6	NC	28	BUSAK	
7	STOP	29	R/W	
8	$\overline{M_{I}}$	30	N/S	
9	AD ₁₅	31	B/W	
10	AD ₁₄	32	RESERVED	
11	V _{CC}	33	ĀS	
12	NC	34	CLK	
13	VI	35	GND	
14	\overline{NVI}	36	AD_1	
15	NMI	37	AD_2	
16	RESET	38	AD_3	
17	$\overline{M_O}$	39	AD ₅	
18	MREQ	40	AD_4	
19	DS	41	AD ₆	
20	ST ₃	42	AD ₇	
21	ST ₂	43	AD ₈	
22	ST ₁	44	AD_0	

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 19

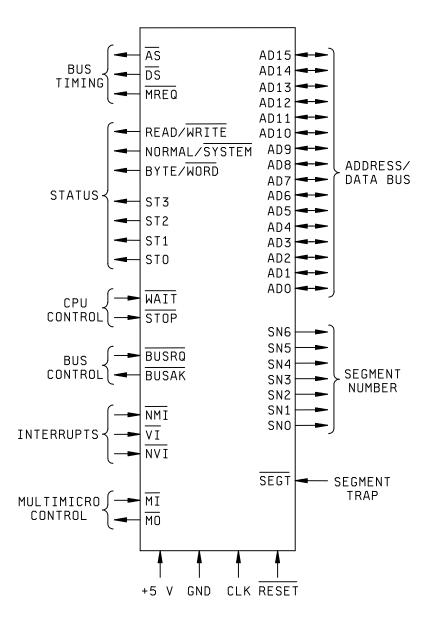


FIGURE 3. Logic functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 20

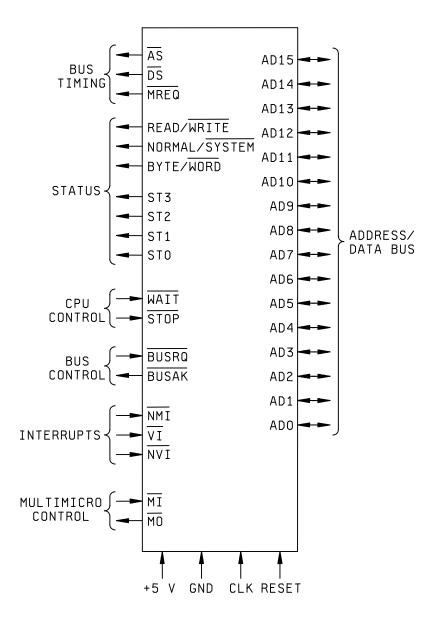


FIGURE 3. Logic functions - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 21

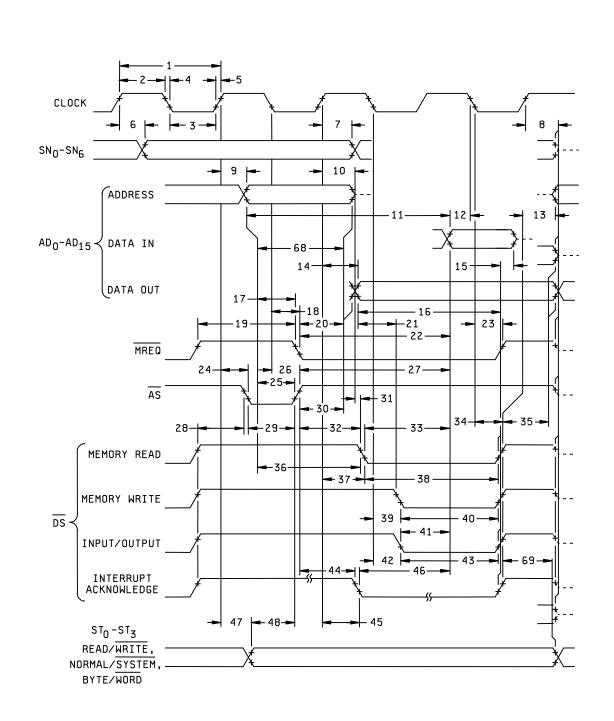


FIGURE 4. Timing waveforms.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		8003
		REVISION LEVEL F	SHEET 22

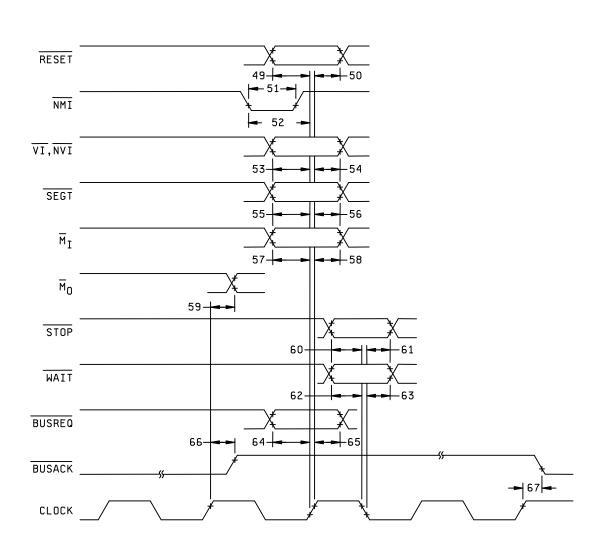


FIGURE 4. <u>Timing waveforms</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 23

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters	1*, 2, 3,
(method 5004)	7, 8, 9
Group A test requirements	1, 2, 3, 7, 8,
(method 5005)	9, 10, 11**
Groups C and D end-point	1, 2, 3
electrical parameters (method 5005)	

^{*} PDA applies to subgroup 1.

- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroups 7 and 8 shall include verification of the functionality of the device. It forms a part of the vendor's test tape and shall be maintained and available from the approved sources of supply.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 24

^{**} Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.
 - 6.7 Pin descriptions.

<u>Name</u>	Description
AD ₀ – AD ₁₅ (Address/Data Bus)	$\underline{Inputs/outputs,\ active\ High,\ three-state}.\ \ These\ multiplexed\ address\ and\ data\ lines\ are\ used\ for\ both\ I/O\ and\ to\ address\ memory.\ \ AD_{15}=MSB.$
AS (Address Strobe)	Output, active Low, three-state. The rising edge of \overline{AS} indicates addresses are valid.
BUSAK (Bus Acknowledge)	Output, active Low. A low on this line indicates the CPU has relinquished control of the bus. This occurs after completion of the current machine cycle. BUSAK goes inactive one clock cycle after the synchronization of BUSRQ being released.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 25

6.7 Pin descriptions - Continued.

Description <u>Name</u>

BUSRQ Input, active Low. This line must be driven Low to request the bus from the CPU. It is (Bus Request)

sampled for being active at the beginning of each machine cycle. When it is released, it

is synchronized with the next rising clock edge.

 \overline{DS} (Data Strobe) Output, active Low, three-state. This line times the data in and out of the CPU.

MREQ Output, active Low, three-state. A low on this line indicates that the address/data bus (Memory Request)

holds a memory address.

MI. MO (Multi-Micro In, Multi-Micro Out) Input and output, active Low. These two lines form a resource-request daisy chain that allows one CPU in a multi-microprocessor system to access a shared resource. MI is sampled on the rising edge of T₃ of the last machine cycle of any instruction and

Internally latched.

 $\overline{\mathsf{NMI}}$

Edge triggered, input, active Low. A high-to-low transition on NMI request a (Non-Maskable Interrupt)

non-maskable interrupt. The NMI interrupt has the highest priority of the three types of interrupts. The internal NMI latch is sampled on the rising edge of T₃ of the last machine

cycle of any instruction.

 \overline{NVI} (Non-Vectored Interrupt) Input, active Low. A low on this line requests a non-vectored interrupt. It is sampled on

the rising edge of T₃ of the last machine cycle of any instruction.

CLK

(System Clock)

Input. CLK is a 5 V single-phase time-base input.

RESET (Reset) Input, active Low. A low on this line resets the CPU. RESET must be active for at least

five clock cycles.

 R/\overline{W}

Output, Low = Write, three-state. R/W indicates that the CPU is reading from or writing (Read/Write)

to memory or I/O.

 $ST_0 - ST_3$ (Status)

Outputs, active High, three-state. These lines specify the CPU status.

STOP

Input, active Low. This input can be used to single-step instruction execution. It is (Stop) sampled on the last falling clock edge preceding any first instruction fetch cycle.

 \overline{V} I

Input, active Low. A low on this line requests a vectored interrupt. It is sampled on the

rising edge of T₃ of the last machine cycle of any instruction.

WAIT (Wait)

(Vectored Interrupt)

(Normal/System Mode)

Input, active Low. This line indicates to the CPU that the memory or I/O device is not ready for data transfer. It is sampled on the falling edge of T₂ and any subsequent WAIT states.

B/W

Output, Low = word, three-state. This signal defines the type of memory reference on the

16-bit address/data bus.

Output, Low = system mode, three-state. N/\overline{S} indicates the CPU is in the normal or

system mode.

 $SN_0 - SN_6$

(Byte/Word)

Outputs, active High, three-state. These lines provide the 7-bit segment number used to (Segment Number)

address one of 128 segments by the memory management unit. Outputs by the 01, 03,

and 04 parts only. $SN_6 = MSB$.

SEGT

Input, active Low. The memory management unit interrupts the CPU with a low on this (Segment Trap) line when the MMU detects a segmentation trap. Input on the 01, 03, and 04 parts only.

It is sampled on the rising edge of T₃ of the last machine cycle of any instruction.

STANDARD MICROCIRCUIT DRAWING

SIZE A		8003
	REVISION LEVEL F	SHEET 26

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 05-03-23

Approved sources of supply for SMD 80003 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8000301UA	0C7V7	Z0800104LMB
8000301XA	0C7V7	Z0800104CMB
8000301ZA	<u>3</u> /	Z8001K2/883
8000302QA	0C7V7	Z0800204CMB
8000302YA	0C7V7	Z0800204LMB
8000303UA	0C7V7	Z0800106LMB
8000303XA	0C7V7	Z0800106CMB
8000303ZA	<u>3</u> /	Z8001AK2/883
8000304UA	0C7V7	Z0800110LMB
8000304XA	0C7V7	Z0800110CMB
8000304ZA	<u>3</u> /	Z8001BK2/883
8000305QA	0C7V7	Z0800210CMB
8000305YA	0C7V7	Z0800210LMB
8000306QA	0C7V7	Z0800206CMB
8000306YA	0C7V7	Z0800206LMB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGE
numberVendor name
and address

0C7V7

QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Processors - Application Specialized category:

Click to view products by E2v manufacturer:

Other Similar products are found below:

MCIMX27MOP4A MCIMX6D5EYM12AD MCIMX250DJM4A MCIMX6L3EVN10AB MCIMX6L7DVN10AB MCIMX6L8DVN10ABR
T1042NSN7PQB MCIMX507CVK8B MCIMX355AJQ5C MCIMX355AJQ5C MCIMX6Q4AVT10AD MCIMX6Q4AVT10AD
MCIMX31CVKN5D AT97SC3205P-SDK2 AT97SC3205T-SDK2 MCIMX6X1CVO08AB MCIMX353CJQ5C MCIMX6Q6AVT08AC
MCIMX6L8DVN10AB MIMX8MQ6DVAJZAA MIMX8MD6CVAHZAA MCIMX6V2CVM08AB MCIMX6G2CVK05AB
MC9328MXLCVM15 MCIMX6G3CVM05AB MCIMX6G2CVM05AB MCIMX6G3CVK05AB MCIMX6G1AVM07AA
MCIMX6G1AVM07AB MCIMX6G1AVM05AB MCIMX6V7DVN10AB MCIMX6G2DVK05AB MCIMX535DVV1C2 GOLDELOX
PICASO AGB75LC04-QU-E AT97SC3204-U2A16-00 MCIMX6L2DVN10AA P2041NSE7PNC MCIMX6X2EVN10ABR
BM94803AEKU-Z MCIMX31CJMN4C MCIMX31CVKN5D MC9328MXLVM20 MCIMX233CJM4C MCIMX233DAG4C
MCIMX233DJM4C MCIMX251AJM4A MCIMX253DJM4A MCIMX257DJM4A