INCH-POUND MIL-M-38510/113B 21 June 2005 SUPERSEDING MIL-M-38510/113A 10 February 2005

MILITARY SPECIFICATION

MICROCIRCUITS, LINEAR, 8 BIT, DIGITAL-TO-ANALOG CONVERTERS, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

Reactivated for new design as of 10 February 2005. May be used for either new or existing design acquisition.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF-38535

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, 8 bit, digital-to-analog converters. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4)

1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>							
01	D/A Converter, 8 bit, 0.19% linearity							
02	D/A Converter, 8 bit, 0.10% linearity							

1.2.2 <u>Device class</u>. The device class is the product assurance level as defined in MIL-PRF-38535.

1.2.3 <u>Case outline</u>. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line

1.3 Absolute maximum ratings.

Supply voltage [+V _{cc} – (-V _{cc})]	36 Vdc
Voltage, digital input to negative supply [V _{logic} – (-V _{cc})]	0 to 36 Vdc
Voltage, logic control (V _{LC})	-V _{cc} to +V _{cc}
Reference voltage input (V14, V15)	-Vcc to +Vcc
Reference input current (I ₁₄)	5.0 mA
Reference input differential voltage [(V14 – V15)]	±18 Vdc
Lead temperature (soldering, 60 sec)	+300°C.
Junction temperature (T _J)	+175°C
Storage temperature	-65°C to +150°C

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43218-3990, or emailed to <u>mailto:linear@dscc.dla.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

1.4 Recommended operating conditions.

Supply voltage range	±5 Vdc to ±15 Vdc <u>1</u> / <u>2</u> /
Ambient temperature range	-55°C to +125°C

1.5 Power and thermal characteristics.

Case outline	<u>outline Package</u> Maximum allowa power dissipatio		$\underline{\text{maximum}}\theta_{\text{JC}}$	$\underline{\text{maximum}} \theta_{\text{JA}}$
E	Dual-in-line	400 mW @ T _A = 125°C	35°C/W	120°C/W

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this specification and the references cited herein the text of this document shall takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

- $\underline{1}$ A slight degradation in linearity can occur when the supply is near the ±5 V end of the recommended operating range.
- $\underline{2}$ / Sequence of power supply turn-on must be -V_{cc} prior to +V_{cc} unless the positive supply has current limiting resistance of 100 $\Omega \pm 10\%$. If a current limiting resistance is used, a slight degradation in linearity will occur.

3.3.1 <u>Terminal connections and functional block diagram.</u> The terminal connections and functional block diagram shall be as specified on figure 1.

3.3.2 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.3 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements</u>. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 56 (see MIL-PRF-38535, appendix A).

4. VERIFICATION.

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.

NOTE: If accelerated high-temperature test conditions are used, the device manufacturer shall ensure that at least 85 percent of the applied voltage is dropped across the device at temperature. The device is not considered functional under accelerated test conditions.

- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

				Lii	mits	
Characteristics	Symbol	Conditions <u>1</u> /	Device	Min	Max	Units
		$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	type			
		(table III and figures 2, 3, and 4				
		unless otherwise indicated)				
Supply current from +V _{cc}	Icc+	All input bits high	All	0.4	3.8	mA
Supply current from -Vcc	Icc-	All input bits high	All	-7.8	-0.8	mA
Full scale current	IFS	All input bits high,	01	1.94	2.04	mA
		Measure Io	02	1.984	2.000	
	IFS	All input bits low,	01	1.94	2.04	mA
		Measure lo	02	1.984	2.000	
Zero scale current	Izs	All input bits low, measure Io	01	-2.0	2.0	μΑ
			02	-1.0	1.0	
	Izs	All input bits high, measure lo	01	-2.0	2.0	μA
	120		02	-1.0	1.0	
Power supply sensitivity	Pssl _{FS} +1	All input bits high, measure Io	All	-4.0	4.0	μΑ
from +Vcc		+V _{cc} = 4.5 V to +5.5 V, -V _{cc} = -18 V				
	Psslfs+1	All input bits low, measure $\overline{10}$	All	-4.0	4.0	μA
		+Vcc = 4.5 V to +5.5 VVcc = -18 V				
Power supply sensitivity	Psslfs+2	All input bits high, measure I_0	All	-8.0	8.0	uА
from +V _{cc}		+Vcc = 12 V to 18 V, -Vcc = -18 V				
	$\overline{Pssles} \pm 2$	All input hits low measure lo	All	-8.0	8.0	μA
	1 001 0 1 2	$+V_{cc} = 12 \text{ V to } 18 \text{ V} -V_{cc} = -18 \text{ V}$				
Power supply sensitivity	Peelre-1	All input bits high measure lo	All	-8.0	8.0	ıιΔ
from -V _{cc}	1 33173 1	$+V_{cc} = 18 \text{ V}, -V_{cc} = -12 \text{ V} \text{ to } -18 \text{ V}$	7.01	0.0	0.0	μΛ
		All input hits low measure lo	All	-8.0	8.0	μA
	1 3311 3 - 1	\pm V = = 18 V = V = = -12 V to -18 V				
Power supply sensitivity	Peoleo-2	All input bits high measure lo	۵۱	-2.0	2.0	
from -V _{cc}	1 22122	$+V_{cc} = 18 \text{ V} -V_{cc} = -4.5 \text{ V} \text{ to } -5.5 \text{ V}$		-2.0	2.0	μΛ
		$I_{REF} = 1 \text{ mA}$				
	Pssles - 2	All input hits low measure 10	All	-2.0	2.0	μA
	100110 2	$+V_{22} = 18 V_{-1}V_{22} = -4.5 V_{10} = 5.5 V_{-10}$				
Output current range	IreR4	All input bits high measure lo	All	21		mA
output ouriont range	15111	$-V_{CC} = -10 \text{ V}$. VRFF = 15 V	7.41	2.1		110 (
			All	2.1		mA
	IFSR1					
		$-V_{CC} = -10$ V, $V_{REF} = 15$ V	A 11	4.0		
Output current range	IFSK2	All input bits high, measure I_0	All	4.2		mA
		$-v_{CC} = -12 v$, $v_{REF} = 23 v$	ΔII	10		m۸
	IFSR2	All input bits low, measure lo		4.2		IIIA
		-V _{CC} = -12 V, V _{REF} = 25 V				

TABLE I. Electrical performance characteristics.

					Limi		
Characteristics	Symbol	Conditi	ons <u>1</u> /	Device	Min	Max	Units
		$-55^{\circ}C \le T_{A}$.≤+125°C	type			
		(table III and fig	ures 2, 3, and 4				
		unless otherw	vise indicated)				
Reference bias current	I _{REF} -	All input bits low		All	-3.0	0	μΑ
High level input current	lін	All input bits V _{IN} = 18 measured separatel	8 V, each input y	All	-0.05	10.0	μΑ
Low level input current	lı∟	All input bits V _{IN} = -1 measured separatel	0 V, each input y	All	-10.0		μA
Full scale current at	I _{FS} +	All input bits high, m	easure l _o ,	01	1.90	2.08	mA
+18 V compliance		V _{IO} = 18 V		02	1.94	2.04	
	IFS +	All input bits low, me	easure lo,	01	1.90	2.08	mA
		VIO = 18 V		02	1.94	2.04	
Full scale current at	I _{FS} -	All input bits high, m	easure l _o ,	01	1.90	2.08	mA
-10 V compliance		V _{IO} = -10 V		02	1.94	2.04	
	IFS -	All input bits low, me	easure lo,	01	1.90	2.08	mA
		VIO = -10 V		02	1.94	2.04	
Change in full scale	ΔI_{FSC}	All input bits high,	$25^\circ C \leq T_{\textbf{A}} \leq 125^\circ C$	All	-4.0	4.0	μΑ
current due to voltage compliance		measure I _o , V _{IO} = 18 V to -10 V	T _A = -55°C		-8.0	8.0	
	$\Delta \overline{IFSC}$	All input bits low,	$25^\circ C \leq T_{\textbf{A}} \leq 125^\circ C$	All	-4.0	4.0	μΑ
		measure lo,	T _A = -55°C		-8.0	8.0	
		$\overline{\text{VIO}}$ = 18 V to -10 V					
Positive bit errors	$\Sigma NL +$. ΣPos	itive bit errors	01	0	0.19	%
		Measure I _o ,	IFS	02	0	0.10	
	$\overline{\Sigma NI} +$	$-(\Sigma Pos$	sitive bit errors	01	0	0.19	%
		Measure Io, $\left(\frac{2100}{100000000000000000000000000000000$	IFS	02	0	0.10	
Negative bit errors	$\Sigma NL -$	Manager (ΣNeg	ative bit errors)	01	-0.19	0	%
			IFS	02	-0.10	0	
	$\overline{\Sigma NL} =$	$-(\Sigma Ne)$	gative bit errors	01	-0.19	0	%
	2	Measure IO, $\left(\frac{2.10}{10}\right)$	IFS	02	-0.10	0	

TABLE I. Electr	ical performance	characteristics -	- Continued.
-----------------	------------------	-------------------	--------------

				Lim						
Characteristics	Symbol	$\label{eq:conditions} \frac{1}{2} -55^\circ C \leq T_A \leq +125^\circ C \\ \mbox{(table III and figures 2, 3, and 4 } \\ \mbox{unless otherwise indicated)}$	Device type	Min	Мах	Units				
Positive and negative bit	$\Delta \Sigma NL$	Measure I ₀ , $ \Sigma NL + - \Sigma NL - $	01	-0.05	0.05	%				
error difference			02	-0.03	0.03					
	$\Lambda \overline{\Sigma NL}$	Measure \overline{IO} $\Sigma\overline{NI} + -\Sigma\overline{NI} -$	01	-0.05	0.05	%				
			02	-0.03	0.03					
Positive relative accuracy	NL+	Measure I _o , $ \Sigma NL + + \Delta \Sigma NL $	01	0	0.19	%				
			02	0	0.10					
	\overline{NL} +	Measure \overline{IO} $\Sigma \overline{NI} + + \Delta \Sigma \overline{NI}$	01	0	0.19	%				
			02	0	0.10					
Negative relative	NL-	Measure I ₀ , $ \Sigma NL - + \Delta \Sigma NL $	01	0	0.19	%				
accuracy			02	0	0.10					
	NL –	Measure \overline{IO} $\Sigma \overline{NI} = \pm \Lambda \Sigma \overline{NI}$	01	0	0.19	%				
			02	0	0.10					
Monotonicity	Δ(i)	Measure I ₀ , $(I_{ON}-I_{ON-1}) \ge 0$ at each major carry point	All	0	16.0	μΑ				
	$\Delta(\overline{i})$	Measure \overline{IO} , $(\overline{ION} - \overline{ION - 1}) \ge 0$ at each major carry point	All	0	16.0	μΑ				
Output symmetry	Δlfs	IFS – IFS	01	-8.0	8.0	μΑ				
			02	-4.0	4.0					
Full scale current temperature coefficient	T _C (I _{FS})	All input bits high, measure Io	All	-50.0	50.0	ppm/°C				
	Tc(IFS)	All input bits low, measure lo	All	-50.0	50.0	ppm/°C				
Propagation delay time, high-to-low level	t _{PHL}	Figure 3, measure Vo	All	6.0	60.0	ns				
Propagation delay time, low-to-high level	t _{PLH}	Figure 3, measure Vo	All	6.0	60.0	ns				
Reference amplifier input slew rate	dl _o /dt	Figure 4, measure V_0 , T _A = 25°C	All	1.5		mA/μs				
Settling time high-to-low	t _{sн∟}	Figure 3, output within 1/2 LSB of final value of I_0 , $T_A = 25^{\circ}C$	All	10	135	ns				
Settling time low-to-high	t _{sLH}	Figure 3, output within 1/2 LSB of final value of I_0 , $T_A = 25^{\circ}C$	All	10	135	ns				

TABLE I.	Electrical	performance	characteristics -	- Continued.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3	1*, 2, 3
Group A test requirements	1, 2, 3,	1, 2, 3,
	9, 10, 11, 12	9, 10, 11, 12
Group B electrical test parameters when	1, 2, 3 and	N/A
using the method 5005 QCI option	table IV delta	
	limits	
Group C end-point electrical	1, 2, 3 and	1 and table
parameters	table IV delta	IV delta
	limits	limits
Group D end-point electrical	1, 2, 3	1
parameters		

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

Terminal connections.

Functional block diagram.

Figure 1. Terminal connections and functional block diagram.

NOTES:

- 1/ The reference D/A converter selected should have a resolution of 8 bits or more, and a linearity of 0.015% or better.
- $\underline{2}$ / The voltage reference should have an accuracy of $\pm 0.02\%$ or better.
- $\underline{3}$ / All relays are shown in their unexcited state.

FIGURE 2. Test circuit for static tests.

NOTES:

- 1. For turn-ON, $V_L = 2.7 \text{ V}$; for turn-OFF, $V_L = 0.7 \text{ V}$.
- 2. Minimize capacitance at this node, by using short runs and adequate spacing between runs.
- 3. Diodes must be Schottky type (MBD 501 or equivalent).
- 4. Bandwidth of oscilloscope used for waveform measurement should be 50 MHz minimum; saturation of preamp must be avoided.

FIGURE 3. Test circuit for propagation delay and settling time, device type 01 and 02.

FIGURE 3. <u>Test circuit for propagation delay and settling time, device type 01 and 02</u> – Continued.

FIGURE 4. Test circuit for slew rate, device types 01 and 02.

Subaroup	Symbol	MIL-STD-	Test		Adapter pin numbers							Energized	Measured pin		pin	-		
<u>-</u>	-,	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit		ľ
1	I _{cc} +	3005	1	11111111			+15	-15	+15	-15	0			11	I ₁	mΑ	$I_{cc} + = I_1$	(
T _A = 25°C	I _{cc} -		2	11111111			+15	-15	+15	-15	0			12	I ₂	mΑ	$ _{CC^{-}} = _{2}$	-
	I _{FS}		3 <u>1</u> /	11111111	-		+15	-15	+15	-15	0	11111111		24	E ₁	V	$I_{FS} = 1.992 - 0.01E_1$	1
	IFS		4	00000000			+15	-15	+15	-15	0	11111111	K2	24	E ₂	V	 IFS = 1.992 - 0.01E ₂	1
	Izs		5	00000000	1		+15	-15	+15	-15	0		K4	24	E ₃	V	$I_{zs} = -10E_3$	ĺ
	Izs		6	11111111	1		+15	-15	+15	-15	0		K2, K4	24	E ₄	V	$\overline{\text{Izs}} = -10\text{E}_4$	
	P _{ss} I _{Fs} +1		7	11111111			5.5	-18	+15	-15	0	11111111		24	E ₅	V	$P_{SS}I_{FS}+1 = -10(E_5-E_6)$	1
			8	11111111			4.5	-18	+15	-15	0	11111111		24	E ₆	V		
	$\overline{Pssl_{FS}+1}$		9	00000000			5.5	-18	+15	-15	0	11111111	K2	24	E ₇	V	$\overline{Psslfs+1} = -10(E_7-E_8)$	
			10	0000000			4.5	-18	+15	-15	0	11111111	K2	24	E ₈	V		<u> </u>
	P _{ss} I _{Fs} +2		11	11111111			18	-18	+15	-15	0	11111111		24	E ₉	V	$P_{SS}I_{FS}+2 = -10(E_9-E_{10})$	
			12	11111111			12	-18	+15	-15	0	11111111		24	E ₁₀	V		
	$\overline{\text{PssIFs}+2}$		13	00000000			18	-18	+15	-15	0	11111111	K2	24	E ₁₁	V	$\overline{PssIFs + 2} = -10(E_{11}-E_{12})$	L
			14	00000000			12	-18	+15	-15	0	11111111	K2	24	E ₁₂	V		L
	P _{ss} I _{Fs} -1		15	11111111			18	-12	+15	-15	0	11111111		24	E ₁₃	V	$P_{SS}I_{FS}-1=-10(E_{13}-E_{9})$	⊢
	PssIFs - 1		16	00000000			18	-12	+15	-15	0	11111111	K2	24	E ₁₄	V	$\overline{PssIFs - 1} = -10(E_{14}-E_{11})$	
	P _{ss} I _{Fs} -2		17	11111111			18	-5.5	+15	-15	0	11111111	K5	24	E ₁₅	V	P _{SS} I _{FS} -2= -10(E ₁₅ -E ₁₆)	L
			18	11111111			18	-4.5	+15	-15	0	11111111	K5	24	E ₁₆	V		⊢
	Psslfs – 2		19	00000000			18	-5.5	+15	-15	0	11111111	K2, K5	24	E ₁₇	V	Psslfs - 2 = -10(E ₁₇ -E ₁₈)	L
			20	00000000			18	-4.5	+15	-15	0	11111111	K2, K5	24	E ₁₈	V		⊢.
	I _{FS} R ₁		21	11111111	15		+15	-10	30	-5	0		K1, K4	26	E ₁₉	V	$I_{FS}R_1 = 0.2E_{19}$	
	IFSR1		22	00000000	15		+15	-10	30	-5	0		K1, K2, K4	26	E ₂₀	V	$I_{FSR1} = 0.2E_{20}$	
	IFSR2		23	11111111	25		+15	-12	30	-5	0		K1, K4	26	E ₂₁	V	$I_{FS}R_2 = 0.2E_{21}$	-
	IFSR2		24	00000000	25		+15	-12	30	-5	0		K1, K2, K4	26	E ₂₂	V	$I_{FSR2} = 0.2E_{22}$	
	I _{REF} -		25	00000000		0	+15	-15	+15	-15	0		K3	10	l ₃	A	$I_{REF} = I_3 \times 10^\circ$	⊢_
	I _{IH1}		26 <u>2</u> /	10000000			+15	-15	+15	-15	0			1	4	A	$I_{IH1} = I_4 \times 10^{\circ}$	
	I _{IH2}		27 <u>2</u> /	01000000			+15	-15	+15	-15	0			2	I ₅	A	$I_{IH2} = I_5 \times 10^6$	-(
	I _{IH3}		28 <u>2</u> /	00100000			+15	-15	+15	-15	0			3	I ₆	Α	$I_{IH3} = I_6 \times 10^6$	-(
	I _{IH4}		29 <u>2</u> /	00010000			+15	-15	+15	-15	0			4	1 ₇	Α	$I_{IH4} = I_7 \times 10^6$	-(
	I _{IH5}		30 <u>2</u> /	00001000			+15	-15	+15	-15	0			5	I ₈	Α	$I_{\rm IH5} = I_8 \times 10^6$	-(
	I _{IH6}		31 <u>2</u> /	00000100			+15	-15	+15	-15	0			6	l ₉	Α	$I_{IH6} = I_9 \times 10^6$	-0
	I _{IH7}		32 <u>2</u> /	00000010			+15	-15	+15	-15	0			7	I ₁₀	Α	$I_{IH7} = I_{10} \times 10^{6}$	-0
	I _{IH8}		33 <u>2</u> /	0000001			+15	-15	+15	-15	0			8	I ₁₁	Α	$I_{IH8} = I_{11} \times 10^{6}$	-0
	I _{IL1}		34 <u>2</u> /	01111111			+15	-15	+15	-15	0			1	I ₁₂	Α	$I_{IL1} = I_{12} \times 10^6$	- 1
	I _{IL2}		35 <u>2</u> /	10111111	1		+15	-15	+15	-15	0			2	I ₁₃	Α	$I_{\rm IL2} = I_{13} \times 10^6$	-
	I _{IL3}		36 <u>2</u> /	11011111			+15	-15	+15	-15	0			3	I ₁₄	А	$I_{IL3} = I_{14} \times 10^6$	
	I _{IL4}		37 <u>2</u> /	11101111			+15	-15	+15	-15	0			4	I ₁₅	Α	$I_{IL4} = I_{15} X 10^6$	L
	I _{IL5}		38 <u>2</u> /	11110111			+15	-15	+15	-15	0			5	I ₁₆	А	$I_{1L5} = I_{16} \times 10^{6}$	-
	I _{IL6}		39 <u>2</u> /	11111011			+15	-15	+15	-15	0			6	I ₁₇	А	$I_{IL6} = I_{17} \times 10^6$	L -
	I _{IL7}		40 <u>2</u> /	11111101			+15	-15	+15	-15	0			7	I ₁₈	Α	$I_{1L7} = I_{18} \times 10^6$	<u> </u>
	I _{IL8}		41 <u>2</u> /	11111110			+15	-15	+15	-15	0			8	I ₁₉	Α	$I_{\rm IL8} = I_{19} \times 10^6$	- L

TABLE III. Group A inspection for device types 01 and 02.

	1	1	1															
Subgroup	Symbol	MIL-STD- 883	Test			/	Adapte	er pin	numb	ers			Energized	Me	asured	pin	Equation	1
		method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit		
1	V _{CAL1}		42				+15	-15	30	0	18	00000000	K3	24	E ₂₃	V	$V_{CAL1} = E_{23}$	
$T_A = 25^{\circ}C$	I _{FS} +		43	11111111			+15	-15	30	0	18	11111111		24	E ₂₄	V	I_{FS} + = 1.992 - 0.01(E_{24} - E_{23})	
	IFS +		44	00000000			+15	-15	30	0	18	11111111	K2	24	E ₂₅	V	$\overline{I_{FS} +} = 1.992 - 0.01(E_{25} - E_{23})$	
	V _{CAL2}		45				+15	-15	+15	-15	-10	00000000	K3	24	E ₂₆	V	$V_{CAL2} = E_{26}$	
	I _{FS} -		46	11111111			+15	-15	+15	-15	-10	11111111		24	E ₂₇	V	$I_{FS} = 1.992 - 0.01(E_{27} - E_{26})$	
	IFS -		47	00000000			+15	-15	+15	-15	-10	11111111	K2	24	E ₂₈	V	IFS-= 1.992-0.01(E ₂₈ -E ₂₆)	
	∆l _{FSC}		48														$\Delta I_{FSC} = 1000(I_{FS} + -I_{FS} -)$	
	$\Delta \overline{IFSC}$		49														$\Delta \overline{\text{IFSC}} = 1000 \left(\overline{\text{IFS} + - \text{IFS} -}\right)$	
	V _{CAL3}		50	00000000			+15	-15	+15	-15	0	00000000		24	E ₂₉	V	$V_{CAL3} = E_{29}$	
	V _{CAL4}		51	11111111			+15	-15	+15	-15	0	11111111		24	E ₃₀	V	$V_{CAL4} = E_{30}$	
	V _{CAL5}		52	00000000			+15	-15	+15	-15	0	11111111	K2	24	E ₃₁	V	$V_{CAL5} = E_{31}$	
	V _{CAL6}		53	11111111			+15	-15	+15	-15	0	00000000	K2	24	E ₃₂	V	$V_{CAL6} = E_{32}$	_
	NL ₁		54	1000000			+15	-15	+15	-15	0	10000000		24	E ₃₃	V	$NL_{1} = \left(\begin{array}{c} (E_{33} - V_{CAL3}) \\ I_{FS} \times 10^{3} \end{array}\right) -$	
																	$\frac{(128)}{(255)} \ \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$	
	NL ₂		55	01000000			+15	-15	+15	-15	0	01000000		24	E ₃₄	V	$NL_{2} = \left(\begin{array}{c} \frac{\left(E_{34} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$	
																	$\frac{(64)}{(255)} \ \frac{(VCAL4-VCAL3)}{IFS\times 10^3}$	
	NL ₃		56	00100000			+15	-15	+15	-15	0	00100000		24	E ₃₅	V	$NL_{3} = \left(\begin{array}{c} \frac{\left(E_{35} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$	
																	$\frac{(32)}{(255)} \frac{(VCAL4 - VCAL3)}{IFS \times 10^3}$	
	NL₄		57	00010000			+15	-15	+15	-15	0	00010000		24	E ₃₆	V	$NL_{4} = \left(\begin{array}{c} \frac{\left(E_{36} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$	
																	$\frac{(16)}{(255)} \ \frac{(VCAL4 - VCAL3)}{I_{FS} \times 10^3}$	
	NL ₅		58	00001000			+15	-15	+15	-15	0	00001000		24	E ₃₇	V	$NL_{5} = \left(\begin{array}{c} \frac{\left(E_{37} - VCAL3\right)}{IFS \times 10^3} \end{array}\right)^{-1}$	
																	$\frac{(8)}{(255)} \frac{(VCAL4 - VCAL3)}{IFS \times 10^3}$	

-																		_
Subaroup	Symbol	MIL-STD- 883	Test			/	Adapte	er pin	numbe	ers			Eneraized	Me	easured	pin	Equation	
0 1	,	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit		
1 T _A = 25°C	NL ₆		59	00000100			+15	-15	+15	-15	0	00000100		24	E ₃₈	V	$\begin{array}{l} NL_6 = \left(\begin{array}{c} \left(\underline{E}_{38} - VCAL3 \right) \\ \mathbf{IFS} \times 10^3 \end{array} \right) \\ \hline \left(\begin{array}{c} (4) \\ (255) \end{array} \\ \end{array} \\ \begin{array}{c} \left(\frac{VCAL4 - VCAL3}{IFS \times 10^3} \right) \end{array} \end{array}$	
	NL7		60	00000010			+15	-15	+15	-15	0	00000010		24	E ₃₉	V	$ \begin{array}{c} NL_{7} = \left(\begin{array}{c} \displaystyle \frac{\left(E_{39} - VCAL3\right)}{IFS \times 10^{3}} \end{array} \right) \\ \\ \displaystyle \frac{(2)}{(255)} \begin{array}{c} \displaystyle \frac{(VCAL4 - VCAL3)}{IFS \times 10^{3}} \end{array} \end{array} $	
	NL8		61	00000001			+15	-15	+15	-15	0	00000001		24	E ₄₀	V	$ \begin{array}{c} NL_8 = \left(\begin{array}{c} \displaystyle \frac{\left(E_{40} - VCAL3\right)}{IFS \times 10^3} \end{array} \right) \text{-} \\ \displaystyle \frac{(1)}{(255)} \begin{array}{c} \displaystyle \frac{(VCAL4 - VCAL3)}{IFS \times 10^3} \end{array} \end{array} $	
	NL1		62	01111111			+15	-15	+15	-15	0	1000000		24	E ₄₁	V	$\frac{\overline{NL}_1}{(128)} = \left(\begin{array}{c} \frac{(E_{41} - VCAL5)}{IFS \times 10^3} \end{array} \right) - \frac{(128)}{(255)} \frac{(VCAL6 - VCAL5)}{IFS \times 10^3}$	
	NL2		63	10111111			+15	-15	+15	-15	0	01000000		24	E ₄₂	V	$\overline{\text{NL}_2} = \left(\begin{array}{c} \left(\underline{\text{E}_{42} - \text{V}_{\text{CAL5}}}\right)\\ \overline{\text{I}_{\text{FS}} \times 10^3} \end{array}\right) - \\ \hline \left(\frac{64)}{(255)} \frac{(\text{V}_{\text{CAL6}} - \text{V}_{\text{CAL5}})}{\overline{\text{I}_{\text{FS}} \times 10^3}} \\ \end{array}$	
	NL3		64	11011111			+15	-15	+15	-15	0	00100000		24	E ₄₃	V	$\label{eq:NL3} \begin{array}{ c c c }\hline \hline NL3 = \left(\begin{array}{c} \left(E_{43} - V_{CAL5} \right) \\ \hline I_{FS} \times 10^3 \end{array} \right) \\ \hline \left(\begin{array}{c} (32) \\ \hline (255) \end{array} \begin{array}{c} \left(\begin{array}{c} VCAL6 - V_{CAL5} \right) \\ \hline I_{FS} \times 10^3 \end{array} \end{array} \right) \end{array}$	
	NL4		65	11101111			+15	-15	+15	-15	0	00010000		24	E ₄₄	V	$\label{eq:NL4} \overline{\text{NL4}} = \left(\begin{array}{c} \left(\underline{\text{E44} - \text{VCAL5}} \right) \\ \overline{\text{IFS} \times 10^3} \end{array} \right) \text{-} \\ \hline \left(\begin{array}{c} 16 \\ 1255 \end{array} \right) \frac{(\text{VCAL6} - \text{VCAL5})}{\text{IFS} \times 10^3} \end{array}$	
	NL5		66	11110111			+15	-15	+15	-15	0	00001000		24	E ₄₅	V	$\overline{\text{NL5}} = \left(\begin{array}{c} \frac{\left(\text{E45} - \text{VCAL5}\right)}{\text{IFS} \times 10^3} \end{array} \right) \text{-} \\ \frac{(8)}{(255)} \frac{(\text{VCAL6} - \text{VCAL5})}{\text{IFS} \times 10^3} \end{array}$	
	NL6		67	11111011			+15	-15	+15	-15	0	00000100		24	E ₄₆	V	$ \frac{\overline{NL6} = \left(\begin{array}{c} \left(\underline{E46} - VCAL5 \right) \\ \overline{IFS \times 10^3} \end{array} \right) - \\ \frac{(4)}{(255)} \begin{array}{c} \left(\underbrace{VCAL6} - \operatorname{VCAL5} \right) \\ \overline{IFS \times 10^3} \end{array} $	_

Subgroup	Symbol	MIL-STD- 883 method	Test No.			ŀ	Adapte	er pin i	numbe	ers			Energized relays	Me	asured	pin	Equation
				1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state		No.	Value	Unit	-
$T_A = 25^{\circ}C$	NL7		68	11111101			+15	-15	+15	-15	0	00000010		24	E ₄₇	V	$\overline{NL7} = \left(\begin{array}{c} (\underline{E47 - VCAL5}) \\ \overline{IFS \times 10^3} \end{array}\right)$
																	$\frac{(2)}{(255)} \ \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	NL8		69	11111110			+15	-15	+15	-15	0	00000001		24	E ₄₈	V	$\overline{NL_8} = \left(\begin{array}{c} \left(\underline{E_{48} - V_{CAL5}} \right) \\ \overline{I_{FS} \times 10^3} \end{array} \right)^-$
																	$\frac{(1)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	ΣNL ⁺		70														$\Sigma NL^{+} = NL_{i} + NL_{K} +$ (i, k, bits having positive errors)
	$\overline{\Sigma NL^+}$		71														$\overline{\Sigma NL^{+}} = \overline{NLi^{1}} + \overline{NLk^{1}} + \dots$ (i, k, bits having positive errors)
	ΣNL		72														$\Sigma NL = NL_m + NL_n +$ (m, n, bits having negative errors)
	$\overline{\Sigma NL}^{-}$		73														$\overline{\Sigma NL^{-}} = \overline{NLm^{1}} + \overline{NLn^{1}} + \dots$ (m, n, bits having negative errors)
	ΔΣΝL		74														$\Delta \Sigma NL = \left \Sigma NL^+ \right - \left \Sigma NL^- \right $
	$\Delta \Sigma \overline{NL}$		75														$\Delta \Sigma \overline{NL} = \left \Sigma \overline{NL}^+ \right - \left \Sigma \overline{NL}^- \right $
	NL⁺		76														$NL^{+} = \left \Sigma NL^{+} \right + \left \Delta \Sigma NL \right $
	$\overline{NL^+}$		77														$\overline{NL^+} = \left \Sigma \overline{NL}^+ \right + \left \Delta \Sigma \overline{NL} \right $
	NL		78														$NL^{-} = \left \Sigma NL^{-} \right + \left \Delta \Sigma NL \right $
	NL ⁻		79														$\overline{\mathrm{NL}^{-}} = \left \Sigma \overline{\mathrm{NL}}^{-} \right + \left \Delta \Sigma \overline{\mathrm{NL}} \right $
	(I ₀₁) _a		80	10000000			+15	-15	+15	-15	0	10000000		24	E ₄₉	V	$(I_{01})_a = I_{FS} \times \frac{128}{255} - 0.01(E_{49})$
	(I ₀₁)ь		81	01111111			+15	-15	+15	-15	0	01111111		24	E ₅₀	V	$(I_{01})_{b} = I_{FS} \times \frac{127}{255} - 0.01(E_{50})$
	$\Delta(I_{01})$		82														$\Delta(I_{01}) = [(I_{01})_{a} - (I_{01})_{b}] \times 10^{3}$

Subgroup	Symbol	MIL-STD- 883 method	Test No			ļ	Adapte	er pin i	numbe	ers			Energized	Me	asured	pin	Equation
		mounou	110.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	·	No.	Value	Unit	
1 T _A = 25°C	(I ₀₂) _a		83	01000000			+15	-15	+15	-15	0	01000000		24	E ₅₁	V	$(I_{02})_a = I_{FS} \times \frac{64}{255} - 0.01(E_{51})$
	(I ₀₂) _b		84	00111111			+15	-15	+15	-15	0	00111111		24	E ₅₂	V	$(I_{02})_{b} = I_{FS} X \frac{63}{255} - 0.01(E_{52})$
	$\Delta(I_{02})$		85														$\Delta(I_{02}) = [(I_{02})_{a} - (I_{02})_{b}] \times 10^{3}$
	(I ₀₃) _a		86	00100000			+15	-15	+15	-15	0	00100000		24	E ₅₃	V	$(I_{03})_a = I_{FS} X \frac{32}{255} - 0.01(E_{53})$
	(I ₀₃) _b		87	00011111			+15	-15	+15	-15	0	00011111		24	E ₅₄	V	$(I_{03})_b = I_{FS} \times \frac{31}{255} - 0.01(E_{54})$
	$\Delta(I_{03})$		88														$\Delta(I_{03}) = [(I_{03})_{a} - (I_{03})_{b}] \times 10^{3}$
	(I ₀₄) _a		89	00010000			+15	-15	+15	-15	0	00010000		24	E ₅₅	V	$(I_{04})_a = I_{FS} \times \frac{16}{255} - 0.01(E_{55})$
	(I ₀₄) _b		90	00001111			+15	-15	+15	-15	0	00001111		24	E ₅₆	V	$(I_{04})_{b} = I_{FS} \times \frac{15}{255} - 0.01(E_{56})$
	$\Delta(I_{04})$		91														$\Delta(I_{04}) = [(I_{04})_{a} - (I_{04})_{b}] \times 10^{3}$
	(I ₀₅) _a		92	00001000			+15	-15	+15	-15	0	00001000		24	E ₅₇	V	$(I_{05})_a = I_{FS} \times \frac{8}{255} - 0.01(E_{57})$
	(I ₀₅) _b		93	00000111			+15	-15	+15	-15	0	00000111		24	E ₅₈	V	$(I_{05})_{b} = I_{FS} \times \frac{7}{255} - 0.01(E_{58})$
	$\Delta(I_{05})$		94														$\Delta(I_{05}) = [(I_{05})_{a} - (I_{05})_{b}] \times 10^{3}$
	(I ₀₆) _a		95	00000100			+15	-15	+15	-15	0	00000100		24	E ₅₉	V	$(I_{06})_a = I_{FS} \times \frac{4}{255} - 0.01(E_{59})$
	(I ₀₆) _b		96	00000011			+15	-15	+15	-15	0	00000011		24	E ₆₀	V	$(I_{06})_{b} = I_{FS} X \frac{3}{255} - 0.01(E_{60})$
	$\Delta(I_{06})$		97														$\Delta(I_{06}) = [(I_{06})_{a} - (I_{06})_{b}] \times 10^{3}$
	(I ₀₇)a		98	00000010			+15	-15	+15	-15	0	00000010		24	E ₆₁	V	$(I_{07})_a = I_{FS} X \frac{2}{255} - 0.01(E_{61})$
	(I ₀₇) _b		99	00000001			+15	-15	+15	-15	0	00000001		24	E ₆₂	V	$(I_{07})_{b} = I_{FS} \times \frac{1}{255} - 0.01(E_{62})$
	$\Delta(I_{07})$		100														$\Delta(I_{07}) = [(I_{07})_{a} - (I_{07})_{b}] \times 10^{3}$
	(l ₀₈) _b		101	00000000			+15	-15	+15	-15	0	00000000		24	E ₆₃	V	$(I_{08})_{b} = -0.01(E_{63})$
	(I ₀₈)		102														$\Delta(I_{08}) = [(I_{07})_{b} - (I_{08})_{b}] \times 10^{3}$
	∆l _{FS}		103														$I_{FS} - \overline{I_{FS}} = \Delta I_{FS}$

Subaroup	Symbol	MIL-STD-	Test			ŀ	Adapte	er pin	numbe	ers			Eperaized	Me	asured	pin	Equation	D
Cubgroup	Cynibol	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit		ľ
2	I _{cc} +	3005	104	11111111			+15	-15	+15	-15	0			11	I ₂₀	mΑ	$ _{CC} + = _{20}$	(
T _A = 125°C	Icc-		105	11111111			+15	-15	+15	-15	0			12	I ₂₁	mA	$I_{CC^{-}} = I_{21}$	-
	I _{FS}		106 <u>1</u> /	11111111			+15	-15	+15	-15	0	11111111		24	E ₆₄	V	$I_{FS} = 1.992 - 0.01E_{64}$	1
	IFS		107	00000000			+15	-15	+15	-15	0	11111111	K2	24	E ₆₅	V	IFS = 1.992 - 0.01E ₆₅	1
	Izs		108	00000000			+15	-15	+15	-15	0		K4	24	E ₆₆	V	I _{zs} = -10E ₆₆	
	Izs		109	11111111			+15	-15	+15	-15	0		K2, K4	24	E ₆₇	V	$\overline{\text{Izs}} = -10E_{67}$	
	P _{ss} I _{Fs} +1		110	11111111			5.5	-18	+15	-15	0	11111111		24	E ₆₈	V	$P_{SS}I_{FS}+1 = -10(E_{68}-E_{69})$	1
			111	11111111			4.5	-18	+15	-15	0	11111111		24	E ₆₉	V]	
	$\overline{\text{Pssl}_{\text{Fs}}+1}$		112	00000000			5.5	-18	+15	-15	0	11111111	K2	24	E ₇₀	V	$\overline{\text{PssIFs}+1} = -10(\text{E}_{70}-\text{E}_{71})$	
			113	00000000			4.5	-18	+15	-15	0	11111111	K2	24	E ₇₁	V		
	P _{ss} I _{Fs} +2		114	11111111			18	-18	+15	-15	0	11111111		24	E ₇₂	V	$P_{SS}I_{FS}+2 = -10(E_{72}-E_{73})$	
			115	11111111			12	-18	+15	-15	0	11111111		24	E ₇₃	V		
	$\overline{\text{PssIFs}+2}$		116	00000000			18	-18	+15	-15	0	11111111	K2	24	E ₇₄	V	$\overline{\text{PssIFs}+2}$ = -10(E ₇₄ -E ₇₅)	
			117	00000000			12	-18	+15	-15	0	11111111	K2	24	E ₇₅	V		
	P _{ss} I _{Fs} -1		118	11111111			18	-12	+15	-15	0	11111111		24	E ₇₆	V	$P_{ss}I_{Fs}-1 = -10(E_{76}-E_{72})$	
	PssIFs -1		119	00000000			18	-12	+15	-15	0	11111111	K2	24	E ₇₇	V	$\overline{PssIFs - 1} = -10(E_{77}-E_{74})$	
	P _{ss} I _{Fs} -2		120	11111111			18	-5.5	+15	-15	0	11111111	K5	24	E ₇₈	V	P _{SS} I _{FS} -2= -10(E ₇₈ -E ₇₉)	
			121	11111111			18	-4.5	+15	-15	0	11111111	K5	24	E ₇₉	V		
	$\overline{\text{Psslfs}-2}$		122	00000000			18	-5.5	+15	-15	0	11111111	K2, K5	24	E ₈₀	V	$\overline{PssIrs - 2} = -10(E_{80}-E_{81})$	
			123	0000000			18	-4.5	+15	-15	0	11111111	K2, K5	24	E ₈₁	V		
	I _{FS} R ₁		124	11111111	15		+15	-10	30	-5	0		K1, K4	26	E ₈₂	V	$I_{FS}R_1 = 0.2E_{82}$	
	IFSR1		125	00000000	15		+15	-10	30	-5	0		K1, K2, K4	26	E ₈₃	V	IFSR1 = 0.2E ₈₃	2
	I _{FS} R ₂		126	11111111	25		+15	-12	30	-5	0		K1, K4	26	E ₈₄	V	$I_{FS}R_2 = 0.2E_{84}$	4
	IFSR2		127	00000000	25		+15	-12	30	-5	0		K1, K2, K4	26	E ₈₅	V	IFSR2 = 0.2E ₈₅	4
	I _{REF} -		128	00000000		0	+15	-15	+15	-15	0		K3	10	₂₂	Α	$I_{REF} = I_{22} \times 10^6$	
	I _{IH1}		129 <u>2</u> /	10000000		0	+15	-15	+15	-15	0			1	I ₂₃	Α	$I_{\rm IH1} = I_{23} \times 10^{\circ}$	-(
	I _{IH2}		130 <u>2</u> /	01000000		0	+15	-15	+15	-15	0			2	I ₂₄	Α	$I_{1H2} = I_{24} \times 10^6$	-(
	I _{IH3}		131 <u>2</u> /	00100000		0	+15	-15	+15	-15	0			3	I ₂₅	Α	$I_{IH3} = I_{25} \times 10^{6}$	-(
	I _{IH4}		132 <u>2</u> /	00010000		0	+15	-15	+15	-15	0			4	I ₂₆	Α	$I_{1H4} = I_{26} \times 10^{6}$	-(
	I _{IH5}		133 <u>2</u> /	00001000		0	+15	-15	+15	-15	0			5	I ₂₇	Α	$I_{1H5} = I_{27} \times 10^{6}$	-(
	I _{IH6}		134 <u>2</u> /	00000100		0	+15	-15	+15	-15	0			6	I ₂₈	Α	$I_{1H6} = I_{28} \times 10^{\circ}$	-(
	I _{IH7}		135 <u>2</u> /	00000010		0	+15	-15	+15	-15	0			7	I ₂₉	Α	$I_{1H7} = I_{29} \times 10^{6}$	-(
	I _{IH8}		136 <u>2</u> /	00000001		0	+15	-15	+15	-15	0			8	I ₃₀	Α	$I_{\rm IH8} = I_{30} \times 10^{6}$	-(
	I _{IL1}		137 <u>2</u> /	01111111		0	+15	-15	+15	-15	0			1	I ₃₁	Α	$I_{IL1} = I_{31} \times 10^{\circ}$	-
	I _{IL2}		138 <u>2</u> /	10111111		0	+15	-15	+15	-15	0			2	I ₃₂	Α	$I_{IL2} = I_{32} \times 10^{\circ}$	-
	I _{IL3}		139 <u>2</u> /	11011111		0	+15	-15	+15	-15	0			3	I ₃₃	Α	$I_{IL3} = I_{33} \times 10^6$	-
	I _{IL4}		140 <u>2</u> /	11101111		0	+15	-15	+15	-15	0			4	I ₃₄	Α	$I_{IL4} = I_{34} \times 10^6$	-
	I _{IL5}		141 <u>2</u> /	11110111		0	+15	-15	+15	-15	0			5	I ₃₅	Α	$I_{IL5} = I_{35} \times 10^6$	-
	I _{IL6}		142 <u>2</u> /	11111011			+15	-15	+15	-15	0			6	I ₃₆	Α	$I_{IL6} = I_{36} X 10^6$	-
	I _{IL7}		143 <u>2</u> /	11111101			+15	-15	+15	-15	0			7	I ₃₇	Α	$I_{1L7} = I_{37} \times 10^{6}$	-
	I _{IL8}		144 <u>2</u> /	11111110			+15	-15	+15	-15	0			8	I ₃₈	А	$I_{IL8} = I_{38} \times 10^{\circ}$	-

Subgroup	Symbol	MIL-STD-	Tost			/	Adapte	er pin	numbe	ers			Enorgized	Me	asured	pin	Equation
Subgroup	Symbol	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit	
2	V _{CAL1}		145				+15	-15	30	0	18	00000000	K3	24	E ₈₆	V	$V_{CAL1} = E_{86}$
T _A = 125°C	l _{FS} +		146	11111111			+15	-15	30	0	18	11111111		24	E ₈₇	V	I_{FS} + = 1.992-0.01(E_{87} - E_{86})
	IFS +		147	00000000			+15	-15	30	0	18	11111111	K2	24	E ₈₈	V	$\overline{I_{FS} +} = 1.992 - 0.01(E_{88} - E_{86})$
	V _{CAL2}		148				+15	-15	+15	-15	-10	00000000	K3	24	E ₈₉	V	$V_{CAL2} = E_{89}$
	I _{FS} -		149	11111111			+15	-15	+15	-15	-10	11111111		24	E ₉₀	V	$I_{FS} = 1.992 - 0.01(E_{90} - E_{89})$
	IFS -		150	00000000			+15	-15	+15	-15	-10	11111111	K2	24	E ₉₁	V	IFS = 1.992-0.01(E ₉₁ - E ₈₉)
	ΔI_{FSC}		151											-			$\Delta I_{FSC} = 1000(I_{FS} + I_{FS} -)$
	$\Delta \overline{IFSC}$		152														$\Delta \overline{\text{IFSC}} = 1000 \left(\overline{\text{IFS} + - \text{IFS} -}\right)$
	V _{CAL3}		153	00000000			+15	-15	+15	-15	0	00000000		24	E ₉₂	V	$V_{CAL3} = E_{92}$
	V _{CAL4}		154	11111111			+15	-15	+15	-15	0	11111111		24	E ₉₃	V	$V_{CAL4} = E_{93}$
	V _{CAL5}		155	00000000			+15	-15	+15	-15	0	11111111	K2	24	E ₉₄	V	$V_{CAL5} = E_{94}$
	V _{CAL6}		156	11111111			+15	-15	+15	-15	0	00000000	K2	24	E ₉₅	V	$V_{CAL6} = E_{95}$
	NL ₁		157	10000000			+15	-15	+15	-15	0	10000000		24	E ₉₆	V	$NL_{1} = \left(\begin{array}{c} \frac{\left(E_{96} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$
																	$\frac{(128)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL₂		158	01000000			+15	-15	+15	-15	0	01000000		24	E ₉₇	V	$NL_{2} = \left(\begin{array}{c} \frac{\left(E_{97} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$
																	$\frac{(64)}{(255)} \; \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL ₃		159	00100000			+15	-15	+15	-15	0	00100000		24	E ₉₈	V	$NL_{3} = \left(\begin{array}{c} \left(\underline{E_{98} - V_{CAL3}}\right) \\ \overline{I_{FS} \times 10^{3}} \end{array}\right)^{-1}$
																	$\frac{(32)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL₄		160	00010000			+15	-15	+15	-15	0	00010000		24	E ₉₉	V	$NL_{4} = \left(\begin{array}{c} \frac{\left(E_{99} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$
																	$\frac{(16)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL ₅		161	00001000			+15	-15	+15	-15	0	00001000		24	E ₁₀₀	V	$NL_{5} = \left(\begin{array}{c} \frac{\left(E_{100} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) - $
																	$\frac{(8)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$

Subgroup	Symbol	MIL-STD- 883	Test			,	Adapte	ər pin	numb	ers			Energized	Me	easured	pin	
5 1	-	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit	
2 T _A = 125°C	NL ₆		162	00000100			+15	-15	+15	-15	0	00000100		24	E ₁₀₁	V	$NL_{6} = \left(\begin{array}{c} \frac{\left(E_{101} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) - $ $(4) (V_{CAL4} - V_{CAL3})$
										1-					_		(255) IFS×10 ³
	NL ₇		163	00000010			+15	-15	+15	-15	0	00000010		24	E ₁₀₂	V	$NL_{7} = \left(\begin{array}{c} \frac{(E_{102} - V_{CAL3})}{I_{FS} \times 10^{3}} \end{array}\right) - $ $(2) (V_{CAL4} - V_{CAL3})$
																	$\frac{(2)}{(255)} (1000000000000000000000000000000000000$
	NL ₈		164	00000001			+15	-15	+15	-15	0	00000001		24	E ₁₀₃	V	$NL_8 = \left(\begin{array}{c} \frac{\left(E_{103} - V_{CAL3}\right)}{I_{FS} \times 10^3} \end{array} \right) -$
																	$\frac{(1)}{(255)} \frac{(VCAL4 - VCAL3)}{IES \times 10^3}$
	NL1		165	01111111			+15	-15	+15	-15	0	10000000		24	E ₁₀₄	V	$\overline{\text{NL}_{1}} = \left(\begin{array}{c} \frac{(\text{E}_{104} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^{3}} \end{array}\right) - $
																	$\frac{(128)}{(255)} \frac{(VCAL6 - VCAL5)}{IFE \times 10^3}$
	NL2		166	10111111			+15	-15	+15	-15	0	01000000		24	E ₁₀₅	V	$\overline{NL_2} = \left(\begin{array}{c} (\underline{E_{105} - V_{CAL5})} \\ \overline{IFS \times 10^3} \end{array} \right) - $
																	$\frac{(64)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	NL3		167	11011111			+15	-15	+15	-15	0	00100000		24	E ₁₀₆	V	$\overline{\text{NL}_3} = \left(\begin{array}{c} \frac{\left(\text{E}_{106} - \text{V}_{\text{CAL5}}\right)}{\text{IFS} \times 10^3} \end{array} \right) \text{-}$
																	$\frac{(32)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	NL4		168	11101111			+15	-15	+15	-15	0	00010000		24	E ₁₀₇	V	$\overline{NL4} = \left(\begin{array}{c} \frac{\left(E_{107} - V_{CAL5}\right)}{I_{FS} \times 10^3} \end{array} \right) \text{-}$
																	$\frac{(16)}{(255)} \frac{(VCAL6 - VCAL5)}{IFS \times 10^3}$
	NL5		169	11110111			+15	-15	+15	-15	0	00001000		24	E ₁₀₈	V	$\overline{NL_5} = \left(\begin{array}{c} \underline{\left(E_{108} - V_{CAL5} \right)} \\ \overline{I_{FS} \times 10^3} \end{array} \right) \text{-}$
																	$\frac{(8)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	NL6		170	11111011			+15	-15	+15	-15	0	00000100		24	E ₁₀₉	V	$\overline{\text{NL}_6} = \left(\begin{array}{c} \frac{\left(\text{E}_{109} - \text{V}_{\text{CAL5}}\right)}{\text{IFS} \times 10^3} \end{array} \right) \text{-}$
																	$\frac{(4)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$

Subgroup	Symbol	MIL-STD- 883	Test			ļ	Adapte	er pin	numbe	ers			Energized	Me	asured	pin	Equation
		method	NO.	1-8								16-23	relays	No	Value	Unit	
				logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	logic state			value	Unit.	
2 T _A = 125°C	NL7		171	11111101			+15	-15	+15	-15	0	00000010		24	E ₁₁₀	V	$\overline{\text{NL7}} = \left(\begin{array}{c} \frac{(\text{E}_{110} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{ES}} \times 10^3} \end{array} \right) -$
																	$\frac{(2)}{(255)} \frac{(VCAL6 - VCAL5)}{1 - 2 - 2 - 2 - 2}$
	NI a		172	11111110			+15	-15	+15	-15	0	00000001		24	E ₁₁₁	V	$(=10) \text{IFS} \times 10 (=111 - \text{VCAL5})$
	IVES																$NL_8 = \left(\frac{(L_1 + V_0) L_0}{1 FS \times 10^3} \right)^{-1}$
																	$\frac{(1)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	ΣNL^+		173														$\Sigma NL^+ = NL_i + NL_K +$ (i, k, bits having positive errors)
	$\overline{\Sigma NL^+}$		174														$\overline{\Sigma NL^{+}} = \overline{NLi^{1}} + \overline{NLk^{1}} + \dots$ (i, k, bits having positive errors)
	ΣNL		175														$\Sigma NL^{-} = NL_m + NL_n +$ (m, n, bits having negative errors)
	ΣNL^{-}		176														$\overline{\Sigma NL^{-}} = \overline{NLm^{1}} + \overline{NLn^{1}} + \dots$ (m, n, bits having negative errors)
	ΔΣNL		177														$\Delta \Sigma NL = \left \Sigma NL^+ \right - \left \Sigma NL^- \right $
	$\Delta \Sigma \overline{NL}$		178														$\Delta \Sigma \overline{NL} = \left \Sigma \overline{NL}^+ \right - \left \Sigma \overline{NL}^- \right $
	NL⁺		179														$NL^{+} = \left \Sigma NL^{+} \right + \left \Delta \Sigma NL \right $
	NL ⁺		180														$\overline{NL^+} = \left \Sigma \overline{NL}^+ \right + \left \Delta \Sigma \overline{NL} \right $
	NL		181														$NL^{-} = \left \Sigma NL^{-} \right + \left \Delta \Sigma NL \right $
	 NL		182														$\overline{NL^{-}} = \left \Sigma \overline{NL}^{-} \right + \left \Delta \Sigma \overline{NL} \right $
	(l ₀₁)a		183	1000000			+15	-15	+15	-15	0	10000000		24	E ₁₁₂	V	$(I_{01})_a = I_{FS} X \frac{128}{255} - 0.01(E_{112})$
	(l ₀₁) _b		184	01111111			+15	-15	+15	-15	0	01111111		24	E ₁₁₃	V	$(I_{01})_{b} = I_{FS} X \frac{127}{255} - 0.01(E_{113})$
	$\Delta(I_{01})$		185														$\Delta(I_{01}) = [(I_{01})_{a} - (I_{01})_{b}] \times 10^{3}$

Subgroup	Symbol	MIL-STD- 883	Test			ŀ	Adapte	er pin i	numbe	ers			Energized	Me	asured	pin	Equation
		method	No.										relays				
				1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state		No.	Value	Unit	
2 T _A = 125°C	(I ₀₂) _a		186	01000000			+15	-15	+15	-15	0	01000000		24	E ₁₁₄	V	$(I_{02})_a = I_{FS} \times \frac{64}{255} - 0.01(E_{114})$
	(I ₀₂) _b		187	00111111			+15	-15	+15	-15	0	00111111		24	E ₁₁₅	V	$(I_{02})_{b} = I_{FS} X \frac{63}{255} - 0.01(E_{115})$
	$\Delta(I_{02})$		188					-									$\Delta(I_{02}) = [(I_{02})_a - (I_{02})_b] \times 10^3$
	(I ₀₃) _a		189	00100000			+15	-15	+15	-15	0	00100000		24	E ₁₁₆	V	$(I_{03})_a = I_{FS} X \frac{32}{255} - 0.01(E_{116})$
	(I ₀₃) _b		190	00011111			+15	-15	+15	-15	0	00011111		24	E ₁₁₇	V	$(I_{03})_{b} = I_{FS} X \frac{31}{255} - 0.01(E_{117})$
	$\Delta(I_{03})$		191														$\Delta(I_{03}) = [(I_{03})_{a} - (I_{03})_{b}] \times 10^{3}$
	(I ₀₄) _a		192	00010000			+15	-15	+15	-15	0	00010000		24	E ₁₁₈	V	$(I_{04})_a = I_{FS} X \frac{16}{255} - 0.01(E_{118})$
	(I ₀₄) _b		193	00001111			+15	-15	+15	-15	0	00001111		24	E ₁₁₉	V	$(I_{04})_{b} = I_{FS} X \frac{15}{255} - 0.01(E_{119})$
	$\Delta(I_{04})$		194					-									$\Delta(I_{04}) = [(I_{04})_{a} - (I_{04})_{b}] \times 10^{3}$
	(I ₀₅) _a		195	00001000			+15	-15	+15	-15	0	00001000		24	E ₁₂₀	V	$(I_{05})_a = I_{FS} X \frac{8}{255} - 0.01(E_{120})$
	(I ₀₅)ь		196	00000111			+15	-15	+15	-15	0	00000111		24	E ₁₂₁	V	$(I_{05})_{b} = I_{FS} X \frac{7}{255} - 0.01(E_{121})$
	$\Delta(I_{05})$		197					-									$\Delta(I_{05}) = [(I_{05})_{a} - (I_{05})_{b}] \times 10^{3}$
	(I ₀₆) _a		198	00000100			+15	-15	+15	-15	0	00000100		24	E ₁₂₂	V	$(I_{06})_a = I_{FS} X \frac{4}{255} - 0.01(E_{122})$
	(I ₀₆)ь		199	00000011			+15	-15	+15	-15	0	00000011		24	E ₁₂₃	V	$(I_{06})_{b} = I_{FS} X \frac{3}{255} - 0.01(E_{123})$
	$\Delta(I_{06})$		200					-									$\Delta(I_{06}) = [(I_{06})_{a} - (I_{06})_{b}] \times 10^{3}$
	(I ₀₇) _a		201	00000010			+15	-15	+15	-15	0	00000010		24	E ₁₂₄	V	$(I_{07})_a = I_{FS} X \frac{2}{255} - 0.01(E_{124})$
	(I ₀₇) _b		202	00000001			+15	-15	+15	-15	0	00000001		24	E ₁₂₅	V	$(I_{07})_{b} = I_{FS} X \frac{1}{255} - 0.01(E_{125})$
	$\Delta(I_{07})$		203														$\Delta(I_{07}) = [(I_{07})_{a} - (I_{07})_{b}] \times 10^{3}$
	(I ₀₈)ь		204	00000000			+15	-15	+15	-15	0	00000000		24	E ₁₂₆	V	$(I_{08})_{b} = I_{FS} X \frac{1}{255} - 0.01(E_{126})$
	(l ₀₈)		205														$\Delta(I_{08}) = [(I_{07})_{b} - (I_{08})_{b}] \times 10^3$
	ΔI_{FS}		206														$I_{FS} - \overline{I_{FS}} = \Delta I_{FS}$

																		_
Subgroup	Symbol	MIL-STD- 883	Test			ļ	Adapte	er pin	numbe	ers			Energized	Me	asured	pin	Equation	
0 1		method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit		
3	I _{cc} +	3005	207	11111111	-		+15	-15	+15	-15	0			11	I ₃₉	mΑ	$I_{cc} + = I_{39}$	
T _A = -55°C	I _{cc} -		208	11111111			+15	-15	+15	-15	0			12	I ₄₀	mΑ	$I_{CC} = I_{40}$	
	I _{FS}		209 <u>1</u> /	11111111			+15	-15	+15	-15	0	11111111		24	E ₁₂₇	V	I _{FS} = 1.992-0.01E ₁₂₇	
	IFS		210	00000000	-		+15	-15	+15	-15	0	11111111	K2	24	E ₁₂₈	V	 IFS = 1.992-0.01E ₁₂₈	
	lzs		211	00000000	-		+15	-15	+15	-15	0		K4	24	E ₁₂₉	V	$I_{ZS} = -10E_{129}$	
	Izs		212	11111111	-		+15	-15	+15	-15	0		K2, K4	24	E ₁₃₀	V	Izs = -10E ₁₃₀	
	P _{ss} I _{Fs} +1		213	11111111			5.5	-18	+15	-15	0	11111111		24	E ₁₃₁	V	$P_{SS}I_{FS}+1 = -10(E_{131}-E_{132})$	
			214	11111111	-		4.5	-18	+15	-15	0	11111111		24	E ₁₃₂	V		
	PssIFs + 1		215	00000000			5.5	-18	+15	-15	0	11111111	K2	24	E ₁₃₃	V	PssIFs + 1 = -10(E ₁₃₃ -E ₁₃₄)	
			216	00000000			4.5	-18	+15	-15	0	11111111	K2	24	E ₁₃₄	V		
	P _{ss} I _{Fs} +2		217	11111111			18	-18	+15	-15	0	11111111		24	E ₁₃₅	V	$P_{ss}I_{Fs}+2 = -10(E_{135}-E_{136})$	L
			218	11111111			12	-18	+15	-15	0	11111111		24	E ₁₃₆	V		L
	$\overline{\text{PssIFs}+2}$		219	00000000			18	-18	+15	-15	0	11111111	K2	24	E ₁₃₇	V	$\overline{\text{Psslfs}+2}$ = -10(E ₁₃₇ -E ₁₃₈)	
			220	00000000			12	-18	+15	-15	0	11111111	K2	24	E ₁₃₈	V		_
	P _{SS} I _{FS} -1		221	11111111			18	-12	+15	-15	0	11111111		24	E ₁₃₉	V	$P_{SS}I_{FS}-1=-10(E_{139}-E_{135})$	L
	PssIFs – 1		222	00000000			18	-12	+15	-15	0	11111111	K2	24	E ₁₄₀	V	Psslfs - 1 = -10(E ₁₄₀ -E ₁₃₇)	
	P _{ss} I _{Fs} -2		223	11111111			18	-5.5	+15	-15	0	11111111	K5	24	E ₁₄₁	V	P _{SS} I _{FS} -2= -10(E ₁₄₁ -E ₁₄₂)	
			224	11111111			18	-4.5	+15	-15	0	11111111	K5	24	E ₁₄₂	V		<u> </u>
	PsslFs – 2		225	00000000			18	-5.5	+15	-15	0	11111111	K2, K5	24	E ₁₄₃	V	Psslfs - 2 = -10(E ₁₄₃ -E ₁₄₄)	
	- 6		226	00000000			18	-4.5	+15	-15	0	11111111	K2, K5	24	E ₁₄₄	V		_
			227	00000000	15		+15	-10	30	-5	0		K1, K4	26	E ₁₄₅	V	$I_{FS}R_1 = 0.2E_{145}$	+
	IFSR1		228	11111111	15		+15	-10	30	-5	0		K1, K2, K4	26	E146	V	$IFSR1 = 0.2E_{146}$	L
	IFSR2		229	00000000	20		+15	-12	30	-5	0		K1, K4	20	⊑147 ⊑	V	$I_{FSR_2} = 0.2E_{147}$	+
	IFSR2		230	00000000	25		+15	-12	30	-0	0		K1, K2, K4	20	⊏148	V	$IFSR_2 = 0.2E_{148}$	
	IREF-		231	00000000		0	+15	-15	+15	-15	0		K3	10	I ₄₁	A	$I_{REF} = I_{41} \times 10$	-
	liH1		<u>232</u>	1000000			+15	-15	+15	-15	0			1	42	A	$I_{\text{IH}1} = I_{42}X \ 10$	-
	I _{IH2}		<u>233 Z/</u>	01000000			+15	-15	+15	-15	0			2	43	A	$I_{1H2} = I_{43} \land 10$	
	IIH3		234 <u>2/</u>	00100000			+15	-15	+15	-15	0			3	I ₄₄	A	$I_{1H3} = I_{44} \land I \cup$	-
	IIH4		235 <u>2/</u>	00010000			+15	-15	+15	-15	0			4	45	A	$I_{1H4} = I_{45} \land IU$	-
	I _{IH5}		236 <u>2</u> /	00001000			+15	-15	+15	-15	0			5	46	A	$I_{1H5} = I_{46}X \ 10$	
	IIH6		<u>237 </u> 2/	00000100			+15	-15	+15	-15	0			0	47	A	$I_{1H6} = I_{47} \land IO$	
			238 <u>2</u> /	00000010			+15	-15	+15	-15	0			/	1 ₄₈	A	$I_{1H7} = I_{48} \times 10^{-10}$	-
	I _{IH8}		239 <u>2</u> /	0000001			+15	-15	+15	-15	0			8	I ₄₉	A	$I_{1H8} = I_{49} \times 10^{-10}$	
	I _{IL1}		240 <u>2</u> /	01111111			+15	-15	+15	-15	0			1	1 ₅₀	A	$I_{1L1} = I_{50} \times 10^{5}$	<u> </u>
	I _{IL2}		241 <u>2</u> /	10111111			+15	-15	+15	-15	0			2	1 ₅₁	A	$I_{1L2} = I_{51} X 10^{\circ}$	<u> </u>
	I _{IL3}		242 <u>2</u> /	11011111			+15	-15	+15	-15	0			3	1 ₅₂	A	$I_{1L3} = I_{52} \times 10^{\circ}$	┡
	I _{IL4}		243 <u>2</u> /	11101111			+15	-15	+15	-15	0			4	I ₅₃	A	$I_{IL4} = I_{53} X 10^{\circ}$	Ļ
	I _{IL5}		<u>244 2</u> /	11110111			+15	-15	+15	-15	0			5	1 ₅₄	A	$I_{IL5} = I_{54} \times 10^{\circ}$	┡
	I _{IL6}		245 <u>2</u> /	11111011			+15	-15	+15	-15	0			6	1 ₅₅	A	$I_{IL6} = I_{55} \times 10^{\circ}$	L
	I _{IL7}		246 <u>2</u> /	11111101			+15	-15	+15	-15	0			7	1 ₅₆	Α	$I_{IL7} = I_{56} \times 10^{\circ}$	L
	I _{IL8}		247 <u>2</u> /	11111110			+15	-15	+15	-15	0			8	I ₅₇	Α	I _{IL8} = I ₅₇ X 10°	1

Subaroup	Symbol	MIL-STD-	Test			A	Adapte	er pin	numbe	ers			Eneraized	Me	asured	pin	Equation
	-,	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit	
3	V _{CAL1}		248				+15	-15	30	0	18	00000000	K3	24	E ₁₄₉	V	$V_{CAL1} = E_{149}$
T _A = -55°C	I _{FS} +		249	11111111			+15	-15	30	0	18	11111111		24	E ₁₅₀	V	I _{FS} + =1.992-0.01(E ₁₅₀ -E ₁₄₉)
	IFS +		250	00000000			+15	-15	30	0	18	11111111	K2	24	E ₁₅₁	V	$\overline{I_{FS}}$ = 1.992-0.01(E ₁₅₁ - E ₁₄₉)
	V _{CAL2}		251				+15	-15	+15	-15	-10	00000000	K3	24	E ₁₅₂	V	$V_{CAL2} = E_{152}$
	I _{FS} -		252	11111111			+15	-15	+15	-15	-10	11111111		24	E ₁₅₃	V	I_{FS} = 1.992-0.01(E_{153} - E_{152})
	IFS -		253	00000000			+15	-15	+15	-15	-10	11111111	K2	24	E ₁₅₄	V	IFS - = 1.992-0.01(E ₁₅₄ -E ₁₅₂)
	∆l _{FSC}		254														$\Delta I_{FSC} = 1000(I_{FS} + -I_{FS} -)$
			255														$\Delta \overline{\text{IFSC}} = 1000 (\overline{\text{IFS} + - \text{IFS} -})$
	V _{CAL3}		256	00000000			+15	-15	+15	-15	0	00000000		24	E ₁₅₅	V	$V_{CAL3} = E_{155}$
	V _{CAL4}		257	11111111			+15	-15	+15	-15	0	11111111		24	E ₁₅₆	V	$V_{CAL4} = E_{156}$
	V _{CAL5}		258	00000000			+15	-15	+15	-15	0	11111111	K2	24	E ₁₅₇	V	$V_{CAL5} = E_{157}$
	V _{CAL6}		259	11111111	-		+15	-15	+15	-15	0	00000000	K2	24	E ₁₅₈	V	$V_{CAL6} = E_{158}$
	NL ₁		260	10000000			+15	-15	+15	-15	0	10000000		24	E ₁₅₉	V	$NL_{1} = \left(\begin{array}{c} (E_{159} - V_{CAL3}) \\ I_{FS} \times 10^{3} \end{array}\right) -$
																	$\frac{(128)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL ₂		261	01000000			+15	-15	+15	-15	0	01000000		24	E ₁₆₀	V	$NL_{2} = \left(\begin{array}{c} \frac{\left(E_{160} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$
																	$\frac{(64)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL ₃		262	00100000			+15	-15	+15	-15	0	00100000		24	E ₁₆₁	V	$NL_{3} = \left(\begin{array}{c} \frac{\left(E_{161} - V_{CAL3}\right)}{I_{FS} \times 10^{3}} \end{array}\right) -$
																	$\frac{(32)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL₄		263	00010000			+15	-15	+15	-15	0	00010000		24	E ₁₆₂	V	$NL_{4} = \left(\begin{array}{c} \left(E_{162} - V_{CAL3}\right) \\ I_{FS} \times 10^{3} \end{array}\right) -$
																	$\frac{(16)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$
	NL5		264	00001000			+15	-15	+15	-15	0	00001000		24	E ₁₆₃	V	$NL_{5} = \left(\begin{array}{c} \underline{(E_{163} - V_{CAL3})} \\ I_{FS} \times 10^{3} \end{array} \right) -$
																	$\frac{(8)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^3}$

Subaroup	Symbol	MIL-STD- 883	Test			,	Adapte	er pin	numbe	ers			Eneraized	Me	asured	pin	Equation
	-,	method	No.	1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state	relays	No.	Value	Unit	
3 T _A = -55°C	NL ₆		265	00000100			+15	-15	+15	-15	0	00000100		24	E ₁₆₄	V	$\begin{split} NL_6 &= \left(\begin{array}{c} \frac{\left(E_{164} - V_{CAL3}\right)}{I_{FS} \times 10^3} \end{array} \right) \text{-} \\ \frac{(4)}{(255)} & \frac{\left(V_{CAL4} - V_{CAL3}\right)}{I_{FS} \times 10^3} \end{split}$
	NL7		266	00000010			+15	-15	+15	-15	0	00000010		24	E ₁₆₅	V	$NL_{7} = \left(\begin{array}{c} \frac{(E_{165} - V_{CAL3})}{I_{FS} \times 10^{3}} \end{array} \right) - \frac{(2)}{(255)} \frac{(V_{CAL4} - V_{CAL3})}{I_{FS} \times 10^{3}}$
	NL ₈		267	00000001			+15	-15	+15	-15	0	00000001		24	E ₁₆₆	V	$\begin{split} NL_8 = \left(\begin{array}{c} \frac{\left(E_{166} - V_{CAL3}\right)}{I_{FS} \times 10^3} \end{array} \right) - \\ \frac{(1)}{(255)} \begin{array}{c} \frac{\left(V_{CAL4} - V_{CAL3}\right)}{I_{FS} \times 10^3} \end{array} \end{split}$
	NL1		268	01111111			+15	-15	+15	-15	0	1000000		24	E ₁₆₇	V	$\overline{\text{NL}_{1}} = \left(\begin{array}{c} \frac{(\text{E}_{167} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^{3}} \end{array} \right) - \frac{(128)}{(255)} \frac{(\text{V}_{\text{CAL6}} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^{3}}$
	NL2		269	10111111			+15	-15	+15	-15	0	0100000		24	E ₁₆₈	V	$\overline{\text{NL}_2} = \left(\begin{array}{c} \frac{\left(\text{E}_{168} - \text{V}_{\text{CAL5}}\right)}{\text{I}_{\text{FS}} \times 10^3} \end{array}\right) - \frac{(64)}{(255)} \frac{(\text{V}_{\text{CAL6}} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^3}$
	NL3		270	11011111			+15	-15	+15	-15	0	00100000		24	E ₁₆₉	V	$\label{eq:NL3} \begin{array}{ c c c }\hline \hline NL_3 = \left(\begin{array}{c} \left(\underline{E_{169} - V_{CAL5}} \right) \\ \hline I_{FS} \times 10^3 \end{array} \right) \\ \hline \left(\begin{array}{c} (32) \\ (255) \end{array} \\ \hline \left(\begin{array}{c} V_{CAL6} - V_{CAL5} \right) \\ \hline I_{FS} \times 10^3 \end{array} \end{array}$
	NL4		271	11101111			+15	-15	+15	-15	0	00010000		24	E ₁₇₀	V	$\overline{\text{NL4}} = \left(\begin{array}{c} \left(\underline{\text{E}_{170} - \text{V}_{\text{CAL5}}} \right) \\ \overline{\text{IFS} \times 10^3} \end{array} \right) \text{-}$ $\frac{(16)}{(255)} \frac{(\text{V}_{\text{CAL6}} - \text{V}_{\text{CAL5}})}{\overline{\text{IFS} \times 10^3}}$
	NL5		272	11110111			+15	-15	+15	-15	0	00001000		24	E ₁₇₁	V	$\label{eq:NL5} \begin{split} \overline{NL5} &= \left(\begin{array}{c} \frac{\left(E_{171} - VCAL5\right)}{IFS \times 10^3} \end{array} \right) \text{-} \\ \frac{(8)}{(255)} & \frac{(VCAL6 - VCAL5)}{IFS \times 10^3} \end{split}$
	NL6		273	11111011			+15	-15	+15	-15	0	00000100		24	E ₁₇₂	V	$\overline{\text{NL6}} = \left(\begin{array}{c} \frac{(\text{E}_{172} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^3} \end{array} \right) - \frac{(4)}{(255)} \frac{(\text{V}_{\text{CAL6}} - \text{V}_{\text{CAL5}})}{\text{I}_{\text{FS}} \times 10^3}$

Subgroup	Symbol	MIL-STD- 883	Test	Adapter pin numbers								Energized	Measured pin			Equation	
		method	No.	1.0			1					16.02	relays	No	Volue	Lloit	
				logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	logic state		INO.	value	Unit	
3 T₄ = -55°C	NL7		274	11111101			+15	-15	+15	-15	0	00000010		24	E ₁₇₃	V	$\overline{NL7} = \left(\begin{array}{c} \underline{(E173 - VCAL5)} \\ \end{array}\right) - $
~																	$(I_{FS} \times 10^3)$
																	$\frac{(2)}{(255)} \frac{(VCAL6 - VCAL5)}{IFS \times 10^3}$
	NL8		275	11111110			+15	-15	+15	-15	0	00000001		24	E ₁₇₄	V	$\overline{NL_8} = \left(\begin{array}{c} \frac{\left(E_{174} - V_{CAL5}\right)}{I_{FS} \times 10^3} \end{array}\right) -$
																	$\frac{(1)}{(255)} \frac{(V_{CAL6} - V_{CAL5})}{I_{FS} \times 10^3}$
	ΣNL^+		276														$\Sigma NL^+ = NL_i + NL_K +$ (i, k, bits having positive errors)
	$\overline{\Sigma NL^+}$		277														$\overline{\Sigma NL^{+}} = \overline{NL^{1}} + \overline{NLk^{1}} + \dots$ (i, k, bits having positive errors)
	ΣNL		278														$\Sigma NL^{2} = NL_{m} + NL_{n} +$ (m, n, bits having negative errors)
	ΣNL^{-}		279														$\overline{\Sigma NL^{-}} = \overline{NLm^{1}} + \overline{NLn^{1}} + \dots$ (m, n, bits having negative errors)
	ΔΣNL		280														$\Delta \Sigma NL = \left \Sigma NL^+ \right - \left \Sigma NL^- \right $
	$\Delta \Sigma \overline{NL}$		281														$\Delta \Sigma \overline{NL} = \left \Sigma \overline{NL}^+ \right - \left \Sigma \overline{NL}^- \right $
	NL⁺		282														$NL^{+} = \left \Sigma NL^{+} \right + \left \Delta \Sigma NL \right $
	$\overline{\rm NL^+}$		283														$\overline{NL^+} = \left \Sigma \overline{NL}^+ \right + \left \Delta \Sigma \overline{NL} \right $
	NL		284														$NL^{-} = \left \Sigma NL^{-} \right + \left \Delta \Sigma NL \right $
	NL ⁻		285														$\overline{NL^{-}} = \left \Sigma \overline{NL}^{-} \right + \left \Delta \Sigma \overline{NL} \right $
	(l ₀₁) _a		286	10000000			+15	-15	+15	-15	0	10000000		24	E ₁₇₅	V	$(I_{01})_a = I_{FS} \times \frac{128}{255} - 0.01(E_{175})$
	(l ₀₁) _b		287	01111111			+15	-15	+15	-15	0	01111111		24	E ₁₇₆	V	$(I_{01})_{b} = I_{FS} X \frac{127}{255} - 0.01(E_{176})$
	$\Delta(I_{01})$		288														$\Delta(I_{01}) = [(I_{01})_a - (I_{01})_b] \times 10^3$

Subgroup	Symbol	MIL-STD- 883	Test	Adapter pin numbers										Measured pin		pin	Equation
		method	NO.	1.0	1				1			10.00	relays	NL	1.1.1	11.2	-
				1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state		NO.	value	Unit	
3 T _A = -55°C	(I ₀₂) _a		289	01000000			+15	-15	+15	-15	0	01000000		24	E ₁₇₇	V	$(I_{02})_a = I_{FS} X \frac{64}{255} - 0.01(E_{177})$
	(I ₀₂) _b		290	00111111			+15	-15	+15	-15	0	00111111		24	E ₁₇₈	V	$(I_{02})_{b} = I_{FS} \times \frac{63}{255} - 0.01(E_{178})$
	$\Delta(I_{02})$		291														$\Delta(I_{02}) = [(I_{02})_{a} - (I_{02})_{b}] \times 10^{3}$
	(I ₀₃) _a		292	00100000			+15	-15	+15	-15	0	00100000		24	E ₁₇₉	V	$(I_{03})_a = I_{FS} X \frac{32}{255} - 0.01(E_{179})$
	(I ₀₃) _b		293	00011111			+15	-15	+15	-15	0	00011111		24	E ₁₈₀	V	$(I_{03})_{b} = I_{FS} X \frac{31}{255} - 0.01(E_{180})$
	$\Delta(I_{03})$		294														$\Delta(I_{03}) = [(I_{03})_{a} - (I_{03})_{b}] \times 10^{3}$
	(I ₀₄) _a		295	00010000			+15	-15	+15	-15	0	00010000		24	E ₁₈₁	V	$(I_{04})_a = I_{FS} X \frac{16}{255} - 0.01(E_{181})$
	(I ₀₄) _b		296	00001111			+15	-15	+15	-15	0	00001111		24	E ₁₈₂	V	$(I_{04})_{b} = I_{FS} X \frac{15}{255} - 0.01(E_{182})$
	$\Delta(I_{04})$		297														$\Delta(I_{04}) = [(I_{04})_{a} - (I_{04})_{b}] \times 10^{3}$
	(I ₀₅) _a		298	00001000			+15	-15	+15	-15	0	00001000		24	E ₁₈₃	V	$(I_{05})_a = I_{FS} X \frac{8}{255} - 0.01(E_{183})$
	(I ₀₅) _b		299	00000111			+15	-15	+15	-15	0	00000111		24	E ₁₈₄	V	$(I_{05})_{b} = I_{FS} X \frac{7}{255} - 0.01(E_{184})$
	$\Delta(I_{05})$		300														$\Delta(I_{05}) = [(I_{05})_a - (I_{05})_b] \times 10^3$
	(I ₀₆) _a		301	00000100			+15	-15	+15	-15	0	00000100		24	E ₁₈₅	V	$(I_{06})_{a} = I_{FS} X \frac{4}{255} - 0.01(E_{185})$
	(I ₀₆)ь		302	00000011			+15	-15	+15	-15	0	00000011		24	E ₁₈₆	V	$(I_{06})_{b} = I_{FS} \times \frac{3}{255} - 0.01(E_{186})$
	$\Delta(I_{06})$		303														$\Delta(I_{06}) = [(I_{06})_{a} - (I_{06})_{b}] \times 10^{3}$
	(I ₀₇)a		304	00000010			+15	-15	+15	-15	0	00000010		24	E ₁₈₇	V	$(I_{07})_a = I_{FS} X \frac{2}{255} - 0.01(E_{187})$
	(I ₀₇) _b		305	00000001			+15	-15	+15	-15	0	00000001		24	E ₁₈₈	V	$(I_{07})_{b} = I_{FS} \times \frac{1}{255} - 0.01(E_{188})$
	$\Delta(I_{07})$		306														$\Delta(I_{07}) = [(I_{07})_{a} - (I_{07})_{b}] \times 10^{3}$
	(I ₀₈) _b		307	00000000			+15	-15	+15	-15	0	00000000		24	E ₁₈₉	V	$(I_{08})_{b} = I_{FS} X \frac{1}{255} - 0.01(E_{189})$
	(l ₀₈)		308														$\Delta(I_{08}) = [(I_{07})_{b} - (I_{08})_{b}] \times 10^3$
	ΔI_{FS}		309														$I_{FS} - \overline{I_{FS}} = \Delta I_{FS}$

Subgroup	Symbol	MIL-STD- 883	Test		Adapter pin numbers Measured pin Energized relays							Energized	Measured pin			Equation	
		method	INO.														
				1-8 logic state	9 V	10 V	11 V	12 V	13 V	14 V	15 V	16-23 logic state		No.	Value	Unit	
9 T _A = 25°C	TC(I _{FS})		310														$TC(I_{FS}) = \frac{(E_1 - E_{64})}{E_1} \times 10^4$
	TC(I _{FS})		311														$TC(I_{FS}) = \frac{(E_1 - E_{127})}{0.8E_1} \times 10^4$
	TC(IFS)		312														$\overline{\text{TC(IFS)}} = \frac{(\text{E}_2 - \text{E}_{65})}{\text{E}_2} \times 10^4$
	TC(IFS)		313														$\overline{\text{TC(IFS)}} = \frac{(\text{E}_2 - \text{E}_{128})}{0.8\text{E}_2} \times 10^4$
	t _{PHL}		314	See figure 3.	ee figure 3. $V_L = 2.7 V$, V_{OUT} high-to-low transition, S1-OFF (V_M low-to-high)												
	t _{PLH}		315	See figure 3.	. V∟= S1-0	0.7 V, OFF	V _{OUT} (VIN I	low-to nigh-to	-high -low)	transitio	on,						
10 T _A = 125°C	t _{PHL}		316	See figure 3.	. V∟= S1-0	2.7 V, OFF	V _{OUT} (V _{IN} I	high-t ow-to-	o-low high)	transitio	on,						
	t _{PLH}		317	See figure 3.	. V⊾= S1-0	0.7 V, OFF	V _{OUT} (V _{IN} ł	low-to nigh-to	-high -low)	transitio	on,						
11 T _A = -55°C	t _{PHL}		318	See figure 3.	. V⊾= S1-0	2.7 V, OFF	V _{OUT} (V _{IN} I	high-t ow-to-	o-low high)	transitio	on,						
	t _{PLH}		319	See figure 3.	. V∟= S1-0	0.7 V, OFF	V _{OUT} (V _{IN} ł	low-to nigh-to	-high -low)	transitio	on,						
12 T _A = 25°C	dlo dt		320	See figure 4.	. V _{IN} V _L =	ow-to-h = 5 Vdc	nigh tra	ansitio	n,								$\frac{dlo}{dt} = \frac{1}{\Delta t}$
	t _{sн∟}		321	See figure 3.	. V∟= S1-0	2.7 V, DFF	Vout (VIN IC	high-t w-to-l	o-low nigh)	transitio	on,						
	t _{slH}		322	See figure 3.	e figure 3. $V_L = 0.7 V$, V_{OUT} low-to-high transition, S1-OFF (V_{IN} high-to-low)												

NOTES:

<u>1</u>/ The measurement of I_{FS} and $\overline{I_{FS}}$ can be made directly as a voltage measurement at pin 26 ($I_{FS} = \begin{bmatrix} \frac{E_{pin26}}{5000} \end{bmatrix}$ mA)

provided that measurement accuracy is $\pm 0.1\%$ or better. If the measurement is made in accordance with table III, the reference D/A converter must be calibrated for a full scale current of 2.0 mA $\pm 0.1\%$.

2/ For tests 26-33, 129-136, and 232-239, the logic input voltage shall be +18 V. For tests 34-41, 137-144, and 240-247, the logic input voltage shall be -10.0 V.

Test	Symbol		Device	e type 01		Device type 02					
no.											
		Lin	nits			Lin	nits				
		Min	Max	Delta	Units	Min	Max	Delta	Units		
3	I _{FS}	1.94	2.04	0.01	mA	1.984	2.000	0.005	mA		
4	IFS	1.94	2.04	0.01	mA	1.984	2.000	0.005	mA		
5	Izs	-2.0	+2.0	0.5	μΑ	-1.0	+1.0	0.3	μΑ		
6	Izs	-2.0	+2.0	0.5	μA	-1.0	+1.0	0.3	μA		

TABLE IV. Group C end point electrical parameters. $T_A = +25^{\circ}C; \pm V_{CC} = \pm 15 V$

- 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, 6, 7, and 8 shall be omitted.
 - c. Subgroup 12 shall be added to group A inspection for all classes and it shall consist of the conditions and limits as specified in table III. The sample size series number shall be 5 for all classes (accept on 0).
- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified and as follows.

4.5.1 <u>Voltage and current</u>. All voltage values given except the input offset voltage (or differential voltage) are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 <u>Acquisition requirements</u>. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification of the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of MIL-STD-883, method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).

6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.4 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-STD-1331.

6.6 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	DAC-08
02	DAC-08A

6.8 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians: Army – CR Navy - EC Air Force - 11 NASA - NA DLA – CC Review activities: Army - MI, SM

Navy - AS, CG, MC, SH, TD Air Force – 03, 19, 99 Preparing activity: DLA - CC

Project 5962-2127

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital to Analog Converters - DAC category:

Click to view products by E2v manufacturer:

Other Similar products are found below :

 5962-8871903MYA
 5962-8876601LA
 5962-89697013A
 5962-89932012A
 5962-9176404M3A
 PM7545FPCZ
 AD5311BRMZ-REEL7

 AD5311RBRMZ-RL7
 AD558SE/883B
 AD5681RBCPZ-1RL7
 AD664TE/883B
 AD667SE
 AD7845SE/883B
 AD9115BCPZRL7

 AD9162BBCA
 DAC08RC/883C
 JM38510/11302BEA
 AD5449YRUZ-REEL7
 AD664AJ
 AD664BJ
 AD667SE/883B
 AD7534JPZ
 TCC

 103A-RT
 057536E
 5962-87700012A
 5962-87700032A
 5962-87789022A
 5962-89657023A
 702423BB
 AD664BE
 MAX5853ETL+T

 MAX5801AUB+
 AD9116BCPZRL7
 MAX5110GTJ+
 MAX5702BAUB+
 DS4412U+T&R
 MAX5364EUT+T
 MAX5858AECM+D

 AD5821ABCBZ-REEL7
 MX7528KP+
 MAX5858ECM+D
 MAX5138BGTE+T
 MAX5856AECM+D
 AD7545AUE

 MX7528JP+
 TCC-303A-RT
 MAX5112GTJ+
 DS3911T+T
 MAX5805BAUB+T