MILITARY SPECIFICATION
 MICROCIRCUIT, DIGITAL, 8192-BIT, SCHOTTKY, BIPOLAR, PROGRAMMABLE READ-ONLY MEMORY (PROM), MONOLITHIC SILICON

Inactive for new design after 24 July 1995
This specification is approved for use by all Departments and Agencies of the Department of Defense.
The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF-38535.

1. SCOPE
1.1 Scope. This specification covers the detail requirements for monolithic silicon, PROM microcircuits which employ thin film nichrome (NiCr) resistors, zapped vertical emitter, tungsten (W), titanium tungsten (TiW), or platinum silicide as the fusible link or programming element. Two product assurance class and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
1.2.1 Device types. The device types are as follows:

Device type	Circuit	Access time (ns)
01	2048 word / 4 bits per word PROM with uncommitted collector	125
02, 08, 10	2048 word / 4 bits per word PROM with active pullup and a third highimpedance state output	125, 90, 55
03	1024 word / 8 bits per word PROM with uncommitted collector	90
04, 09	1024 word / 8 bits per word PROM with active pullup and a third highimpedance state output	90, 55
05	1024 word / 8 bits per word PROM with active pullup and a third highimpedance state output	90
06	1024 word / 8 bits per word PROM with uncommitted collector	90

NOTE: Device type 07 was deleted from this document under revision D.
1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.

> Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DLA Land and Maritime-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to memory@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at https://assist.dla.mil
1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator		Terminals	
J Package style				
K	GDIP1-T24 or CDIP2-T24			
V	GDFP2-F24 or CDFP3-F24	24		Dual-in-line
X	GDIP1-T18 or CDIP2-T18	24		Flat pack
Y	See figure 1	18		Dual-in-line
	GDFP2-F18	18	Flat pack	
		18	Flat pack	

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V to +7.0 V
Input voltage range	-1.5 V at -10 mA to +5.5 V
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature (soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$
Thermal resistance, junction to case (θ_{JC}) :	
Cases J, K, V, and Y	See MIL-STD-1835 1/
Case X	$35^{\circ} \mathrm{C} / \mathrm{W}$ maximum 1/
Output voltage	-0.5 V to +VCC
Output sink current	100 mA
Maximum power dissipation (PD)	
Device types 01, 02, 08, and 10	950 mW 2/
Device types 03, 04, 05, 06, and 09	$1.1 \mathrm{~W}^{\text {2/ }}$
Maximum junction temperature (T_{J}) ...	$+175^{\circ} \mathrm{C}$
Recommended operating conditions.	
Supply voltage range	+4.5 V dc minimum to
	+5.5 V dc maximum
Minimum high-level input voltage (V_{IH})	2.0 V
Maximum low-level input voltage (VIL)	0.8 V
Normalized fanout (each output) :	
Device types 01, 02, 08, and 10	$12 \mathrm{~mA}{ }^{\text {/ }}$
Device types 03, 04, 05, 06, and 09	$8 \mathrm{~mA} \mathrm{3} /$
Case operating temperature range (T_{C})	$-55{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

1/ Heat sinking is recommended to reduce the junction temperature.
2/ Must withstand the added P_{D} due to short circuit test (e.g. IOS).
3/ 16 mA for circuits B, D, and F devices.

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

$\begin{array}{lll}\text { MIL-STD-883 } & - & \text { Test Method Standard for Microelectronics. } \\ \text { MIL-STD-1835 } & - & \text { Interface Standard Electronic Component Case Outline }\end{array}$
(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein (except for related specification sheets), the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Terminal connections. The terminal connections shall be as specified on figure 2 .

3.3.2 Truth table.

3.3.2.1 Unprogrammed devices. The truth tables for unprogrammed devices for contracts involving no altered item drawing shall be as specified on figure 3 . When required in groups A, B, or C inspection (see 4.4), the devices shall be programmed by the manufacturer prior to test in a checkerboard pattern (a minimum of 50 percent of the total number of bits programmed) or to any altered item drawing pattern which includes at least 25 percent of the total number of bits programmed.
3.3.2.2 Programmed devices. The truth table for programmed devices shall be as specified by the altered item drawing.

MIL-M-38510/209H

3.3.3 Functional block diagram. The functional block diagram shall be as specified on figure 4.
3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. The electrical test requirements shall be as specified in table II, and where applicable, the altered item drawing. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535. For programmed devices, the altered item drawing number shall be added to the marking by the programming activity.
3.8 Processing options. Since the PROM is an unprogrammed device capable of being programmed by either the manufacturer or the user to result in a wide variety of PROM configurations, two processing options are provided for selection in the contract, using an altered item drawing.
3.8.1 Unprogrammed PROM delivered to the user. All testing shall be verified through group A testing as defined in 3.3.2.1, table II, and table III. It is recommended that users perform subgroups 7 and 9 after programming to verify the specific program configuration.
3.8.2 Manufacturer-programmed PROM delivered to the user. All testing requirements and quality assurance provisions herein, including the requirements of the altered item drawing, shall be satisfied by the manufacturer prior to delivery.
3.9 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 14 (see Appendix A, MIL-PRF-38535.)

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions 1/ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless other wise specified	Device type	Limits		Units
				Min	Max	
High-level output voltage	VOH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IOH}=-2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 02,04,05, \\ & 08,09,10 \end{aligned}$	2.4		V
Low-level output voltage 2/	VOL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IOL}=12 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 01,02, \\ & 08,10 \end{aligned}$		0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{lOL}=8 \mathrm{~mA}$	$\begin{gathered} 03,04,05 \\ 06,09 \end{gathered}$		0.5	
Input clamp voltage	VIC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{aligned}$	All		-1.5	V
Maximum collector cut-off current	ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.2 \mathrm{~V}$	01, 03, 06		100	$\mu \mathrm{A}$
High impedance (off-state) output high current	IOHz	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.2 \mathrm{~V}$	$\begin{aligned} & 02,04,05, \\ & 08,09,10 \end{aligned}$		100	$\mu \mathrm{A}$
High impedance (off-state) output low current	Iolz	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\begin{aligned} & 02,04,05, \\ & 08,09,10 \end{aligned}$		-100	$\mu \mathrm{A}$
High level input current	$\mathrm{l}_{\mathrm{HH} 1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	All		50	$\mu \mathrm{A}$
	IIH2	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$, special programming pin	$\begin{gathered} 03,04,06 \\ 09 \end{gathered}$		100	
Low level input current	IIL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$	All	-1.0	-250	$\mu \mathrm{A}$
Short circuit output current	los	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.0 \mathrm{~V}, \quad \underline{3} / \\ & \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 02,04,05, \\ & 08,09,10 \end{aligned}$	-15	-100	mA
Supply current	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \text { outputs }=\text { open } \end{aligned}$	01, 02		170	mA
			$\begin{gathered} \hline 03,04,05, \\ 06,08,09, \\ 10 \\ \hline \end{gathered}$		185	
Propagation delay time, high to low level logic, address to output	tPHL1	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V , $\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$, see figure 6	08		90	ns
			01, 02		125	
			$\begin{gathered} 03,04,05, \\ 06 \end{gathered}$		90	
			09, 10		55	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	$\begin{gathered} \text { Conditions } \underline{1 /} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ unless other wise specified	Device type	Limits		Units
				Min	Max	
Propagation delay time, low to high level logic, address to output	tPLH1	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V , $C_{L}=30 \mathrm{pF}$, see figure 6	08		90	ns
			01, 02		125	
			$\begin{gathered} 03,04,05, \\ 06 \end{gathered}$		90	
			09, 10		55	
Propagation delay time, high to low level logic, enable to output	tPHL2	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V , $C_{L}=30 \mathrm{pF}$, see figure 6	08		50	ns
			01, 02		60	
			$\begin{gathered} \hline 03,04,05, \\ 06 \\ \hline \end{gathered}$		50	
			09, 10		30	
Propagation delay time, low to high level logic, enable to output	tPLH2	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V , $C_{L}=30 \mathrm{pF}$, see figure 6	08		50	ns
			01, 02		60	
			$\begin{gathered} \hline 03,04,05, \\ 06 \end{gathered}$		50	
			09, 10		30	

1/ Complete terminal conditions shall be specified In table III.
2/ $\mathrm{IOL}=16 \mathrm{~mA}$ for circuits B, D, and F devices.
3/ Not more than one output shall be grounded at one time. Output shall be at high logic level prior to test.

FIGURE 1. Case outline X.

Symbol	Inches		Millimeters		Notes
	Min	Max	Min	Max	
A	.045	.085	1.14	2.16	
b	.015	.020	.38	.51	5
C	.003	.006	.08	.15	5
D	.340	.380	8.64	9.65	
E	.340	.380	8.64	9.65	
E_{1}		.400		10.16	3
E_{2}	.260	.290	6.60	7.37	
E_{3}	.025		.63		
e	.050	BSC	1.27	BSC	4,6
K	.008	.015	.20	.38	9
L	.250	.330	6.35	8.38	
Q	.010	.040	.25	1.02	2
$\mathrm{~S}_{1}$.005		.13		7,8
$\mathrm{~S}_{2}$.004		.10		10
α	30°	90°	30°	90°	

NOTES:

1. Index area; a tab (dim K) may be used to identify pin one. This tab may be located on either side as shown.
2. Dimension Q shall be measured at the point of exit of the lead from the body.
3. This dimension allows for off-center lid, meniscus and glass overrun.
4. The basic pin spacing is $.050(1.27 \mathrm{~mm})$ between centerlines. Each pin centerline shall be located within $\pm .005$ $(0.13 \mathrm{~mm})$ of its exact longitudinal position relative to pins relative to pins 1 and 18 .
5. All leads - increase limit by $.003(0.08 \mathrm{~mm})$ measured at the center of the flat, when lead finish A is applied.
6. Sixteen spaces.
7. Applies to all four corners (leads number 2, 8, 11, and 17).
8. Dimension S_{1} may be $.000(0.00 \mathrm{~mm})$ if leads are brazed to the metallized ceramic body (see MIL-STD-1835).
9. Optional, see note 1. If a pin one identification mark is used in addition to this tab, the minimum limit of dimension K does not apply.
10. Applies to leads number $1,9,10$, and 18.

FIGURE 1. Case outline X - Continued.

MIL-M-38510/209H

Device types	01, 02, 08, and 10	03, 04, and 09
Case outlines	V	J and K
Terminal number	Terminal symbol	
1	A_{6}	A_{7}
2	A_{5}	A_{6}
3	A4	A_{5}
4	A_{3}	A_{4}
5	A_{0}	A_{3}
6	A_{1}	A_{2}
7	A_{2}	A_{1}
8	A_{10}	A_{0}
9	GND	O_{1}
10	$\overline{\mathrm{CE}}_{1}$	O_{2}
11	O4	O_{3}
12	O_{3}	GND
13	O_{2}	O_{4}
14	O_{1}	O_{5}
15	A9	O_{6}
16	A_{8}	O_{7}
17	A_{7}	O_{8}
18	V_{CC}	CE_{4}
19	---	CE_{3}
20	---	$\overline{\mathrm{CE}}_{2}$
21	---	$\overline{\mathrm{CE}}_{1}$
22	---	A9
23	---	A8
24	---	V_{CC}

FIGURE 2. Terminal connections.

MIL-M-38510/209H

Device types	05 and 06	01, 02, and 08	02 and 10
Case outlines	J and K	X	Y
Terminal number	Terminal symbol		
1	A_{7}	A_{6}	A_{6}
2	A_{6}	A_{5}	A_{5}
3	A_{5}	A4	A4
4	A_{4}	A_{3}	A_{3}
5	A_{3}	A_{0}	A_{0}
6	A_{2}	A_{1}	A_{1}
7	A_{1}	A_{2}	A_{2}
8	A_{0}	A_{10}	A_{10}
9	O_{1}	GND	GND
10	O_{2}	$\overline{\mathrm{CE}}_{1}$	$\overline{\mathrm{CE}}_{1}$
11	O3	O4	O_{4}
12	GND	O_{3}	O_{3}
13	O_{4}	O_{2}	O_{2}
14	O_{5}	O_{1}	O_{1}
15	O_{6}	A9	A9
16	O_{7}	A_{8}	A_{8}
17	O_{8}	A_{7}	A_{7}
18	NC	VCC	V_{CC}
19	NC	---	---
20	$\overline{\mathrm{CE}}$	---	---
21	NC	---	---
22	A9	---	---
23	A8	---	---
24	V_{CC}	---	---

FIGURE 2. Terminal connections - Continued.

Device types $01,02,08$, and 10 (see notes 1,2 , and 3)

Word number	Enable	Address										
	$\overline{\mathrm{CE}}_{1}$	A_{10}	A9	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
NA	L	X	X	X	X	X	X	X	X	X	X	X
NA	H	X	X	X	X	X	X	X	X	X	X	X

Word number	Data			
	O_{1}	O_{2}	O_{3}	O_{4}
NA	See note 5			
NA	OC	OC	OC	OC

Device types 05 and 06 (see notes 1, 2, and 3)

Word number	Enable	Address									
	$\overline{\mathrm{CE}}_{1}$	A9	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
NA	L	X	X	X	X	X	X	X	X	X	X
NA	H	X	X	X	X	X	X	X	X	x	X

Word	Data									
number	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}		
NA	See note 5									
NA	OC									

FIGURE 3. Truth tables (unprogrammed).

Device types 03, 04, and 09 (see notes 1, 2, 3, and 4)

Word	Enable				Address									
number	$\overline{\mathrm{CE}}_{1}$	$\overline{\mathrm{CE}}_{2}$	CE_{3}	CE_{4}	A9	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
NA	L	L	H	H	X	X	X	X	X	X	X	X	X	X
NA	L	H	H	H	X	X	X	X	X	X	X	X	X	X
NA	H	L	H	H	X	X	X	X	X	X	X	X	X	X
NA	H	H	L	H	X	X	X	X	X	X	X	X	X	X
NA	H	H	L	L	X	X	X	X	X	X	X	X	X	X

Word number	Data							
	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
NA	See note 5							
NA	OC							
NA	OC							
NA	OC							
NA	OC							

NOTES:

1. $\mathrm{NA}=$ Not applicable.
2. $X=$ Input may be high level, low level or open circuit.
3. $\mathrm{OC}=$ Open circuit (high resistance output).
4. Program readout can only be accomplished with both enable inputs at low level.
5. The outputs for an unprogrammed device shall be high for circuits A, B (device types 03 and 04), and F; and shall be low for circuits B (device types 01, 02, and 08), C, D, E, G and H.

FIGURE 3. Truth tables (unprogrammed) - Continued.

MIL-M-38510/209H
Device types 01, 02, and 08 (Circuit B) Device types 01 and 02 (Circuit A) Device type 02 (Circuit F) Device types 03 and 04 (Circuit E)

FIGURE 4. Functional block diagrams.

MIL-M-38510/209H
Device types 01, 02, and 10
Circuit C

FIGURE 4. Functional block diagrams - Continued.

MIL-M-38510/209H
Device type 02
Circuit H

FIGURE 4. Functional block diagrams - Continued.

MIL-M-38510/209H
Device types 03 and 04
Circuit A

FIGURE 4. Functional block diagrams - Continued.

FIGURE 4. Functional block diagrams - Continued.

Device type 04 Circuit F

FIGURE 4. Functional block diagrams - Continued.

MIL-M-38510/209H
Device types 03, 04, 05, and 09 Circuit C

Device types 04 Circuit H

FIGURE 4. Functional block diagrams - Continued.

MIL-M-38510/209H
Device types 03, 04, 05, 06, and 09
Circuits B and D

FIGURE 4. Functional block diagrams - Continued.

NOTE: All other waveform characteristics shall be as specified in table IVA.
FIGURE 5A. Programming voltage waveforms during programming for circuit A.

NOTES:

1. Output load is 0.2 mA and 12 mA during 7.0 V and 4.0 V check, respectively.
2. All other waveform characteristics shall be as specified in table IVB.
(Device types 03 and 04)
FIGURE 5B. Programming voltage waveforms during programming for circuit B.

PROGRAMMING WAVEFORMS

(Device types 01, 02, and 08)
FIGURE 5B. Programming voltage waveforms during programming for circuit B - Continued.

NOTE: All other waveform characteristics shall be as specified in table IVC.
FIGURE 5C. Programming voltage waveforms during programming for circuit C and H .

NOTE: All other waveform characteristics shall be as specified in table IVD.
FIGURE 5D. Programming voltage waveforms during programming for circuit D.

NOTES:

1. All delays between edges are specified from completion of the first edge, not midpoints.
2. Delays t_{1}, t_{2}, t_{3}, and t_{4} must be greater than 100 ns ; maximum delays of $1 \mu \mathrm{~s}$ are recommended to minimize heating during programming.
3. During tv the output being programmed is switched to the load R and verified.
4. Outputs not being programmed are connected to VONP through a resistor which provides output current limiting.
5. All other waveform characteristics shall be as specified in table IVE.

FIGURE 5E. Programming voltage waveforms during programming for circuit E.

NOTES:

1. Output load is 0.2 mA and 12 mA during 6.2 V and 4.2 V check, respectively.
2. All other waveform characteristics shall be as specified in table IVF.

FIGURE 5F. Programming voltage waveforms during programming for circuit F.

FIGURE 5G. Programming voltage waveforms during programming for circuit G .

Device types 01, 02, 08, and 10

NOTES:

1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory.
2. $C_{L}=30 \mathrm{pF}$ minimum, including jig and probe capacitance; $\mathrm{R}_{1}=330 \Omega \pm 25 \%$ and $\mathrm{R}_{2}=680 \Omega \pm 20 \%$.
3. Outputs may be under load simultaneously.

FIGURE 6. Switching time test circuit.

NOTES:

1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory.
2. $C_{L}=30 \mathrm{pF}$ minimum, including jig and probe capacitance; $\mathrm{R}_{1}=330 \Omega \pm 25 \%$ and $\mathrm{R}_{2}=680 \Omega \pm 20 \%$.
3. Outputs may be under load simultaneously.

FIGURE 6. Switching time test circuit - Continued.

NOTES:

1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory.
2. $C_{L}=30 \mathrm{pF}$ minimum, including jig and probe capacitance; $\mathrm{R}_{1}=330 \Omega \pm 25 \%$ and $R_{2}=680 \Omega \pm 20 \%$.
3. Outputs may be under load simultaneously.

FIGURE 6. Switching time test circuit - Continued.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
d. Class B devices processed to an altered item drawing may be programmed either before or after burn-in at the manufacturer's discretion. The required electrical testing shall include, as a minimum, the final electrical tests for programmed devices as specified in table II herein. Class S devices processed by the manufacturer to an altered item drawing shall be programmed prior to burn-in.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535. Qualification data for subgroups 7 through 11 shall be by attributes only.
4.3.1 Qualification extension. When authorized by the qualifying activity, for qualification inspection, if a manufacturer qualifies faster device type which is manufactured identically (for example, same die, process, and package) to other device types on this specification, then the other device types may be qualified by conducting only group A electrical tests and any electrical specified as additional group C subgroups and submitting data in accordance with MIL-PRF-38535 (for example, groups B, C, and D tests are not required).
4.4 Technology Conformance inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and as specified herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Electrical test requirements shall be as specified in table II herein.
b. Subgroups 4,5 , and 6 shall be omitted.
c. For unprogrammed devices, a sample shall be selected to satisfy programmability requirements prior to performing subgroups 9,10 , and 11. Twelve devices shall be submitted to programming (see 3.3.2.1). If more than 2 devices fail to program, the lot shall be rejected, At the manufacturer's option, the sample may be increased to 24 total devices with no more than 4 total device failures allowed.
d. For unprogrammed devices, 10 devices from the programmability sample shall be subjected to the requirements of group A, subgroups 9,10 , and 11. If more than two total devices fail in all three subgroups, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 20 total devices with no more that 4 total device failures allowable.

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements	Subgroups (see table III)$\underline{1} /, \underline{\underline{2}}, \underline{\underline{3}}$	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters for unprogrammed devices	$\begin{aligned} & 1^{*}, 2,3,7^{*}, \\ & 8 \end{aligned}$	$\begin{aligned} & 1^{*}, 2,3, \\ & 7^{*}, 8 \end{aligned}$
Final electrical test parameters for programmed devices	$\begin{aligned} & 1^{*}, 2,3,7^{*} \\ & 8,9,10,11 \end{aligned}$	$\begin{aligned} & 1^{*}, 2,3,7^{*}, \\ & 8,9, \end{aligned}$
Group A test requirements	$\begin{aligned} & 1,2,3,7,8, \\ & 9,10,11 \end{aligned}$	$\begin{aligned} & 1,2,3,7,8, \\ & 9,10,11 \end{aligned}$
Group B end-point electrical parameters subgroup 5 when using the method 5005 QCI option	$\begin{aligned} & 1,2,3,7,8, \\ & 9,10,11 \end{aligned}$	N/A
Group C end-point electrical parameters	$\begin{aligned} & 1,2,3,7,8, \\ & 9,10,11 \\ & \hline \end{aligned}$	1, 2, 3, 7, 8
Group D test requirements	1, 2, 3, 7, 8	1, 2, 3, 7, 8

1/ * indicates PDA applies to subgroups 1 and 7.
$\underline{\underline{2} / A n y}$ or all subgroups may be combined when using high-speed testers.
$\underline{3} /$ Subgroups 7 and 8 shall consist of verifying the pattern specified.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burnin test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
c. For qualification inspection, at least 50 percent of the sample selected for testing in subgroup 1 shall be programmed (see 3.3.2). For quality conformance inspection, the programmability sample (see 4.4.1c) shall be included in the life tests.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. Endpoint electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

TABLE III. Group A inspection for device type 01.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0. \&

\begin{tabular}{|c|}
\hline Subgroup \& Symbol \& $$
\begin{aligned}
& \text { MIL- } \\
& \text { STD- }
\end{aligned}
$$ \& $$
\begin{gathered}
\hline \text { Cases } \\
\mathrm{V}, \mathrm{X}
\end{gathered}
$$ \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18

\hline \& \& method \& Test no. \& A_{6} \& A_{5} \& A_{4} \& A_{3} \& A_{0} \& A_{1} \& A_{2} \& A_{10} \& GND \& $\overline{C E}_{1}$ \& O_{4} \& O_{3} \& O_{2} \& O_{1} \& A_{9} \& A_{8} \& A_{7} \& V_{CC}

\hline \multirow[t]{6}{*}{$$
\begin{gathered}
1 \\
\text { TC }= \\
+25^{\circ} \mathrm{C}
\end{gathered}
$$} \& VIC \& \& $$
\begin{gathered}
\hline 1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
6 \\
7 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{gathered}
$$ \& -10mA \& GND \& -10mA \& \& \& \& \& -10mA \& -10mA \& -10mA \& 4.5V
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$

\hline \& VoL \& 3007 \& $$
\begin{aligned}
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
1 / 2 / 2 \\
" ، \\
" \\
\hline
\end{gathered}
$$ \& \& $\frac{1}{4}$
$"$
$"$ \& 1/

"
" \& 1/
"
" \& 1/
"
" \& 1/
"
" \& 1/
"
" \& " \& \& 3/ \& 3/ \& 3/ \& 3/ \& 1/
"
" \& 1/
"
" \& 1/
"
" \& "

\hline \& IIL \& 3009 \& 17
18
19
20
21
22
23
24
25
26
27
28 \& 0.5 V \& 0.5V \& 0.5 V \& \& 0.5 V \& \& \& \& \& 0.5 V \& 0.5 V \& 0.5 V \& 5.5V
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$
$"$

\hline \& IIH \& 3010 \& $$
\begin{aligned}
& 29 \\
& 30 \\
& 31 \\
& 32 \\
& 33 \\
& 34 \\
& 35 \\
& 36 \\
& 37 \\
& 38 \\
& 39 \\
& 40
\end{aligned}
$$ \& 5.5 V \& 5.5V \& 5.5 V \& \& 5.5 V \& \& \& \& \& 5.5V \& 5.5 V \& 5.5 V \& "

"
"
"
"
"
"

\hline \& Icex \& \& 41
42
43
44 \& \& \& \& \& \& \& \& \& "، \& " \& 5.2 V \& 5.2 V \& 5.2 V \& 5.2 V \& \& \& \& " ${ }^{\prime}$

\hline \& Icc \& 3005 \& 45 \& GND \& " \& GND \& \& \& \& \& GND \& GND \& GND \& "

\hline 2 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.}

\hline 3 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.}

\hline $$
\begin{gathered}
7 \\
\mathrm{~T}_{\mathrm{C}}= \\
+25^{\circ} \mathrm{C}
\end{gathered}
$$ \& Functional tests \& 4/ \& 46 \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& GND \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/

\hline
\end{tabular}

See footnotes at end of table.

TABLE III. Group A inspection for device type 01 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

Subgroup	Symbol	$\begin{gathered} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \\ \hline \end{gathered}$	Cases V, X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
			Test no.	A_{6}	A_{5}	A_{4}	A_{3}	A_{0}	A_{1}	A_{2}	A_{10}	GND	$\overline{\mathrm{CE}}_{1}$	O_{4}	O_{3}	O_{2}	O_{1}	A9	A_{8}	A_{7}	VCC
8	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$.																				
9	$\mathrm{t}_{\text {PHL1 }}$	GALPAT	47	5/	5/	5/	$5 /$	5/	5/	5/	5/	GND	GND	6/	6/	6/	6/	5/	5/	5/	5/
$\begin{gathered} \mathrm{T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	tPLH 1	Fig. 6 GALPAT	48	5/	5/	5/	5/	5/	5/	5/	5/	"	GND	"	"	"	"	5/	5/	5/	5/
	$\mathrm{t}_{\text {PHL2 }}$	Sequential	49	7/	7/	7/	7/	7/	7/	7/	7/	"	7/	"	"	"	"	7/	7/	7/	7/
	$\mathrm{tpLH2}$	Fig. 6 Sequential Fig. 6	50	7/	7/	7/	7/	7/	7/	7/	7/	"	7/	"	"	"	"	7/	7/	7/	7/

10 Same tests, terminal conditions, and limits as for subgroup 9, except $T_{C}=+125^{\circ} \mathrm{C}$.
11 Same tests, terminal conditions, and limits as for subgroup 9, except $T_{C}=-55^{\circ} \mathrm{C}$.

See footnotes at end of table.

TABLE III. Group A inspection for device types 02, 08, and 10.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Subgroup} \& \multirow[t]{2}{*}{Symbol} \& \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline MIL- \\
STD- \\
883 \\
method
\end{tabular}} \& \[
\begin{aligned}
\& \hline \text { Cases } \\
\& \mathrm{V}, \mathrm{X}, \mathrm{Y} \\
\& \hline
\end{aligned}
\] \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18 \\
\hline \& \& \& Test no. \& \(\mathrm{A}_{6}\) \& \(\mathrm{A}_{5}\) \& A4 \& \(\mathrm{A}_{3}\) \& \(\mathrm{A}_{0}\) \& \(\mathrm{A}_{1}\) \& \(\mathrm{A}_{2}\) \& \(\mathrm{A}_{10}\) \& GND \& \(\overline{\mathrm{CE}}_{1}\) \& \(\mathrm{O}_{4}\) \& \(\mathrm{O}_{3}\) \& \(\mathrm{O}_{2}\) \& \(\mathrm{O}_{1}\) \& A9 \& \(\mathrm{A}_{8}\) \& \(\mathrm{A}_{7}\) \& \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline \multirow[t]{8}{*}{\[
\begin{gathered}
1 \\
\mathrm{TC}= \\
+25^{\circ} \mathrm{C}
\end{gathered}
\]} \& VIC \& \& \begin{tabular}{c}
1 \\
\hline \\
2 \\
3 \\
4 \\
5 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{tabular} \& -10mA \& GND \& -10mA \& \& \& \& \& -10mA \& -10mA \& -10mA \& \[
4.5 \mathrm{~V}
\] \\
\hline \& VoL \& 3007 \& \[
\begin{aligned}
\& 13 \\
\& 14 \\
\& 15 \\
\& 16 \\
\& \hline
\end{aligned}
\] \& \& 1/

"
" \& 1/

"
" \& 1/

$\prime \prime$
$"$ \& -1/9/ \& \& 1/

"
" \& 1/
"

" \& " ${ }^{\prime}$ \& \[
$$
\begin{gathered}
\hline 0.5 \mathrm{~V} \\
" \\
" \\
\hline " \\
\hline
\end{gathered}
$$

\] \& 3/ \& 3/ \& 3/ \& 3/ \& | 1/ |
| :--- |
| |
| |
| |
| | \& 1/

"
" \& \& "،

\hline \& Vон \& 3006 \& \[
$$
\begin{aligned}
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& \hline
\end{aligned}
$$

\] \& | $1 / \frac{10}{6} \underline{11 /}$ |
| :--- |
| $\underline{12 /}$ | \& \& \[

1 / \frac{12}{41}

\] \& \[

\frac{21 /}{4}

\] \& \[

$$
\begin{gathered}
1 / \frac{13 /}{4} \\
" ، \\
" \\
\hline
\end{gathered}
$$
\] \& " ${ }^{\text {" }}$ \& " \& \& " \& " \& -2mA \& -2mA \& -2mA \& -2mA \& 1/9/9 \& 1/ $\frac{13}{4}$ \& " \& "،

\hline \& IIL \& 3009 \& 21
22
23
24
25
26
27
28
29
30
31

32 \& 0.5 V \& \& 0.5 V \& \& \& \& \& 0.5V \& 0.5 V \& 0.5 V \& $$
5.5 \mathrm{~V}
$$

\hline \& İ \& 3010 \& 33
34
35
36
37
38
39
40
41
42
43

44 \& 5.5 V \& \& 5.5 V \& \& \& \& \& 5.5 V \& 5.5 V \& 5.5V \& $$
5.5 \mathrm{~V}
$$

\hline \& Iohz \& \& 45
46
47

48 \& \& \& \& \& \& \& \& \& "' \& $$
14
$$ \& 5.2 V \& 5.2 V \& 5.2 V \& 5.2 V \& \& \& \& "

\hline \& lolz \& \& $$
\begin{aligned}
& \hline 49 \\
& 50 \\
& 51 \\
& 52 \\
& \hline
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& " ${ }^{\prime}$ \& " ${ }^{\prime}$ \& 0.5V \& 0.5V \& 0.5V \& 0.5V \& \& \& \& "

\hline \& $$
\begin{aligned}
& \hline \mathrm{I}_{\mathrm{CC}} \\
& 15 /
\end{aligned}
$$ \& 3005 \& 53 \& GND \& " \& GND \& \& \& \& \& GND \& GND \& GND \& "

\hline
\end{tabular}

See footnotes at end of table.

TABLE III. Group A inspection for device types 02, 08, and 10 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.

\begin{tabular}{|c|}
\hline Subgroup \& Symbol \& $$
\begin{aligned}
& \hline \text { MIL- } \\
& \text { STD- }
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \text { Cases } \\
& \mathrm{V}, \mathrm{X}, \mathrm{Y}
\end{aligned}
$$ \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18

\hline \& \& 883
method \& Test no. \& A_{6} \& A_{5} \& A_{4} \& A_{3} \& A_{0} \& A_{1} \& A_{2} \& A_{10} \& GND \& $\overline{\mathrm{CE}}_{1}$ \& O_{4} \& O_{3} \& O_{2} \& O_{1} \& A_{9} \& A_{8} \& A_{7} \& V_{cc}

\hline $$
\begin{gathered}
1 \\
\mathrm{TC}= \\
+25^{\circ} \mathrm{C}
\end{gathered}
$$ \& los \& 3011 \& $$
\begin{aligned}
& 54 \\
& 55 \\
& 56 \\
& 57 \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
1 / \frac{10}{} / 2 \\
\frac{11}{4} \\
\underline{12 /} \\
\hline
\end{gathered}
$$ \& (1/9/ \& $$
\begin{gathered}
\frac{1 /}{\prime \prime} \\
" ، \\
12 / \\
\hline
\end{gathered}
$$ \& (1/21/ \& $1 / \frac{13 /}{4}$
$"$
$"$ \& 1/
"
" \& 1/

"

" \& | $1 / \frac{10 /}{4}$ |
| :---: |
| $"$ |
| $\underline{12 /}$ | \& CND \& 0.5V \& GND \& GND \& GND \& GND \& 1/ ${ }^{\text {/ }}$ / \& \& \& 5.5 V

"
"
"

\hline 2 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.}

\hline 3 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.}

\hline $$
\begin{gathered}
7 \\
\mathrm{TC}= \\
+25^{\circ} \mathrm{C} \\
\hline
\end{gathered}
$$ \& Functional tests \& 4/ \& 58 \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& GND \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/ \& 4/

\hline 8 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 7, except TC $=+125^{\circ} \mathrm{C}$ and $\mathrm{TC}=-55^{\circ} \mathrm{C}$.}

\hline 9 \& $\mathrm{t}_{\text {PHL1 }}$ \& GALPAT \& 59 \& 5/ \& 5/ \& 5/ \& $5 /$ \& 5/ \& $5 /$ \& 5/ \& 5/ \& GND \& GND \& 6/ \& 6/ \& 6/ \& 6/ \& 5/ \& 5/ \& 5/ \& 5/

\hline $$
\begin{gathered}
\mathrm{TC}= \\
+25^{\circ} \mathrm{C}
\end{gathered}
$$ \& $\mathrm{t}_{\text {PLH1 }}$ \& Fig. 6 \& 60 \& 5/ \& 5/ \& 5/ \& 5/ \& 5/ \& 5/ \& 5/ \& 5/ \& " \& GND \& " \& " \& " \& " \& 5/ \& 5/ \& 5/ \& 5/

\hline \& $\mathrm{t}_{\text {PHL2 }}$ \& Sequential \& 61 \& 71 \& 71 \& 7/ \& 71 \& 7/ \& 7/ \& 7/ \& 7/ \& " \& 7/ \& " \& " \& " \& " \& 7/ \& 7/ \& 7/ \& 71

\hline \& $\mathrm{t}_{\text {PLH2 }}$ \& Fig. 6 SequenFig. 6 Fig. 6 \& 62 \& 7/ \& 7/ \& 7/ \& 7/ \& 7/ \& 7/ \& 7/ \& 7/ \& " \& 7/ \& " \& " \& " \& " \& 7/ \& 7/ \& 7/ \& 7/

\hline 10 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$.}

\hline 11 \& \multicolumn{21}{|l|}{Same tests, terminal conditions, and limits as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.}

\hline
\end{tabular}

See footnotes at end of table.

TABLE III. Group A inspection for device type 03.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

See footnotes at end of table.

TABLE III. Group A inspection for device type 03 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

Subgroup	Symbol	$\begin{aligned} & \hline \text { MIL- } \\ & \text { STD- } \end{aligned}$	$\begin{array}{c\|} \hline \text { Cases } \\ \mathrm{J}, \mathrm{~K} \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Subgroup	Symbor	$\begin{gathered} 883 \\ \text { method } \end{gathered}$	Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	CE_{4}	CE_{3}	$\overline{C E}_{2}$	$\overline{C E}_{1}$	A_{9}	A_{8}
$\begin{gathered} 1 \\ \mathrm{~T} \mathrm{C}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	Icex		$\begin{aligned} & 10 . \\ & \hline 55 \\ & 56 \\ & 57 \\ & 58 \\ & \hline \end{aligned}$												$\begin{array}{\|c\|} \hline \text { GNDD } \\ " " \\ " ، ~ \\ \hline \end{array}$		5.2 V	5.2 V	5.2 V	5.2 V	0.5 V " " " 	0.5 V 4 $"$ $"$	5.5 V " " " 	5.5 V " " "		
	Icc	3005	59	GND			"						GND	GND	GND	GND	GND	GND								
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and V_{16} tests are omitted.																									
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and V_{10} tests are omitted.																									
$\begin{gathered} 7 \\ \mathrm{~T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	Functional tests	4/	60	4/	4/	4/	4/	4/	4/	4/	4 ${ }^{\prime}$	$4 /$	4/	4/	GND	4/	4/	4/	4	4	4/	4/	4/	4/	4/	4
8	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									
9	${ }_{\text {tpHL1 }}$	GALPAT	61	5/	5/	5/	5/	5/	5/	5/	5/	6/	6/	6/	GND	6/	6/	6/	6/	6/	5.5 V	5.5V	GND	GND	5/	5/
$\mathrm{T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {PLH1 }}$	Fig. 6	62	5/	5/	5/	5/	5/	5/	5/	5/	"	"	"	"	"	"	"	"	"	5.5V	5.5V	GND	GND	5/	5/
	$\mathrm{t}_{\text {PHL2 }}$	Fig. 6	63	71	7/	71	7/	71	$7 /$	$7 /$	7/	"	"	"	"	"	"	"	"	"	7/	7/	7/	7/	7/	7/
		tial Fig. 6																								
	$\mathrm{t}_{\text {PLH2 }}$	Fig. 6 Sequen- tial Fig. 6	64	7/	7/	7/	71	71	71	71	7/	"	"	"	"	"	"	"	"	"	71	7/	71	71	7/	7/
10	Same tests, terminal conditions, and limits as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$.																									
11	Same tests, terminal conditions, and limits as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									

See footnotes at end of table.

TABLE III. Group A inspection for device types 04 and 09.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ \mathrm{J}, \mathrm{~K} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
			Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	CE_{4}	CE_{3}	$\overline{C E}_{2}$	$\overline{C E}_{1}$	A_{9}	A_{8}
$\begin{gathered} 1 \\ \mathrm{~T}^{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	VIC		$\begin{aligned} & \hline 1 \\ & \hline 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	-10mA	-10mA	-10mA	-10mA	$\begin{gathered} - \\ 10 \mathrm{~mA} \end{gathered}$	-10mA	-10mA	-10mA										-10mA	-10mA	-10mA	-10mA	-10mA	-10m
	VOL	3007	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & \hline \end{aligned}$	(1/2/					$\begin{array}{\|c\|} \hline \frac{1}{1 / \frac{18 /}{u}} \\ " u \\ " \\ " u \\ " \\ " \\ \hline \end{array}$	1/	$\frac{1 /}{4}$	19/	19/	19/		19/	19/	19/	19/	19/	$5.5 \mathrm{~V}$	$\begin{array}{\|c} \hline 5.5 \mathrm{~V} \\ u \\ " \\ " \\ " \\ " \\ " \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \mathrm{~V} \\ & " ، \\ & " \\ & " \\ & " \\ & " \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \mathrm{~V} \\ & " ، \\ & " ، \\ & " ، \\ & " \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1 / \frac{16 /}{u} \\ " ، \\ " ، \\ " \\ " ، \\ " \\ \hline \end{array}$	1/4 " " "
	VOH	3006	$\begin{aligned} & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 1 / \frac{100}{u} \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline \end{array}$	$\begin{gathered} 1 / 9 / 10 / \\ " u \\ " \\ " \\ " \\ " \\ \hline 12 / \\ \hline \end{gathered}$	$1 / \underline{9 / 23 /}$	$\begin{array}{\|c\|} \hline 1 / 9 / \\ " ، \\ " ، \\ " ، \\ " ، \\ " ، \\ \hline \end{array}$		$\begin{gathered} 1 / \underline{9} / \\ " u \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	$\begin{gathered} \hline \frac{1}{9} / \underline{10 /} \\ \underline{20} \underline{21 /} \\ " \\ " \\ " \\ " \\ 12 / \\ \hline \end{gathered}$	-2mA	-2mA	-2mA		-2mA	-2mA	-2mA	-2mA	-2mA	"،	"			$\begin{array}{\|c} \hline \frac{1}{2} / \frac{13 /}{} \frac{20 /}{u} \\ " \\ " \\ " \\ " \end{array}$	"، "، "، "، "
	ILL	3009	31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.5 V										0.5 V												
	$\mathrm{l}_{\mathrm{H} / 1}$	3010	45 46 47 48 49 50 51 52	5.5 V																						

See footnotes at end of table.

TABLE III. Group A inspection for device types 04 and 09 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

	Symbol	$\begin{aligned} & \text { MIL- } \\ & \text { STD } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Cases } \\ J, K \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Symbor	$\left\lvert\, \begin{gathered} 883 \\ \text { method } \end{gathered}\right.$	Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	CE_{4}	CE_{3}	$\overline{\mathrm{CE}}_{2}$	$\overline{C E}_{1}$	Ag_{9}	A_{8}
$\begin{gathered} 1 \\ \mathrm{TC}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	${ }^{1 / H 1}$	3010	$\begin{aligned} & \hline 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & \hline \end{aligned}$												$\begin{array}{\|c\|} \hline \text { GND } \\ " ، ~ \\ " ، ~ \\ \hline \end{array}$						5.5 V	5.5 V		5.5V	5.5V	5.5 V
	$\begin{aligned} & \mathrm{l}_{1 \mathrm{H} 2} \\ & \underline{171} \\ & \hline \end{aligned}$		58												"								4.5 V			
	IOHz		59 60 61 62 63 64 65 66									5.2 V	5.2 V	5.2 V		5.2 V		$\begin{aligned} & 0.5 \mathrm{~V} \\ & \text { "" } \\ & \text { " } \\ & \text { "" } \\ & \text { "" } \\ & \text { " } \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ \text { " } \end{gathered}$	$\begin{array}{\|c} \hline 5.5 \mathrm{~V} \\ " ، \\ " ، \\ " ، ~ \\ " \\ \text { " } \end{array}$						
	Iolz		$\begin{aligned} & \hline 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & \hline \end{aligned}$									0.5V	0.5V	0.5V		0.5 V	0.5 V	0.5 V	0.5 V	0.5V						
	Icc	3005	75	GND				"						GND	GND	GND	GND	GND	GND							
	los	3011	76 77 78 78 79 80 81 82 83		(1/ ${ }^{\text {u }}$		(1/9/23/	(1/9/	(1/9/	1/9/		GND	GND	GND	"،	GND	GND	GND	GND	GND	$\begin{gathered} \hline 5.5 \mathrm{~V} \\ " ، \\ " ، \\ " ، \\ " ، \\ " \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.5 \mathrm{~V} \\ " \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{~V} \\ & \text { "، } \\ & \text { "، } \\ & \text { "، } \\ & \text { " } \end{aligned}$	$\begin{array}{\|c} \hline 0.5 \mathrm{~V} \\ " ، \\ " ، ~ \\ " ، ~ \end{array}$	$\begin{array}{\|c} \hline \frac{1 / 13 /}{20 /} \\ \frac{20}{\prime} \\ " ، \\ " \\ " \\ \hline \end{array}$	1/ " " ،
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests are omitted.																									
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{c}}$ tests are omitted.																									
$\begin{gathered} 7 \\ \mathrm{TC}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	Functional tests	4/	84	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	GND	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/
8	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									

See footnotes at end of table.

TABLE III. Group A inspection for device types 04 and 09 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ \mathrm{J}, \mathrm{~K} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
			$\begin{array}{\|l\|} \hline \text { Test } \\ \text { no. } \end{array}$	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O5	O6	O_{7}	O_{8}	CE_{4}	CE_{3}	CE_{2}	CE ${ }_{1}$	A9	A_{8}	V
9	$\mathrm{t}_{\text {PHL1 }}$	GALPAT	85	5/	5/	5/	5/	5/	5/	5/	5/	6/	6/	$6 /$	GND	6/	6/	6/	6/	6/	5.5 V	5.5 V	GND	GND	5/	$5 /$	
$\mathrm{T} \mathrm{C}=$ $+25^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {PLH1 }}$	GALPAT	86	5/	5/	5/	5/	5/	5/	5/	5/	"	"	"	"	"	"	"	"	"	5.5V	5.5 V	GND	GND	5/	$5 /$	
	$\mathrm{t}_{\text {pHL2 }}$	Fig. 6		$\underline{7}$	7/	$\underline{\underline{7}}$	$\underline{\underline{7}}$	$\underline{7}$	기	7/	71	"	"	"	"	"	"	"	"	"	7/	7/	7/	7/	7/	71	
	$t_{\text {PHL2 }}$	tial																									
	$\mathrm{t}_{\text {PLH2 }}$	Fig. 6							$7 /$	7	71		"		"	"	"	"	"	"	71	7/	71	7/	71	71	
10	Same te	sts, termin	nal condi	ons,	l limit	s for	grou	9, exc	$\mathrm{T}_{\mathrm{c}}=$	$25^{\circ} \mathrm{C}$																	
11	Same tes	sts, termin	nal condi	ons,	limit	s for	grou	, exc	$\mathrm{T}_{\mathrm{C}}=$	$5^{\circ} \mathrm{C}$																	

See footnotes at end of table.

TABLE III. Group A inspection for device type 05.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.8

\begin{tabular}{|c|}
\hline Subgroup \& \& $$
\begin{array}{|l|}
\hline \text { MIL- } \\
\text { STD- }
\end{array}
$$ \& $$
\begin{gathered}
\text { Cases } \\
\text { J,K } \\
\hline
\end{gathered}
$$ \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18 \& 19 \& 20 \& 21 \& 22 \& 23

\hline \& Symbol \& $$
\begin{array}{|c|}
\hline 883 \\
\text { method } \\
\hline
\end{array}
$$ \& Test no. \& A_{7} \& A_{6} \& A_{5} \& A_{4} \& A_{3} \& A_{2} \& A_{1} \& A_{0} \& O_{1} \& O_{2} \& O_{3} \& GND \& O_{4} \& O_{5} \& O_{6} \& O_{7} \& O_{8} \& N/C \& N/C \& CE \& N/C \& A9 \& A_{8}

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
1 \\
\mathrm{TC}= \\
+25^{\circ} \mathrm{C}
\end{gathered}
$$} \& $\mathrm{V}_{\text {IC }}$ \& \& $$
\begin{gathered}
\hline 1 \\
\hline 2 \\
3 \\
4 \\
4 \\
5 \\
6 \\
7 \\
7 \\
8 \\
9 \\
10 \\
11 \\
\hline
\end{gathered}
$$ \& -10mA \& \& \& \& GND \& \& \& \& \& \& \& \& -10mA \& \& -10mA \& -10mA

\hline \& VOL \& 3007 \& $$
\begin{aligned}
& 12 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& \hline
\end{aligned}
$$ \& \& \& \& \& \& \& 1/ \& 1/
"
"
"
"

" \& 8mA \& 8 mA \& 8mA \& \& 8mA \& 8 mA \& 8 mA \& 8 mA \& 8 mA \& \& \& $$
\begin{array}{|c|}
\hline 0.5 \mathrm{~V} \\
" ، \\
" ، \\
" ، \\
" ، \\
" \\
\hline
\end{array}
$$ \& \& \& 1/

\hline \& VOH \& 3006 \& 20
21
22
23
24
25
26
27 \& "

"

"
"
" \& "،

"،

"،

" \& "، \& "' \& \& $$
\begin{gathered}
\hline 1 / \underline{9} / \\
\text { "" } \\
\text { "" } \\
\text { "" } \\
\text { "، } \\
\hline
\end{gathered}
$$ \& \& \[

$$
\begin{gathered}
1 / \underline{9} / \underline{20 /} \\
" ، \\
" ، \\
" ، \\
" ، \\
" \\
\hline
\end{gathered}
$$

\] \& -2mA \& -2mA \& $-2 \mathrm{~mA}$ \& \& -2mA \& -2mA \& -2mA \& -2mA \& -2mA \& \& \& \& \& \[

\frac{1 / \frac{9}{20} / \frac{13}{4}}{}
\] \& "'

"،
"،
"

\hline \& ILL \& 3009 \& $$
\begin{aligned}
& 27 \\
& 28 \\
& 29 \\
& 30 \\
& 31 \\
& 32 \\
& 33 \\
& 34 \\
& 35 \\
& 36 \\
& 37 \\
& 38 \\
& \hline
\end{aligned}
$$ \& 0.5 V \& 0.5V \& 0.5 V \& \& \& \& \& \& \& \& \& \& \& \& 0.5 V \& \& 0.5 V \& 0.5 V

\hline \& I_{H} \& 3010 \& 39
40
41
42
43
44
45
46
47
48
49 \& 5.5 V \& 5.5 V \& 5.5 V \& 5.5V \& 5.5 V \& 5.5 V \& 5.5 V \& 5.5 V \& \& \& \& \& \& \& \& \& \& \& \& 5.5 V \& \& 5.5 V \& 5.5V

\hline
\end{tabular}

See footnotes at end of table.

TABLE III. Group A inspection for device type 05 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0. \&

Subgrous		$\begin{array}{\|l\|} \hline \text { MIL- } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Cases } \\ J, K \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Subgro	Symbol	$\begin{gathered} 883 \\ \text { method } \end{gathered}$	Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	N/C	N/C	CE	N/C	A_{9}	A_{8}
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	IOHz		$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & \hline \end{aligned}$									5.2 V	5.2 V	5.2 V	$\begin{gathered} \hline \text { GND } \\ \text { "'" } \\ " ، \\ " ، \\ " ، ~ \\ \hline \end{gathered}$	5.2 V			$\begin{gathered} \hline 5.5 \mathrm{~V} \\ " ، \\ " ، \\ " ، \\ " \\ " \\ " \\ \hline \end{gathered}$							
	lolz		58 59 60 61 62 63 64 65									0.5 V	0.5V	0.5V		0.5 V	0.5V	0.5 V	0.5V	0.5V			""			
	los	3011	65 67 68 69 70 71 72 73						1/9/	[1/9/	$\underline{1} \underline{9} / \underline{20}$	GND	GND	GND		GND	GND	GND	GND	GND						1/ " " " " "
	ICC	3005	74	GND				"								GND		GND	GND							
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																									
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 C}$ tests are omitted.																									
$\begin{gathered} 7 \\ \mathrm{~T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	Functional tests	4/	75	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	GND	4/	4/	4/	4/	4/			GND		4/	4/
8	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									
9	$\mathrm{t}_{\text {PHL1 }}$	GALPAT	76	5/	5/	5/	5/	5/	5/	5/	5/	6/	6/	6/	GND	6/	6/	6/	6/	6/			GND		5/	5/
T ${ }_{\text {c }}=$ $+25^{\circ} \mathrm{C}$	$t_{\text {PLH1 }}$	cig. 6	77	5/	5/	5/	5/	5/	5/	5/	5/	"	"	"	"	"	"	"	"	"			GND		5/	5/
	$\mathrm{t}_{\text {phL } 2}$	Fig. 6	78	7/	7/	7/	7/	7/	7/	II	$7 /$	"				"	"	"	"	"			7/		71	7/
		tial Fig. 6																								
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{array}{\|c} \text { Sequen- } \\ \text { tial } \\ \text { Fig. } 6 \\ \hline \end{array}$	79	71	7/	7/	71	7/	7/	7/	7/	"	"	"	"	"	"	"	"	"			7/		71	7/
10	Same tests, terminal conditions, and limits as for subgroup 9, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$.																									
11	Same tests, terminal conditions, and limits as for subgroup 9 , except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									

See footnotes at end of table.

TABLE III. Group A inspection for device type 06.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.

	Symbol	$\begin{aligned} & \hline \text { MIL- } \\ & \text { STD- } \end{aligned}$	Cases J,K	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Subgroup		$\begin{gathered} 883 \\ \text { method } \end{gathered}$	Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	N/C	N/C	CE	N/C	A9	A_{8}
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{C}=}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	VIC		1 1 2 3 4 5 6 7 8 9 10 11	-10mA				GND								-10mA		-10mA	-10mA							
	VoL	3007	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	1/ " " " " " "	1/	1/ " " " " " "	1/ " " " " " "	1/ " " " " " "	1/	1/	1/ " " " " " "	8 mA	8 mA	8 mA		8mA	8 mA	8 mA	8mA	8 mA			0.5V		1/ " " " " " "	告"
	IIL	3009	20 21 22 23 24 25 26 27 28 29 30	0.5V	0.5 V	0.5V	0.5V	0.5 V	0.5 V	0.5V	0.5V												0.5 V		0.5 V	0.5 V
	$\mathrm{l}_{\mathrm{H} 1}$	3010	31 32 33 34 35 36 37 38 39 40	5.5 V	5.5 V	5.5V	5.5 V	5.5 V	5.5 V	5.5 V	5.5V														0.5 V	0.5 V
	$\mathrm{I}_{1 \mathrm{H} 2}$		41												"								4.5 V			
	ICEX		42 43 44 45 46 47 48 49									5.2 V	5.2 V	5.2V		5.2 V	5.2V	5.2 V	5.2 V	5.2 V						

[^0]TABLE III. Group A inspection for device type 06 - Continued.
Terminal conditions (outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high $\geq 2.0 \mathrm{~V}$, low ≤ 0.

Subgroup	Symbol	$\begin{aligned} & \hline \text { MIL- } \\ & \text { STD- } \end{aligned}$	Cases J.K	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
		$\begin{gathered} 883 \\ \text { method } \end{gathered}$	Test no.	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	O_{1}	O_{2}	O_{3}	GND	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	N/C	N/C	CE	N/C	A9	A_{8}
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{C}=}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	ICC	3006	50	GND				GND								GND		GND	GND							
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																									
3	Same tests, terminal conditions, and limits as for subgroup 1, except $T_{C}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests are omitted.																									
$\begin{gathered} 7 \\ \mathrm{~T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	Functional tests	4/	51	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	4/	GND	4/	4/	4/	4/	4/			4/			4/
8	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$.																									
9	$\mathrm{t}_{\text {PHL1 }}$	GALPAT	76	5/	5/	5/	5/	5/	5/	5/	5/	6/	6/	6/	GND	6/	6/	6/	6/	6/			GND		5/	5/
$\begin{gathered} \mathrm{T}_{\mathrm{C}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$	$t_{\text {PLH } 1}$	Fig. 6 GALPAT	77	5/	5/	5/	5/	5/	5/	5/	5/	"	"	"	"	"	"	"	"	"			GND		5/	5/
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} \text { Fig. } 6 \\ \text { Sequen- } \\ \text { tial } \end{gathered}$	78	7/	7/	7/	71	7/	7/	7/	7/	"	"	"	"	"	"	"	"	"			7/		7/	7/
	$\mathrm{t}_{\text {PLH2 }}$	Fig. 6 Sequential Fig. 6	79	7/	7/	7/	7/	7/	$\underline{7}$	7/	7/	"	"	"	"	"	"	"	"	"			7/		7/	7/

Same tests, terminal conditions, and limits as for subgroup 9, except $T_{C}=+125^{\circ} \mathrm{C}$.
Same tests, terminal conditions, and limits as for subgroup 9, except $T_{C}=-55^{\circ} \mathrm{C}$.
See footnotes at end of table.

MIL-M-38510/209H

TABLE III. Group A inspection - Continued.

1/ For programmed devices, select an appropriate address to acquire the desired output state.
2/ For unprogrammed device types 01 (circuit A), apply 10.0 V on pin $1\left(A_{6}\right)$ and for unprogrammed device type 02 (circuit A), apply 13.0 V on pins 1 and $2\left(\mathrm{~A}_{6}, \mathrm{~A}_{5}\right)$; for unprogrammed device types 03 , apply 10.0 V on pin 1 (A_{7}) and for the unprogrammed device type 04 , apply 13.0 V on pins 1 and $2\left(\mathrm{~A}_{7}, \mathrm{~A}_{6}\right)$ (circuit A).

3/ IOL $=12 \mathrm{~mA}$ for circuits $\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{G}$ and H devices; $\mathrm{IOL}=16 \mathrm{~mA}$ for circuits B, D, and F devices.
4/ The functional tests shall verify that no fuses are blown for unprogrammed devices or that the truth table specified in the altered item drawing exists for programmed devices (see table II and 3.3.2.2).
All bits shall be tested. The functional tests shall be performed with $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.
Terminal conditions shall be as follows:
a. Inputs: $\mathrm{H}=3.0 \mathrm{~V}, \mathrm{~L}=0.0 \mathrm{~V}$.
b. Outputs: Output voltage shall be either:
(1) $\mathrm{H}=2.4 \mathrm{~V}$ minimum and $\mathrm{L}=0.5 \mathrm{~V}$ maximum when using a high speed checker double comparator, or
(2) $\mathrm{H} \geq 1.0 \mathrm{~V}$ and $\mathrm{L}<1.0 \mathrm{~V}$ when using a high speed checker single comparator.

5/ GALPAT (PROGRAMMED PROM).

This program will test all bits in the array, the addressing and interaction between bits for ac performance tPLH1 and tPHL1. Each bit in the pattern is fixed by being programmed with an "H" or "L". The GALPAT tests shall be performed with $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V . For manufacturer-programmed PROM only (see 3.8.2). When testing device type 10 , the tPHL1 and tPLH1 limits shall be verified by performing a sequential test pattern outline in footnote $\underline{\underline{7} / \text {. }}$

Description:

Step 1. Word 0 is read.
Step 2. Word 1 is read.
Step 3. Word 0 is read
Step 4. Word 2 is read.
Step 5. Word 0 is read.
Step 6. The reading procedure continues back and forth between word 0 and the next higher numbered word until word 1023 or 2047 (as applicable) is reached, then increments to the next word and reads back and forth as in step 1 through step 6 and shall include all words.
Step 7. Pass execution time $=\left(\mathrm{n}^{2}+\mathrm{n}\right) \times$ cycle time. $\mathrm{n}=1024$ or 2048 (as applicable).
6/ The outputs are loaded per figure 6.
7/ SEQUENTIAL (PROGRAMMED PROM).
This program will test all bits in the array for tPHL2 and tPLH2. The sequential tests shall be performed with $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 5.5 V .

Description:

Step 1. Each word in the pattern is tested from the enable lines to the output lines for recovery.
Step 2. Word 0 is addressed. Enable line is pulled high to low and low to high. tphl2 and tpLH2 are read.
Step 3. Word 1 is addressed. Same enable sequence as above.
Step 4. The reading procedure continues until word 1023 or 2047 (as applicable) is reached.
Step 5. Pass execution times 1024 or 2048 (as applicable) x cycle time.

MIL-M-38510/209H

TABLE III. Group A inspection - Continued.
8/

Device type	tpHL1 (ns)	tpLH1 (ns)	tPHL2 (ns)	tPLH2 (ns)
01, 02	125	125	60	60
03, 04, 05, 06	90	90	50	50
Circuit F	90	90	50	50
Circuit B device 08	55	55	30	30
Circuit H device08	90	90	50	50
09	55	55	30	30
10	55	55	30	30

9/ For unprogrammed devices (circuit C), apply 10.0 V on pin $15(\mathrm{Ag}), 0.5 \mathrm{~V}$ on pin $2\left(\mathrm{~A}_{5}\right)$ and 5.0 V to all other address pins for device types 02 and 10 ; device types 04 and 09 , apply 10 V on pin $8\left(\mathrm{~A}_{0}\right)$ and 5.0 V on pins $7,6,5,4,3,\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}\right)$; device type 05 , apply 10 V on pin $22(\mathrm{~A} 9), 0.5 \mathrm{~V}$ on pins $8,7,6,5$ $\left(A_{0}, A_{1}, A_{2}, A_{3}\right)$ and 5.0 V to all other address pins. For unprogrammed devices (circuit F) apply 12.0 V on pin $5\left(A_{0}\right)$ for device types 02 and 08.

10/ For unprogrammed devices (circuit G), apply 10.5 V to pins 1 and 8 (A_{6} and A_{10}), apply 0.0 V to pin 2 (A_{5}) and apply 0.0 V to pin $2\left(\mathrm{~A}_{5}\right)$ and apply 3.0 V to all other address pins for device types 01 and 02 ; apply 10.5 V to pin $3\left(A_{5}\right)$, apply to 0.0 V to pins 2 and $8\left(\mathrm{~A}_{6}\right.$ and $\left.\mathrm{A}_{0}\right)$, and apply 3.0 V to all other address pins for device types 03 and 04.

11/ For unprogrammed devices, apply 12.0 V on pin $1\left(\mathrm{~A}_{6}\right)$ for device types 02 and 08 (circuit B).
12/ For unprogrammed devices (circuit G), apply 10.5 V on pin 1 and $8\left(\mathrm{~A}_{6}\right.$ and $\left.\mathrm{A}_{10}\right)$, apply 0.0 V to pin 3 (A_{4}) and apply 3.0 V to all address pins for device type 02 , apply 10.5 V to pin $3\left(\mathrm{~A}_{5}\right)$, apply 0.0 V to pin $8\left(\mathrm{~A}_{0}\right)$ and apply 3.0 V to all other address pins for device type 04.

13/ For unprogrammed device type 02 (with date codes before 8501), apply 10.0 V pin $5\left(\mathrm{~A}_{0}\right) ; 0.5 \mathrm{~V}$ on pin 16 (A_{8}), and 5.0 V on all other address pins; and for unprogrammed device type 04 (with date codes before 8501) (circuit C), apply 10.0 V on pin $22(\mathrm{Ag})$ and 5.0 V on all other address pins.

14/ Circuit B, device type 08, apply 2.4 V .
15/ For device type 08 and 10: Electrical supply current I_{cc} test maximum limit is 185 mA .
16/ For unprogrammed devices (circuit B), apply 12.0 V on pins 22 and $1\left(\mathrm{~A}_{9}\right.$ and $\left.\mathrm{A}_{7}\right)$ for device types 03 and 04.
17/ At the manufacturer's option, this may be performed with $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ and test limits of $50 \mu \mathrm{~A}$ maximum.
18/ For unprogrammed devices (circuit F) apply 12.0 V on pin $6\left(\mathrm{~A}_{2}\right)$ and all other inputs at 0 V for device type 04.
19/ $\mathrm{IOL}=8 \mathrm{~mA}$ for circuits $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and G devices; $\mathrm{IOL}=16 \mathrm{~mA}$ for circuit F devices.

MIL-M-38510/209H

TABLE III. Group A inspection - Continued.

20/ For unprogrammed devices (circuit D), apply 12.0 V on pins 8 and 22 (A_{0} and A 9), select an appropriate address to acquire the desired output state.

21/ For unprogrammed device type 03 (circuit E), apply 13.0 V on pin $4\left(\mathrm{~A}_{4}\right)$ and pin $8\left(\mathrm{~A}_{0}\right)$; and for unprogrammed device type 04 (circuit E), apply 13.0 V on pin $8\left(\mathrm{~A}_{0}\right)$.

22/ For unprogrammed device type 02 and 08 (circuit H), apply 5.0 V on pin $18,0.0 \mathrm{~V}$ to pins $5,6,7$ and $8,3.0 \mathrm{~V}$ to pins $1,2,3,15,16$ and $17,9.0 \mathrm{~V}$ to pin 4.

23/ For unprogrammed device type 04 (circuit H) apply 5.0 V to pin $24 ; 0.0 \mathrm{~V}$ to pins $3,5,6,7,8,20$ and $21 ; 3.0 \mathrm{~V}$ to pins $1,2,18,19,22$ and $23 ; 9.0 \mathrm{~V}$ to pin 4.

MIL-M-38510/209H

4.6 Programming procedure identification. The programming procedure to be utilized shall be identified by the manufacturer's circuit designator. The circuit designator is cross referenced in paragraph 6.7 herein with the manufacturer's symbol or CAGE number.
4.7 Programming procedure for circuit A. The waveforms on figure 5 A , the programming characteristics in table IVA and the following procedures shall be used for programming the device.
a. Connect the device in the electrical configuration for programming. The waveforms on figure 5A and the programming characteristics in table IVA shall apply to these procedures.
b. Address the PROM with the binary address of the word to be programmed. Address inputs are TTL compatible. An open circuit shall not be used to address the PROM.
c. Apply V_{PL} voltage to V_{CC}.
d. Bring the $\overline{\mathrm{CE}}_{\mathrm{X}}$ inputs high and the CEX inputs low to disable the device. The chip enables are TTL compatible. An open circuit shall not be used to disable the device.
e. Disable the programming circuitry by applying a voltage of VOPD to the outputs of the PROM.
f. Raise $V_{C C}$ to $V_{P H}$ with rise time less than or equal to t $T L H$.
g. After a delay equal to or greater than $t_{D 1}$ apply only one pulse with amplitude of $V_{\text {OPE }}$ and duration of t_{p} to the output selected for programming. Note that the PROM is supplied with fuses intact, which generates an output high. Programming a fuse will cause the output to go low.
h. Lower V_{C} to V_{PL} following a delay to $\mathrm{t}_{\mathrm{D} 2}$ from programming enable pulse applied to an output.
i. Enable the PROM for verification by applying $V_{I L}$ to $\overline{C E}_{X}$ and $V_{I H}$ to $C E X$.
j. Apply $\mathrm{V}_{\mathrm{PHV}}$ to V_{CC} and verify bit is programmed.
k. Repeat steps 4.7a through 4.7j for all other bits to be programmed in the PROM.
I. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVA. Programming characteristics for circuit A. 1/

Parameter	Symbol	Limits $\underline{\text { 2/ }}$			Unit
		Min	Recommended	Max	
Address input voltage $\mathbf{3}^{\text {/ }}$	V_{IH}	2.4	5.0	5.0	V
	VIL	0.0	0.4	0.5	
Programming	$\mathrm{V}_{\text {PH }}$ 4/	10.75	11.0	11.25	V
Voltage to V_{Cc} low	VPL	0.0	0.0	1.5	V
Program verify	VPHV	---	5.5	---	V
Verify voltage	$\mathrm{V}_{\mathrm{R}} \underline{5} /$	4.5	---	5.5	V
Programming input low current at V_{PH}	IILP	---	-300	-600	$\mu \mathrm{A}$
Programmed voltage (V_{CC}) transition time	tTLH	1	5	10	$\mu \mathrm{S}$
	tTHL	1	5	10	
Programming delay	tD1	10	10	20	$\mu \mathrm{s}$
	tD2	1	5	5	
Programming pulse width	tp 6/	90	100	110	$\mu \mathrm{s}$
Programming duty cycle	PDC	---	30	60	\%
Output voltage, enable	Vope 7/	10.5	10.5	11.0	V
Output voltage, disable	VOPD	0.0	5.0	5.5	V

1/ During the programming the chip must be disabled for proper operation.
2/ $\mathrm{TC}=+25^{\circ} \mathrm{C}$.
3/ No inputs should be left open for V_{IH}.
4/ VPH source must be capable of supplying one ampere.
5/ It is recommended that post programming dual verification be made at V_{R} minimum and V_{R} maximum.
6/ Note step j in programming procedure.
7/ VOPE source must be capable of supplying 10 mA minimum.

MIL-M-38510/209H

4.8 Programming procedure for circuit B, device types 03 and 04 . The waveforms on figure $5 B$, the programming characteristics in table IVB and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Raise V_{CC} to 5.5 volts.
c. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible.
d. Disable the chip by applying V_{IH} to the $C E$ inputs and V_{IL} to the $C E$ inputs.

The chip enable inputs are TTL compatible.
e. Apply the VPP pulse to the programming pin $\left(\mathrm{CE}_{2}\right)$. In order to insure that the output transistor is off before increasing the voltage on the output pin, the programming pin's voltage pulse shall precede the output pin's programming pulse by $T_{D 1}$ and leave after the output pin's programming pulse by $T_{D 2}$ (see figure 5B).
f. Apply only one VOUT pulse with duration of tp to the output selected for programming. The outputs shall be programmed one output at a time, since internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode.
g. Other bits in the same word may be programmed sequentially by applying VOUT pulses to each output to be programmed.
h. Repeat 4.8 c through 4.8 g for all other bits to be programmed.
i. Enable the chip by applying V_{IL} to the $\overline{\mathrm{CE}}$. Inputs and V_{IH} to the $C E$ inputs, and verify the program. Verification may check for a low output by requiring the device to sink 12 mA at $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ and 0.2 mA at $\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
j. For classes S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVB. Programming characteristics for circuit B, device types 03 and 04 .

Parameter	Symbol	Conditions	Limits 1/			Unit
			Min	Recommended	Max	
V_{CC} required during programming	VCCP		5.4	5.5	5.6	V
Rise time of programming pulse to data out or programming pin	ttil		0.34	0.40	0.46	V/us
Programming voltage on programming pin	VPP		32.5	33	33.5	V
Output programming voltage	Vout		25.5	26	26.5	V
Programming pin pulse width ($\overline{\mathrm{CE}}_{2}$)	tpp	Chip disabled, $V_{C C}=5.5 \mathrm{~V}$		100	180	ns
Pulse width of programming voltage	tp	Chip disabled, $V_{C C}=5.5 \mathrm{~V}$	1		40	$\mu \mathrm{S}$
Required current limit of power supply feeding programming pin and output during programming	IL	$\begin{aligned} & V_{P P}=33 \mathrm{~V}, \\ & V_{O U T}=26 \mathrm{~V}, \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	240			mA
Required time delay between disabling memory output and application of output programming pulse	$\mathrm{T}_{\mathrm{D} 1}$	Measured at 10\% levels	70	80	90	$\mu \mathrm{S}$
Required time delay between removal of programming pulse and enabling memory output	TD2	Measured at 10\% levels	100			ns
Output current during verification	lolv1	Chip enabled, $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$	11	12	13	mA
	lolv2	Chip enabled, $\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$	0.19	0.2	0.21	mA
Address input voltage	V_{IH}		2.4	5.0	5.5	V
	VIL		0.0	0.4	0.8	V
Maximum duty cycle during automatic programming of programming pin and output pin	D.C	tp / tc			25	\%

1/ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.

MIL-M-38510/209H

4.8.1 Programming procedure for circuit B, device types 01,02 , and 08 . The waveforms on figure $5 B$, (device types 01, 02, and 08), the programming characteristics in table IVB (device types 01, 02, and 08), and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Apply V_{IH} to $\overline{\mathrm{CE}}_{1}$ and the binary address of the PROM word to be programmed. Raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}$.
c. After a tD delay, apply only one VOP to the output to be programmed high.

Apply V_{OP} to one output at a time.
d. After a t_{D} delay, a pulse $\overline{\mathrm{CE}}_{1}$ to a V_{IL} level for a duration of t .
e. After a tp and t_{D} delay, remove $V_{O P}$ from the programmed output.
f. Other bits in the same word may be programmed sequentially while the V_{CC} input is at the $\mathrm{V}_{\mathrm{CCP}}$ level by applying $\mathrm{V}_{\text {OP }}$ pulses to each output to be programmed and pulsing $\overline{\mathrm{CE}}_{1}$ to the $\mathrm{V}_{\text {IL }}$ level, allowing for proper delays between $V_{O P}$ and $\overline{C E}_{1}$.
g. Repeat 4.8.1b through 4.8.1e for all other bits to be programmed.
h. To verify programming, lower $\mathrm{V}_{\mathrm{CCP}}$ to V_{CC}. Connect a $10 \mathrm{k} \Omega$ resistor between each output and V_{CC}. Apply $V_{I L}$ to $\overline{C E}_{1}$ input. The programmed outputs should remain in the high state and the unprogrammed outputs should go to the low level.
i. For classes S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVB. Programming characteristics for circuit B, device types 01, 02, and 08.

Parameter	Symbol	Conditions	Limits 1/			Unit
			Min	Recommended	Max	
V_{CC} required during programming	VCCP		11.5	11.75	12.0	V
Vout current limit during programming	Iop		20	25	30	mA
Output programming voltage	Vout		10.5	11.0	11.5	V
Pulse width of programming voltage	tp		9	10	11	$\mu \mathrm{s}$
Programming delay	tD		0	1	10	$\mu \mathrm{s}$
VCCP or VOUT transition time	ttLH	Rise time of $V_{C C}$ or Vout	1	5	10	V/us
$V_{\text {CCP }}$ current	ICCP		800	900	1000	mA
Low V_{CC} for verification	$\mathrm{V}_{\text {CCL }}$		4.2	4.3	4.4	V
High V $\mathrm{CC}^{\text {for verification }}$	$\mathrm{V}_{\mathrm{CCH}}$		5.8	6.0	6.2	V
Address input voltage	V_{IH}		2.4	3.0	5.5	V
	V_{IL}		0.0	0.0	0.5	V
Maximum duty cycle during automatic programming of programming pin and output pin	D.C	tp / tc		25	25	\%

1/ $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$.

MIL-M-38510/209H

4.9 Programming procedure for circuit C and H . The waveforms on figure 5C, the programming characteristics in table IVC and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Terminate all device outputs with a $10 \mathrm{k} \Omega$ resistor to V_{CC}.

Apply V_{IH} to the $\overline{\mathrm{CE}}$ inputs and V_{IL} to the CE inputs
c. Address the PROM with the binary address of the selected word to be programmed. Raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}$.
d. After a tD delay $(10 \mu \mathrm{~s})$, apply only one $\mathrm{V}_{\text {OUT }}$ pulse to the output to be programmed. Program one output at a time
e. After a tD delay ($10 \mu \mathrm{~s}$), pulse $\overline{\mathrm{CE}}$ input to logic "0" for a duration of tp.
f. After a tD delay ($10 \mu \mathrm{~s}$), remove the VOUT pulse from the programmed output. Programming a fuse will cause the output to go to a high-level logic in the verify mode.
g. Other bits in the same word may be programmed sequentially while the V_{CC} input is at the $\mathrm{V}_{\mathrm{CCP}}$ level by applying Vout pulses to each output to be programmed allowing a delay of t_{D} between pulses as shown on figure 5 C .
h. Repeat 4.9 c through 4.9 g for all other bits to be programmed.
i. To verify programming after tD $(10 \mu \mathrm{~s})$ delay, lower V_{CC} to $\mathrm{V}_{\mathrm{CCH}}$ and apply a logic " 0 " level to both $\overline{\mathrm{CE}}$ Inputs and logic "1" level to CE inputs. The programmed output should remain in the "1" state. Again, lower $V_{C C}$ and $V_{C C L}$ and verify that the programmed output remains in the " 1 " state.
j. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVC. Programming characteristics for circuit C and H .

Parameter	Symbol	Conditions	Limits 1/			Unit
			Min	Recommended	Max	
Programming voltage	VCCP 1/	$\begin{aligned} & \hline \mathrm{ICCP}=375 \pm 75 \mathrm{~mA} \\ & \text { transient or steady-state } \\ & \hline \end{aligned}$	8.5	8.75	9.0	V
Verification upper limit	$\mathrm{V}_{\mathrm{CCH}}$		5.3	5.5	5.7	V
Verification lower limit	$\mathrm{V}_{\text {CCL }}$		4.3	4.5	4.7	V
Verify threshold	VS $\underline{2}$		1.4	1.5	1.6	V
Programming supply current	ICCP	$\mathrm{V}_{\text {CCP }}=+8.75 \pm 0.25 \mathrm{~V}$	300	350	400	mA
Input voltage high level "1"	V_{IH}		2.4		5.5	V
Input voltage low level $\text { " } 0 \text { " }$	VIL		0	0.4	0.8	V
Input current	IH	$\mathrm{V}_{1 H}=+5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Input current	IIL	$\mathrm{V}_{\mathrm{IL}}=+0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$
Output programming voltage	Vout 3/	IOUT $=200 \pm 20 \mathrm{~mA}$, transient or steady-state	16	17	18	V
Output programming current	lout	$\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$	180	200	220	mA
Programming voltage transition time	tTLH		10		50	$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ programming pulse width	tp		0.3	0.4	0.5	ms
Pulse sequence delay	tD		10			us
Programming duty cycle	$\begin{gathered} \text { tpR } \\ \text { tPR+tPS } \end{gathered}$				50	\%

1/ Bypass V_{CC} to GND with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
2/ Vs is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

3/ Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.

MIL-M-38510/209H

4.10 Programming procedure for circuit D. The waveforms on figure 5D, the programming characteristics in table IVD and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Select the word to be programmed by applying the appropriate voltages to the address pins as well as the required voltages to chip enable pins to select the device.
c. Apply the proper power, $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
d. Verify that the bit to be programmed is in the " 0 " logic state.
e. Enable the chip for programming by application of the chip enable voltage, $\mathrm{V}_{\mathrm{P}(\mathrm{CE})}=21.0 \mathrm{~V}, \overline{\mathrm{CE}}_{2}, \mathrm{CE}_{3}$, and CE_{4} should be left high, and $\overline{\mathrm{CE}}_{1}$ should remain low.
f. Apply lop programming current ramp to the output to be programmed. The other outputs shall be left open. Only one output may be programmed at a time. During the rise of the current ramp, the required current will be achieved to program the junction. As programming occurs, a drop in voltage can be sensed at the output of the device. Upon detection of V_{ps}, the current shall be held for thap and then shut off.
g. Verify that the programmed bits is in the " 1 " logic state. Lower $V_{P}\left(C E E_{1}\right)$ to 0 V and read the output. Note that the PROM is supplied with fuses generating a low level logic output. Programming a fuse will cause the output to go to a high level logic in the verify mode.
h. Lower V_{Cc} to 0 V . The power supply duty cycle shall be equal to or less than 50 percent.
i. If the bit verifies as not having been programmed at $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$, repeat the programming ramp sequence up to 15 times until the bit is programmed. If after 16 programming attempts, the bit does not program, the device shall be considered a reject.
j. If the bit verifies as having been programmed at $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$, one of the following two conditions shall be followed:
(1) If the current required to program was less than $\operatorname{lop}(\max)$, proceed to 4.10 k .
(2) If the current required to program was equal to or greater than IOP(max), the device shall be considered a reject and no further attempts at programming other bits shall be attempted.
k. Repeat 4.10a through 4.10j for all other bits to be programmed.
I. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVD. Programming characteristics for circuit D.

Parameter	Symbol	Conditions 1/	Limits			Unit
			Min	Recommended	Max	
Address input voltage	V_{IH}	Don't leave inputs open	2.4	5.0	5.0	V
	VIL		0	0	0.4	
Chip enable programming voltage	$\mathrm{V}_{\mathrm{P}(\mathrm{CE})}$	$\begin{aligned} & \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{CE}_{3}=\mathrm{CE}_{4}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{P}(\mathrm{CE})}=\overline{\mathrm{CE}}_{2} \end{aligned}$	20.5	21.0	21.5	V
Programming voltage limit	$\mathrm{V}_{\mathrm{OP} \text { (max) }}$	Programming current ramp voltage limit	24	25	26	V
Power supply	V_{CC}		6.3	6.5	6.7	V
Power supply current	ICC				250	mA
Chip enable current	ICE				150	mA
Initial value of programming current ramp	$\mathrm{lOP}(\mathrm{INIT})$		19	20	21	mA
Maximum value of programming current ramp	$\mathrm{loP}(\mathrm{max})$		155	160	165	mA
Programming current ramp (linear slew rate)	SRIOP		0.9	1.0	1.1	$\mathrm{mA} / \mu \mathrm{s}$
$V_{\text {CC }}$ pulse rise time	$\left.\operatorname{tr}^{(} \mathrm{V}_{\mathrm{CC}}\right)$		0.2	2.0		$\mu \mathrm{s}$
VCC pulse fall time	$\mathrm{tf}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{CC}}\right)$		0.2	2.0		$\mu \mathrm{S}$
Chip enable rise time	$\operatorname{tr}\left(\overline{C E}_{2)}\right)$		3.0	4.0		$\mu \mathrm{S}$
Chip enable fall time	$t_{f}\left(\overline{C E}_{2)}\right.$		0.2	4.0		$\mu \mathrm{s}$
Programming current ramp fall time	tf(l (OP)			0.1	0.2	$\mu \mathrm{S}$
Hold time after programming	thap		1.4	1.5	1.6	$\mu \mathrm{S}$
Time to reach lop initial	tIop		0.5	1.0	2.0	$\mu \mathrm{S}$
Delay to start $\mathrm{V}_{\text {ps }}$ sense	$t_{\text {dss }}$		2.0	3.0	4.0	$\mu \mathrm{s}$
Delay to chip enable pulse	$t_{\text {dce }}$			1.0		$\mu \mathrm{S}$
Delay to programming ramp	$\mathrm{t}_{\mathrm{d}}(\mathrm{lop})$		2.0	3.0	10	$\mu \mathrm{S}$
Delay after programming to CE_{1}	$t_{\text {dRAP }}$		2.0	3.0	10	$\mu \mathrm{S}$
Delay to read after programming	$t_{\text {dRAP }}$	Programming verification	2.0	3.0		$\mu \mathrm{S}$

See footnote at end of table.

MIL-M-38510/209H

TABLE IVD. Programming characteristics for circuit D - Continued.

Parameter	Symbol	Conditions 1/	Limits			Unit
			Min	Recommended	Max	
Delay to V CC off	$t \mathrm{D}\left(\mathrm{V}_{C C}\right)$			1.0		$\mu \mathrm{S}$
Delay to read before programming	$t_{\text {dRBP }}$	Initial check	2.0	3.0		$\mu \mathrm{S}$
Width to read compare strobe	tw			1.0		$\mu \mathrm{S}$
Voltage change at programming	$V_{p s}$	Typical 2.0 V	0.7	2.0		V
Time to program bit	$t_{\text {tp }}$	$V_{\text {ps }}$ sensing circuit will automatically adjust this time				
Duty cycle power		Maximum duty cycle to maintain in $\mathrm{T}_{\mathrm{C}}<+85^{\circ} \mathrm{C}$		50		\%
Case temperature	T_{C}		25	85		${ }^{\circ} \mathrm{C}$

1/ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.

MIL-M-38510/209H

4.11 Programming procedure for circuit E. The waveforms on figure 5 E , the programming characteristics in table IVE and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Terminate all outputs with a 300Ω resistor to VONP. Apply $\mathrm{V}_{\text {IHP }}$ to the $\overline{\mathrm{CE}}_{2}, \mathrm{CE}_{3}$, and CE_{4} inputs and $\mathrm{V}_{\text {ILP }}$ to the $\overline{\mathrm{CE}}_{1}$ inputs.
c. Address the PROM with the binary address of the selected word to be programmed. Raise V_{CC} to $\mathrm{V}_{\mathrm{CCP}}$.
d. After a delay of t_{1}, apply only one $V_{\text {OP }}$ pulse with a duration of $t p, t_{2}$, and $d\left(V_{O P}\right) / d t$ to the output selected for programming. After a delay of t_{2} and $d\left(V_{O P}\right) / d t$, pulse $\overline{C E}_{2}$ from $V_{\text {IHP }}$ to $V_{\text {CEP }}$ for the duration of $t P$, $2 d\left(V_{C E}\right) / d t$, and $t_{3} ; \overline{C E}_{2}$ is then to go to the $V_{\text {ILP }}$ level.
e. To verify programming after $\overline{C E}_{1}$ has been set to $V_{I L P}$, lower $V_{C C}$ to $V_{C C L}$ after a delay of t_{4}. The programmed output should remain in the logic "1" state.
f. The outputs should be programmed one output at a time since the internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a low level logic output. Programming a fuse will cause the output to go to a high level logic in the verify mode.
g. Repeat 4.11c through 4.11 f for all other bits to be programmed.
h. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVE. Programming characteristics for circuit E .

Parameter	Symbol	Conditions	Limits			Unit
			Min	Recommended	Max	
V_{CC} required during programming	VCCP		5.0		5.5	V
High level input voltage during programming	$\mathrm{V}_{\mathrm{IHP}}$		2.4		5.5	V
Low level input voltage during programming	VILP		0.0		0.45	V
Chip enable voltage during programming	$V_{\text {CEP }}$	$\overline{\mathrm{CE}}_{1}$ pin	14.5		15.5	V
Output voltage during programming	Vop		19.5		20.5	V
Voltage on outputs not to be programmed	Vonp		0		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCP}} \\ +0.3 \\ \hline \end{gathered}$	V
Current on outputs not to be programmed	Ionp				20	mA
Rate of output voltage change	$\mathrm{d}(\mathrm{V}$ OP) / dt		20		250	V/us
Rate of chip enable voltage change	$\mathrm{d}\left(\mathrm{V}_{\mathrm{CE}}\right) / \mathrm{dt}$	$\overline{C E}_{1} \mathrm{pin}$	100		1000	V/us
Programming period	$t p$		50		100	$\mu \mathrm{s}$
V_{CC} during programming verification	$\mathrm{V}_{\mathrm{CCL}}$		4.5		5.0	$\mu \mathrm{S}$

MIL-M-38510/209H

4.12 Programming procedure for circuit F. The waveforms on figure 5F, the programming characteristics in table IVF and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Raise V_{CC} to 5.5 volts.
c. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible.
d. Disable the chip by applying $\mathrm{V}_{I H}$ to the $\overline{\mathrm{CE}}$ inputs and $\mathrm{V}_{I L}$ to the $\overline{\mathrm{CE}}$ inputs.

The chip enable inputs are TTL compatible.
e. Apply the VPP pulse to the programming pin ($\overline{\mathrm{CE}}_{2}$). In order to insure that the output transistor is off before increasing the voltage on the output pin, the programming pin's voltage pulse shall precede the output pin's programming pulse by $\mathrm{T}_{\mathrm{D} 1}$ and leave after the output pin's programming pulse by $\mathrm{T}_{\mathrm{D} 2}$ (see figure 5F).
f. Apply only one VOUT pulse with duration of tp to the output selected for programming. The outputs shall be programmed one output at a time since internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low level logic in the verify mode.
g. Other bits in the same word may be programmed sequentially by applying Vout pulses to each output to be programmed.
h. Repeat 4.12 c through 4.12 g for all other bits to be programmed.
i. Enable the chip by applying $V_{I L}$ to the $\overline{C E}$ inputs and $V_{I H}$ to the $C E$ inputs, and verify the program. Verification may check for a low output by requiring the device to sink 12 mA at $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ and 0.2 mA at $\mathrm{V}_{\mathrm{CC}}=6.2 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
j. For classes S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVF. Programming characteristics for circuit F.

Parameter	Symbol	Conditions	Limits 1/			Unit
			Min	Recommended	Max	
V_{CC} required during programming	$\mathrm{V}_{\mathrm{CCP}}$		5.4	5.5	5.6	V
Rise time of programming pulse to data out or programming pin	tTLH		0.34	0.40	0.46	$\mathrm{V} / \mu \mathrm{s}$
Programming voltage on programming pin	VPP		32.5	33	33.5	V
Output programming voltage	V ${ }_{\text {OUT }}$		25.5	26	26.5	V
Programming pin pulse width ($\overline{\mathrm{CE}}$)	tpp	Chip disabled, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		100	180	ns
Pulse width of programming voltage	tp	Chip disabled, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1		40	$\mu \mathrm{S}$
Required current limit of power supply feeding programming pin and output during programming	IL	$\begin{aligned} & V_{P P}=33 \mathrm{~V}, \\ & V_{O U T}=26 \mathrm{~V}, \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	240			mA
Required time delay between disabling memory output and application of output programming pulse	TD1	Measured at 10\% levels	70	80	90	$\mu \mathrm{S}$
Required time delay between removal of programming pulse and enabling memory output	TD2	Measured at 10\% levels	100			ns
Output current during verification	lolv1	Chip enabled, $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$	11	12	13	mA
	lolv2	Chip enabled, $\mathrm{V}_{\mathrm{CC}}=6.2 \mathrm{~V}$	0.19	0.2	0.21	mA
Address input voltage	V_{IH}		2.4	5.0	5.5	V
	$\mathrm{V}_{\text {IL }}$		0.0	0.4	0.8	V
Maximum duty cycle during automatic programming of programming pin and output pin	D.C	tp / tc			25	\%

1/ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.

MIL-M-38510/209H

4.13 Programming procedure for circuit G. The waveforms on figure 5G, the programming characteristics in table IVG and the following procedures shall apply for programming the device:
a. Connect the device in the electrical configuration for programming.
b. Select the desired word by applying high or low levels to the appropriate address inputs. Disable the device by applying a high level to one or more active low chip enable inputs. Note that the address and enable inputs must be driven with TTL logic levels during programming and verification.
c. Increase V_{CC} from nominal to $\mathrm{V}_{\mathrm{CCP}}(10.5 \pm 0.5 \mathrm{~V})$ with a slew rate limit of $\mathrm{I}_{\mathrm{RR}}(1.0$ to $10.0 \mathrm{~V} / \mu \mathrm{s})$. Since V_{CC} is the source of the current required to program the fuse, as well as the I_{CC} for the device at the programming voltage, it must be capable of supplying 750 mA at 11.0 volts.
d. Select the output where a logical high is desired by raising that output voltage to $\mathrm{V}_{\mathrm{OP}}(10.5 \pm 0.5 \mathrm{~V})$. Limit the slew rate to $I_{R R}\left(1.0\right.$ to $10.0 \mathrm{~V} / \mu \mathrm{s}$). This voltage change may occur simultaneously with the V_{CC} increase to $\mathrm{V}_{\mathrm{CCP}}$, but must not precede it. It is critical that only one output at a time be programmed since the internal circuits can only supply programming current to one bit at a time. Outputs not being programmed must be left open or connected to a high impedance source of $20 \mathrm{k} \Omega$ minimum (remember that the outputs of the device are disabled at this time).
e. Enable the device by taking the chip enables to a low level. This is done with a pulse PWE for $10 \mu \mathrm{~s}$. The 10μ s duration refers to the time that the circuit (device) is enabled. Normal input levels are used and rise and fall times are not critical.
f. Verify that the bit has been programmed by first removing the programming voltage from the output and then reducing $V_{C C}$ to $5.0 \mathrm{~V}(\pm 0.25 \mathrm{~V})$. The device must be enabled to sense the state of the outputs. During verification, the loading of the output must be within specified IOL and $\mathrm{IOH}^{\text {limits. }}$
g. If the device is not to be tested for $\mathrm{VOH}_{\mathrm{OH}}$ over the entire operating range subsequent to programming, the verification of step f is to be performed at a V_{CC} level of 4.0 volt ($\pm 0.2 \mathrm{~V}$). V_{OH}, during the 4 volt verification, must be at least 2.0 volts. The 4 volt V_{CC} verification assures minimum V_{OH} levels over the entire operating range.
h. Repeat steps 4.13 b through 4.13 f for each bit to be programmed to a high level. If the procedure is performed on an automatic programmer, the duty cycle of V_{CC} at the programming voltage must be limited to a maximum of 25 percent. This is necessary to minimize device junction temperature. After all selected bits are programmed, the entire contents of the memory should be verified.
i. For class S and B devices, if any bit does not verify as programmed it shall be considered a programming reject.

MIL-M-38510/209H

TABLE IVG. Programming characteristics for circuit G .

Parameter	Symbol	Conditions	Limits 1/			Unit
			Min	Recommended	Max	
Required V_{CC} for programming	$\mathrm{V}_{\text {CCP }}$		10.0	10.5	11.0	V
Icc during programming	ICCP	$\mathrm{V} C \mathrm{C}=11 \mathrm{~V}$			750	mA
Required output voltage for programming	Vop		10.0	10.5	11.0	V
Output current while programming	IOP	$\mathrm{V}_{\text {OUT }}=11 \mathrm{~V}$			20	mA
Rate of voltage change of $V_{C C}$ or output	IRR		1.0		10.0	$\mathrm{V} / \mathrm{\mu s}$
Programming pulse width (enabled)	Pwe		9	10	11	$\mu \mathrm{S}$
Required V_{CC} for verification	$\mathrm{V}_{\mathrm{CCV}}$		3.8	4.0	4.2	V
Maximum duty cycle for $V_{C C}$ at $V_{C C P}$	MDC			25	25	\%
Address setup time	t_{1}		100			ns
VCCP set-up time	t2	2/	5			$\mu \mathrm{S}$
$\mathrm{V}_{\text {CCP }}$ hold time	t5		100			ns
VOP setup time	t_{3}		100			ns
VOP hold time	t4		100			ns

1/ $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$.
$\underline{2} / V_{\text {CCP }}$ set-up time may be greater than 0 if $\mathrm{V}_{\mathrm{CCP}}$ rises at the same rate or faster than V_{OP}.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. PIN and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special lead lengths, or lead forming, if applicable. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirement for programming the device, including processing option.
j. Requirements for "JAN" marking.
k. Packaging Requirements (see 5.1)
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML-38535) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQC, P.O. Box 3990, Columbus, OH 43218-3990 or email vqc.chief@dla.mil. An online listing of manufacturers qualified to this specification may be found in the Qualified Products Database (QPD) at http://qpldocs.dla.mil/.

MIL-M-38510/209H

6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Electrical ground (common terminal).
	Current flowing into an input terminal.
VIC	Input clamp voltage.
VIN	Voltage level at an input terminal.

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number. It is intended that spare devices for logistic support be acquired in the unprogrammed condition (see 3.8.1) and programmed by the maintenance activity, except where use quantities for devices with a specific program or pattern justify stocking of preprogrammed devices.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type	Circuit designator	Fusible links
01 1/	7684 / Harris Semiconductor / CAGE 34371	A	NiCr
01	77S184 / National Semiconductor / CAGE 27014	G	TiW
01 1/	82S184 / Signetics Corporation / CAGE 18324	C	NiCr
02 1/	7685 / Harris Semiconductor / CAGE 34371	A	NiCr
02	77S185 / National Semiconductor / CAGE 27014	G	TiW / W
02, 10	$\begin{gathered} \text { 82S185A / Signetics Corporation / } \\ \text { CAGE } 18324 \end{gathered}$	C	NiCr
02, 08	29651 / Raytheon Company / CAGE 07933	F	NiCr
02	82S185 / e2v aerospace \& defense / CAGE 0C7V7	H	ZVE 2/
03	77S180 / National Semiconductor / CAGE 27014	G	TiW
03 1/	7680 / Harris Semiconductor / CAGE 34371	A	NiCr
03 1/	$82 \mathrm{S180}$ / Signetics Corporation / CAGE 18324	C	NiCr
03	$93 Z 450$ / Fairchild Corporation / CAGE 07263	D	ZVE 2/
03	27 S 180 / Advanced Micro Devices, Inc. / CAGE 34335	E	Platinum silicide

See footnote at end of table.

MIL-M-38510/209H

Military device type	Generic-industry type	Circuit designator	Fusible links
04	775181 / National Semiconductor / CAGE 27014	G	TiW / W
04	$82 \mathrm{S181/} \mathrm{e2v} \mathrm{aerospace} \mathrm{\&} \mathrm{defense} \mathrm{/} \mathrm{CAGE} \mathrm{0C7V7}$	H	ZVE 2/
04 1/	7681 / Harris Semiconductor / CAGE 34371	A	NiCr
04, 09	82S181A / Signetics Corporation / CAGE 18324	C	NiCr
04, 09	$93 Z 451$ / Fairchild Corporation / CAGE 07263	D	ZVE 2/
04	$27 \mathrm{S181}$ / Advanced Micro Devices, Inc. / CAGE 34335	E	Platinum silicide
04	29631 / Raytheon Company / CAGE 07933	F	NiCr
05	82S2708 / Signetics Corporation / CAGE 18324	C	NiCr
05	93Z461 / Fairchild Corporation / CAGE 07263	D	ZVE 2/
06	$93 Z 460$ / Fairchild Corporation / CAGE 07263	D	ZVE 2/
02, 08	535841 / Monolithic Memories, Inc. / CAGE 56364	B	TiW

1/ These generic industry types are no longer manufactured.
2/ Zapped vertical emitter.
6.8 Change from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

NOTE: The activities listed above were interested in this document as of the date of this document. Since organization and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.dla.mil.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for EPROM category:

Click to view products by E 2 v manufacturer:

Other Similar products are found below :
QP27C256L-120/XIA 8510204YA 8510201YA 5962-8606305YA 5962-8606306XA 5962-8606317XA 5962-8680503QA 5962-87515053A 5962-8961412MXA 5962-8981703XA M38510/20904BJA M38510/20802BJA 5962-9080308MKA 5962-8961405MYA 5962-

8961402MXA 5962-8851805LA 5962-8766107XA 5962-8764804YA 5962-8764802YA 5962-8680505QA 5962-8606310UA 59628606309XA 5962-8606304XA DS2502PU-1176+ DS2502G+U AT27C040-90PU AT27C256R-70PU AT27C4096-90JU AT27LV256A90JU QP7C271-45WC 8510203ZA 5962-87515073A AT27C512R-70JU DS2505+T\&R DS2505PT\&R DS2502+T\&R AT27LV020A-12JU-T AT27C010-70PU AT27C040-90JU DS2505P+T\&R DS2502P+T\&R AT27C040-90JU-T AT28HC256F-90JU-T AT28HC256-90JU$\underline{T} \underline{A T 27 C 010-70 J U}$ AT27C020-90JU AT27LV010A-70JU AT27C080-90PU AT27BV010-90JU AT27BV1024-90JU

[^0]: See footnotes at end of table.

