INCH-POUND
MIL-M-38510/337B
23 January 2004
SUPERSEDING
MIL-M-38510/337A
9 August 1983

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED SCHOTTKY TTL, DECODERS, MONOLITHIC SILICON

Reactivated after 23 January 2004 and may be used for either new or existing design acquisition.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, advanced Schottky TTL, decoder microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	Circuit
01	Decoder, 3 of 8, active low outputs with enable inputs
02	Dual decoder, 2 of 4, active low outputs with enable inputs

- 1.2.2 <u>Device class.</u> The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 <u>Case outlines.</u> The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
Χ	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A FSC 5962

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V dc to +7.0 V dc
Input voltage range	
Storage temperature range	-65° to +150°C
Maximum power dissipation, per device (P _D) 1/	
Device type 01	110 mW
Device type 02	110 mW
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases E, F, X, and 2	(See MIL-STD-1835)
Junction temperature (T _J) <u>2</u> /	175°C
Maximum power dissipation, per device (P_D) $1/$ Device type 01	110 mW 110 mW +300°C (See MIL-STD-1835)

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V minimum to 5.5 V maximum
Minimum high level input voltage (V _{IH})	2.0 V dc
Maximum low level input voltage (V _{IL})	0.8 V dc
Case operating temperature range (T _C)	-55° to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil;quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature shall not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figures 1 and 2.
 - 3.3.2 Truth tables. The truth tables shall be as specified on figure 3.
- 3.3.3 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements</u>. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

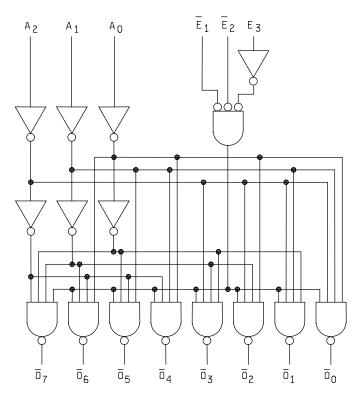
TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Device	Lir	mits	Unit
		-55°C ≤ T _C ≤ +125°C	type	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V},$	All	2.5		V
		I _{OH} = -1.0 mA, V _{IH} = 2.0 V				
Low level output voltage	V_{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA},$	All		0.5	V
		$V_{IH} = 2.0 \text{ V}, V_{IL} = 0.8 \text{ V}$				
Input clamp voltage	VIC	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$	All		-1.2	V
		T _C = +25°C				
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IH} = 2.7 \text{ V}$	All		20	μΑ
	I _{IH2}	V _{CC} = 5.5 V, V _{IH} = 7.0 V	All		100	μΑ
Low level input current	I _{IL1}	V _{CC} = 5.5 V, V _{IL} = 0.5 V	All	0.0	60	mA
Short circuit output current 1/	Ios	V _{CC} = 5.5 V, V _{OS} = 0 V	All	-60	-150	mA
Output drive	I _{OD}	V _{CC} = 4.5 V,	All	60		mA
		V _{IN} = 5.5 V				
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}$	All		20	mA
Propagation delay time	t _{PLH1}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \pm 10\%,$	01	1.0	11.0	ns
low to high level, \overline{E} to \overline{O}		See figure 4	02	1.0	9.0	
Propagation delay time	t _{PLH2}		01	1.0	12.5	ns
low to high level, E to \overline{O}						
Propagation delay time	t _{PLH3}		01	1.0	12.0	ns
low to high level, A to \overline{O}			02	1.0	12.5	
Propagation delay time	t _{PHL1}		01	1.0	8.0	ns
high to low level, \overline{E} to \overline{O}			02	1.0	8.0	
Propagation delay time	t _{PHL2}		01	1.0	8.5	ns
high to low level, E to O						
Propagation delay time	t _{PHL3}		01	1.0	9.5	ns
high to low level, A to \overline{O}			02	1.0	9.5	

 $[\]underline{1}/$ Not more than one output should be shorted at a time.

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8, 9, 10, 11	N/A
Group C end-point electrical parameters	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3


^{*}PDA applies to subgroup 1.

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Device	type 01	Device	type 02
Terminal	Case	Case	Case	Case
number	E and F	X and 2	E and F	X and 2
1	A0	N/C	Ēa	N/C
2	A1	A0	A0a	Ē a
3	A2	A1	A1a	A0a
4	Ē1	A2	O 0a	A1a
5	Ē2	Ē1	_ O 1a	_ O 0a
6	E3	N/C	_ O 2a	N/C
7	0 7	Ē2	_ O 3a	_ O 1a
8	GND	E3	GND	_ O 2a
9	0 6	0 7	O 3b	_ O 3a
10	0 5	GND	O 2b	GND
11	0 4	N/C	<u>O</u> 1b	N/C
12	0 3	<u>0</u> 6	O 0b	O 3b
13	<u>0</u> 2	O 5	A1b	_ O 2b
14	0 1	<u>_</u> 0 4	A0b	O 1b
15	<u>0</u> 0	<u>o</u> 3	Ēb	O 0b
16	V _{CC}	N/C	V _{CC}	N/C
17		<u>0</u> 2		A1b
18		0 1		A0b
19		Ō 0		Ēb
20		V _{CC}		Vcc

FIGURE 1. <u>Terminal connections</u>.

DEVICE TYPE 01

DEVICE TYPE 02

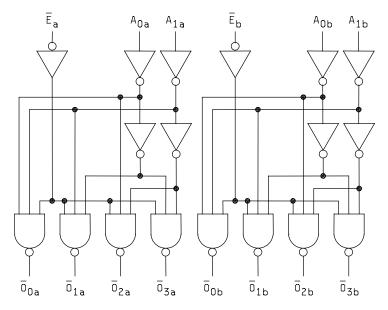
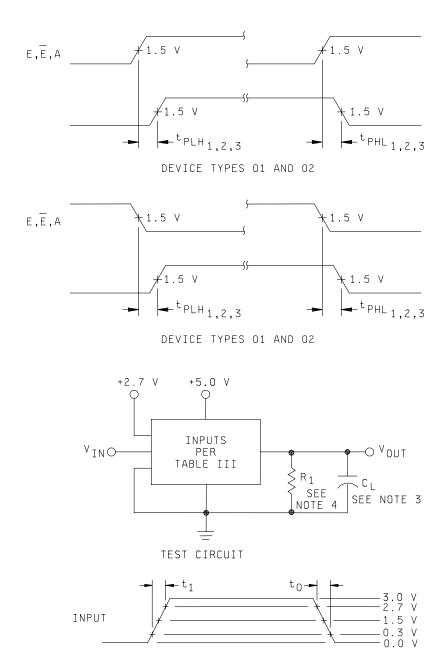


FIGURE 2. Logic diagram.

Device type 01

		INP	UTS						OUTI	PUTS			
Ē1	Ē2	E3	A0	A1	A2	Ō0	0 1	Ō 2	<u>O</u> 3	0 4	O 5	- 06	0 7
Н	Х	Х	Х	Χ	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Χ	Χ	Χ	Χ	Н	Η	Н	Ι	Τ	Τ	Η	Н
Χ	Χ	L	Χ	Χ	Χ	Н	Η	Н	Η	Η	Η	Η	Н
L	L	Н	L	Ш	L	L	Η	Н	Ι	Τ	Τ	Η	Н
L	L	Н	Н	L	L	Н	L	Н	Η	Η	Η	Η	Н
L	L	Н	L	Н	L	Н	Η	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Η	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Η	Н	Η	L	Η	Η	Н
L	L	Н	Н	L	Н	Н	Η	Н	Η	Ι	L	Η	Н
L	L	Н	L	Η	Н	Н	Η	Н	Η	Η	Η	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L


H = HIGH voltage level L = LOW voltage level X = Immaterial

Device type 02

I	NPUTS	3		OUTI	PUTS	
Ē	A0	A1	0	0 1	<u>0</u> 2	<u>O</u> 3
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Η	Η	Η
L	Н	L	Η	Ш	Η	Η
L	L	Η	Η	Η	L	Η
L	Н	Н	Н	Н	Н	L

H = HIGH voltage level L = LOW voltage level X = Immaterial

FIGURE 3. <u>Truth tables.</u>

NOTES:

- 1. V_{IN} = Input pulse and has the following characteristics: $t_1 = t_0 \le 2.5$ ns, PRR ≤ 1 MHz, $Z_{OUT} \approx 50\Omega$.
- 2. Inputs not under test are at ground.
- 3. C_L = 50 pF ±10% including scope probe, wiring and stray capacitance without package in test fixture.
- 4. $R_1 = 499\Omega \pm 5\%$.
- 5. Voltage measurements are to be made with respect to network ground terminal.

FIGURE 4. Switching time waveforms (circuit for all device types).

TABLE III. Group A inspection for device type 01.

																																	T			T	Τ	П
	Unit		>	=	=	=	=	=	=	=	=	=		=	=	=	=	=	=	=			: =	=	=	=	=		нΑ		=	=	=	=		=	=	=
	ţ	Мах	0.5	=	=	=	=	=	=	=													-12	<u> </u>	=	=	=		20		=	=	=	100		=	=	=
	Limits	Min									2.5	= ;		=	=	=	=	=	=	=																		
	Measured terminal		70	9 0	0.5	0 4	0 3	0 2	0 1	0 0	70	= :		90	0.5	0 4	0 3	0 2	0 1	0 0			 VV	A1	A2	П 1	Ē 2	E3	A0	A2	Ē 1	F 2	F3	A0	A1	7 1 1	- с	L 2
16	20	Vcc	4.5 V	=	=	=	=	=	=	=	=	-		=	=		=	=	=	=				=	=	=	=		5,5 V		=		=	=			=	=
15	19	0 0								20 mA										-1 mA																		
14	18	10							20 mA										-1 mA																		-	
or open	17	0 2						20 mA	2									mA W	ì																		-	
0.8 V; <u> </u>		က					Απ	20					-	\vdash			mA	7					1													+	-	+
; low ≤	15	10				4	20 mA					H				Ь	-1 n						-					H		\perp						1	_	+
lerminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).	14	10				20 mA							-			-1 mA							\downarrow													1	_	
e high	13	0 5			20 mA										-1 mA																							
may b	12	9 0		20 mA										-1 mA																								
ignated 8	10	GND	GND												"			=										н	"								=	
not des	6	7 0	20 mA								-1 mA	-																										
6 (pins r	80	Е3	2.0 V	=	=	=	=	=	=	-	0.8 V	5.5 V		=	=	=	-	=	=	=	0.8 V	5.5 V	2.5 V					-18 mA					277					7.0 V
nditions 5	7	Ē 2		=	=	=	=	=	=	=		2.0 V	\ \ \ \ \ \ \ \	=	=	=	=	=	=	=	Н	2.0 V	+				18 mA	Ė				2.7 V					7.0 V	
Inal col	2	E 1		=	=	=	=	=	=	-	۸0	H	2.0 V	=	=	=	-	-	=	=		Ħ	2.0 V			-18 mA	-18				2.7 V					7.0 V	+	
3 erm	4	A2	2.0 V 0	_			0.8 V			_	5.5 V	_	2.0 \	+	_	0.8 V	2.0 V	0.8 V			0.0	= =			-18 mA	_				2.7 V			-		707	-		
2	8	A1 /	2.0 V 2.	2.0 V	0.8 V	0.8 V		2.0 V	0.8 V	0.8 V	5.5 V 5.		+	2.0 V	2.0 V	0.8 V 0.	2.0 V 2.	0.8 V 0.	3 \	2.0 V	0 \ 0	_	_	-18 mA	_					2.7 V					7.0 V	-		
		-											+	1	5.0				0.8 \	5.0			Φω	_						2.7			-	>	H		-	+
s 	s 7	o. A0	2.0 V	0.8 V	2.0 V	0.8 V	2.0 V	0.8 V	2.0 V	0.8 V	5.5 V		2.0	=	=	0.8 V	2.0 V	0.8 V	-	-	0 \		-18 mA	2					2.7 V					7.0 V				+
Cases		1	-	2	က	4	2	9	7	∞	6	10	12	13	14	15	16	17	18	19	20	21	23 52	24	25	26	27	28	29	3 3	32	33	34	35	36	38	33	40
d d	883 method		3007	=	-	=	=	=	=	=	3006	= :		=	=	=	=	=	=	=	=								3010		=	-	=	=		=	=	-
	Symbol		Vol								V _{Он}												Λ	2					- HI					IH2				
	Subgroup		-	Tc = 25°C							1												1											1				
	Sut			2 L																																		

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued.

		Unit		mA	- -	=	=				-	=	=	=		=	=	=	=	=	=	=	=			=														
-		S.	Мах	2/		=	-		120	3	-	=	=	-		=	=									20														
		Limits	Min	2/		=			= 09	9		=	=	=	=	=	=	09	=	=	=	=	=	=	=															
-		Measured terminal		A0	A1	7	Н Ц	E 2	E3	0 7	9 0	0.5	4 0	0 3	0 2	0 1	0 10	7 0	9 0	0.5	0 4	ε 10	0 2	10	0 10	Vcc		AII	outputs	=			=	=		. =	= :		=	
-	91	20	Vcc	5.5 V		-	=				=	=	=	=	=	=	=	4.5 V	=	=	=	-	=	=	=	5.5 V		/4				: :	=		: :	=	= :	- -	=	
•	15	19	0 0														۸ 0								2.5 V			_	I =								-			
	4	18	- 1													\ 0								2.5 V				I											H	
r open)	13		2 0												>	0							2.5 V	2.												+	H		\forall	
.8 V;		17	3												^ 0							>	2.5						_	1 エ			-	=	-	+			H	
low ≤ C	12	15	10											Λ0								2.5 V						I	: :	7	Ι:	: :	=	=		=			-	
≥ 2.0 V;	-	41	10										۸0								2.5 V							I		=	_:	Ι-		=						
≤ high ≤	10	13	0 5									۸0								2.5 V								I			٠.	_ -	c =	=		: =				
may be	თ	12	9 0								> 0								2.5 V									I				. -	ı			=	=		=	
gnated	ω	10	GND	GND		=					=										=					=		GND									= :			
not des	7	ნ	2 0						>	>								2.5 V								are omitte	omitted.	I					7	I			-			
s (pins	9	8	Е3						0.5 V	>		=				=		5.5 V	=	=	=	=	=			+125°C and V. e tests are omitted	-55°C and V _{IC} tests are omitted	A						В		< <	В.	< α	2 4	
ndition	2	7	Ē 2				0.5 V	\dashv	>							=		۸٥	=	=	=	=	=			5.5 V 5.5°C and \	°C and V _i	В						=	= <	∢ ∢	(B)	B	(∢	
Terminal co	4	2	П 1			0.5 V	+		^	>		=	=	=	=	=	=	۸٥	=	-	=	-	-	=		5.5 V To = +13	$t T_{c} = -55$									=	∢:			
	ო	4	A2		7 4 0	+			7 2 7	,		=	=	Λ0	=	-	=	5.5 V	=	=	=	۸ 0	=	=		5.5 V substant	1, excep	В			∢:			В	∢ 0	א מ	а :	< α		
=	2	ю	A1		0.5 V				7 7 7		5.5 \	۸٥			5.5 V	۸ 0			5.5 V	Λ0	۸ 0		5.5 V	۸٥		5.5 V E	subgroup	В	m <	< <	В	a <	(<	В	В	4 4	B	B ⊲	(∢	°c = -55°C
•	-	2	A0	0.5 V	0				7	-		5.5 V		_				5.5 V 5		5.5 V	۸0	5.5 V 5	0 \	5.5 V		5.5 V 5	d limits as	В	Α α) «	В.	۵ ک	۵ ح	В			∢:			5°C and T
=	es L	ses 1/			2 0	0 4																				3 5.	litions, an						-	2		+ 10				at Tc = 25
	Cases D- E, F	Cases d 2, X <u>1</u> /	<u> </u>		42	1 4	45	-	46		48	49	20	51	52	53	54	22	99	22	28	29	09	61	62	l_{∞} 3005 63 5.5 V 5.5 V	Same tests, terminal conditions, and limits as subgroup 1, except $T_c =$		ğ ğ	9.	9	9 2	7	7.	<u> </u>	75	7(77	79	Repeat subgroup 7 tests, at $Tc = 25^{\circ}C$ and $T_{c} = -55^{\circ}C$.
	MIL-STD-	method		3009		-			3011	5		-	=	-	-	-	-									3005	tests, tern	3014				: :		=						t subgrou
-		Symbo		_	()			-	11	SO.								qol								Same	Same	Func-		્રે હા										Repea
		Subgroup		1	Tc = 25°C																					2	3	7	Tc = 25°C											8

See footnotes at end of device type 01.

Terminal conditions (nins not designated may be high > 2.0 V: low < 0.8 V: or

Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open). WIL-STD- E, F 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 3	2 3	က		erminal conditions (pin	conditions (pin	ns (pin	(1)	not des	signated 8	may be	e high ≥	2.0 V; lo	w ≤ 0.8 12	V; or op(en). 14	15	16				
Symbol		Cases 2, X <u>1</u> /	2	3	4	2	7	8	6	10	12	13	14	15	17	18	19	20	Measured terminal	Limits	ω	Unit
		Test no.	A0	H4	A2	Е1	Ē 2	E3	2 0	GND	9 0	0 5	4 0	0 3	0 2	0 1	0 0	Vcc		Min	Мах	
t ргн1	3003	80	۸0	Λ0	Λ0	Z	۸0	2.7 V		GND							OUT	5.0 V	Ē 1 to 0 0	1.5	7.0	ns
	Fig. 4	81	2.7 V	Λ0	=	=	=	=		=						TUO		=	Ē1to ⊡1	=	=	
	=	82	Λ0	2.7 V	=	=	=	=							OUT				Ē 1 to 0 2		=	"
	-	83	2.7 V	2.7 V	=	=				=				OUT				=	Ē1to ⊙3		=	
	-	84	۸٥	Λ0	2.7 V	=	=	=		-			OUT					-	Ē 1 to 0 4	=	=	
		85	2.7 V	Λ0	=	=	=	=		=		OUT						=	Ē 1 to 0 5	=	=	
	=	98	۸0	2.7 V	=	=		=		=	OUT								Ē 1 to 0 6	=	-	
		87	2.7 V	2.7 V	=	=	=	=	TUO	=								=	Ē 1 to 0 7	=	=	
	-	88	۸0	۸٥	Λ0	Λ0	Z			-							OUT	=	Ē 2 to 0 0	=	=	
	-	68	2.7 V	Λ0	=	=	=	=		=						TUO		=	Ē 2 to 0 1	=	=	
	-	06	۸0	2.7 V	=	=				-					OUT			=	Ē 2 to 0 2	=	=	=
	-	91	2.7 V	2.7 V	=	=	=	=		=				OUT				=	Ē 2 to 0 3	=	=	=
	-	92	۸0	۸٥	2.7 V					=			OUT					=	Ē 2 to 0 4	=	=	=
	-	93	2.7 V	Λ0	=	=	=	=		=		OUT						=	Ē 2 to 0 5	=	=	=
	-	94	۸0	2.7 V	=	=		=		=	OUT							=	Ē 2 to Ō 6	=	=	
	-	92	2.7 V	2.7 V	=	=			OUT	=								=	Ē 2 to 0 7		=	
t _{PHL1}	=	96	۸0	۸0	۸0	Z	۸٥	=		=							OUT	=	Ē1to ⊙0	=	-	
	-	26	2.7 V	۸0	=	=		=		=						TUO		=	Ē1to ⊡1	=	=	
	-	86	۸0	2.7 V	=	=				=					OUT			=	Ē1to 0 2		=	
	-	66	2.7 V	2.7 V	=	=	=	=		=				OUT				=	Ē1to ⊙3	=	=	=
	=	100	۸0	Λ0	2.7 V	=	-			=			OUT					=	Ē1to 0 4	=	=	
	=	101	2.7 V	Λ0	-	=				=		OUT							Ē 1 to 0 5		-	=
	=	102	Λ0	2.7 V	-	=				=	OUT								Ē1to 06		-	=
	-	103	2.7 V	2.7 V	=	=	=	=	OUT	=								=	Ē1to 07	=	=	
	-	104	۸0	Λ0	Λ0	Λ0	Z	=		=							OUT	=	Ē 2 to Ō 0	=	=	=
	-	105	2.7 V	۸ 0	=	=				=						OUT		=	Ē 2 to 0 1	=	=	=
	-	106	۸0	2.7 V	=	=				=					OUT				Ē 2 to 0 2	=	=	=
	-	107	2.7 V	2.7 V	=	=	=	=		=				OUT				=	Ē 2 to Ō 3	=	=	=
	=	108	۸0	۸0	2.7 V			=		=			OUT					=	Ē 2 to 0 4	=	-	
	=	109	2.7 V	0 \	=			=		=		OUT							Ē 2 to Ō 5		-	
		110	Λ0	2.7 V	=	=	=	=			OUT								Ē 2 to Ō 6	=	=	"
	=	111	2.7 V	2.7 V		=			OUT	=								=	E 2 to 0 7		=	"

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued.

		Unit		ns	-	=	-	-	=	-		-	=	-	=	-			=	-	-		=		=	=	=	-	-	=			-	-	-
			Max	8.0	-	=	-	-	=	=		7.5	-	-	=	=		=	-	7.0	-	=	=	=	-	-	=	=	-	=	-		-		=
		imit	Min	1.5		=			=	-		1.5	=	=	=	=		=	-	1.5	=	=	=			=	=	-	=	=	-				
			_	0 0	2 1	0 2	6 O	5 4	5 5	9 0		00	1 2	5 2	5 3	5 4	5 5	9 9	2 2		5.1	5 2	5 3	5 4	5 5	9 9	2.2	0 0	2.1	5 2	5 3	5 4	5 5	9 0	5 7
		Measured terminal		E3 to 0	E3 to 0 1	E3 to C	E3 to C	E3 to 0 4	E3 to 0	E3 to C	E3 to 0 7	E3 to C	E3 to 0 1	E3 to 0 2	E3 to 0 3	E3 to 0 4	E3 to 0 5	E3 to 0 6	E3 to 0 7	A0 to 0 0	A0 to 0 1	A0 to 0 2	A0 to 0 3	A0 to 0 4	A0 to 0 5	A0 to 0 6	A0 to 0 7	A1 to 0 0	A1 to 0 1	A1 to 0 2	A1 to 0 3	A1 to 0 4	A1 to 0 5	A1 to 0 6	A1 to 0 7
	16	20	Vcc	5.0 V	=	=	=	=	=	=	"		=		=		=	=	=	=		=	=	=		ıı.	=	=		=	=	=		"	-
	15	19	0 0	OUT								OUT								OUT								OUT							
	4	18	0 1		OUT								OUT								OUT								OUT						
or open	13	17	2			OUT								TUO								OUT								OUT					
0.8 V; c			3 0			Ō									<u> </u>								_							ō					
low ≤	12	15	10				OUT								TUO								OUT								TUO				
2.0 V;	-	4	0 4					OUT								OUT								OUT								OUT			
≥ high ≥	10	13	0 5						OUT								OUT								OUT								OUT		
may be	o	12	9 0							OUT								OUT								OUT								OUT	
gnated	ω	10	GND	GND	-	=	-	-	=	=		-	=	-	=	=		=	-	-	-	=	=	=		=	=	=	-	=	-				
Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).		6	2 0								OUT								OUT								OUT								OUT
(pins n	9	80	Е3	Z	_	=	=	=	=	=		-	=	-	=		_	=		2.7 V		=	=	=		=		=		=	=				-
ditions	2	_		۸٥					_	_										2						_		_							_
nal con																																			
Termir	4	2	E 1		-	-	-		=	=		-	=	-	=		-	-	-	-	-	-	=	-		-	=	-	-	=	-	>			-
	ო	4	A2	Λ0	=	-		2.7 V	=	-		Λ0	=			2.7 V	=		-	Λ0			=	2.7 V				Λ0		=	=	2.7 V			-
	7	ε	A1	۸٥	0 \	2.7 V	2.7 V	0 \	^ 0	2.7 V	2.7 V	۸0	^ 0	2.7 V	2.7 V			2.7 V	2.7 V	0 \	۸0	2.7 V	2.7 V	Λ0	0 \	2.7 V	2.7 V	Z	-	=	=	=	-	=	=
	τ-	2	A0	۸٥	2.7 V	۸٥	2.7 V	۸٥	2.7 V	۸٥	2.7 V	۸0	2.7 V	۸0	2.7 V	۸٥	2.7 V	۸٥	2.7 V	Z	-	=	=	=	-	=	=	۸٥	2.7 V	۸٥	2.7 V	۸٥	2.7 V	0 0	2.7 V
	Cases E, F	Cases $2, \times \underline{1}$	Test no.	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
		883 method		3003	Fig. 4		=	-	=			=	-	-			-		-	=	=	-	-	-					-		-	-			
	2	Symbol		фгнг								фни								фгнз															
		ubgroup		6	°c = 25°C							<u> </u>								<u>. </u>															

See footnotes at end of device type 01.

TABLE III. <u>Group A inspection for device type 01</u> - Continued.

		Unit		su	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=	=	=	=		=
•		ςς.	Мах	7.0	=	=	=	-	-	=	=	8.0	-	-	-	=	-	=	-	=	=	=	=	=	=	-	=	=	-	=	-	=	-	-	=
		Limits	Min	1.5	=	=	=			=		1.5				=		=		=	=	=	=	=			=	=		=					
-		Measured terminal	<u>I</u>	A2 to 0 0	A2 to 0 1	A2 to 0 2	A2 to 0 3	A2 to 0 4	A2 to 0 5	A2 to 0 6	A2 to 0 7	A0 to 0 0	A0 to 0 1	A0 to 0 2	A0 to 0 3	A0 to 0 4	A0 to 0 5	A0 to 0 6	A0 to 0 7	A1 to 0 0	A1 to 0 1	A1 to 0 2	A1 to 0 3	A1 to 0 4	A1 to 0 5	A1 to 0 6	A1 to 0 7	A2 to 0 0	A2 to 0 1	A2 to 0 2	A2 to 0 3	A2 to 0 4	A2 to 0 5	A2 to 0 6	A2 to 0 7
-	91	20	Vcc	5.0 V	=	=	=	-	-	=	=	=	-	-	-	-	-	=	-	=	=	=	=	=	-	-	-	=	-	=	-	=	-	-	-
-	5	19	0 0	OUT								OUT								OUT								OUT							
(4	18	10		OUT								OUT								OUT								OUT						
Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; low $\leq 0.8 \text{ V}$; or open).	<u></u>	17	0 2			DUT								TUO								OUT								OUT					
0.8 V;	` ^!		8			0	ь							0	_								<u></u>								_				
; low ≤		15	10				OUT	_							OUT								OUT								TUO				
≥ 2.0 V		14	10					OUT								OUT								TUO								TUO			
e high	10	13	0 5						TUO								TUO								OUT								TUO		
d may k	ი	12	90							OUT								OUT								OUT								OUT	
signated	ω	10	GND	GND	=	=	=	=	=	=		=	=	=	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=	=	=	=		-
not des	7	6	70								OUT								OUT								OUT								OUT
s (pins	9	æ	Е3	2.7 V	=	=	=	-		=	=	=		-	-	=		=	-	=	=	=	=	=	=	-	=	=		=	-	=		-	=
ndition	2	7	Ē 2	۸٥	=	=	=			=	=	=				=		=		=	=	=	=	=			=	=		=		=			-
ninal co	4	2	E 1	۸ 0	=	=		-	=	=	=	=	-	-	=	=	=	=	-	=	=	=	=				=	=	=	=	-		=		-
- 1	ო	4	A2	Z	=	=	-	-	=	=	=	۸٥	-	-	=	2.7 V	=	=	-	۸٥	=	=	=	2.7 V	=	-	_	Z	=	=	-	=	=	-	=
	7	က	A1	۸٥	۸ 0	2.7 V	2.7 V	۸٥	Λ 0	2.7 V			۸٥	2.7 V	2.7 V		۸0	2.7 V	_	Z	=	=	=	. 2		_	_	۸0	Λ 0	2.7 V	2.7 V	۸0	۸ 0	2.7 V	2.7 V
		2	40 A	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_		_		2.7 V 0	0 V 2.	>	Z Z		. 2.	2.))	2.	. 2		2.7 V	۸٥	2.7 V	۸٥	2.7 V	0.0	,	0 ^ 0	2.7 V 0	0 V 2.			_		2.7 V 2.
	s L												9		2	9	7	∞	6																
	Cases)- E, F	Cases 2, X 1/	Test no.	144		146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	MIL-STD-	883 method		3003	Fig. 4	-	-		-	-		=	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-		-
		Symbol		фгнз								фнгз																							
		Subgroup		6	$T_{\rm C} = 25^{\circ}{\rm C}$																														

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

			Г -	Г	Г -	Г -	Г -	_	Г -
	Onit		su	=	=	=	=	=	
	Limits	Мах	11.0	8.0	12.5	8.5	12.0	6.5	
	ij	Min	1.0	=					
	Measured terminal								
16	20	Vcc							
15	19	0 0							
41	18	0 1							
13	17	03 02 01							
12	15	l							
11	14	0 4							
10	13	0 5							
6	12	9 0							
8	10	GND							
7	თ	20		as shown.					
9	8	E 3		25°C and limits as shown.					
2	2	Ē 2		c = 25°C a					= -55°C.
4	ß	П 1		, except T					except T _C
ဗ	4	A2		subgroup 5					group 10,
2	က	A1		ins as for s					as for sub
-	2	Test no. A0		al conditio					and limits
Cases E, F	Cases $2, \times \underline{1}/$	Test no.		; and termin					l conditions
MIL-STD-	Subgroup Symbol 883 method			fPHL1 Same tests and terminal conditions as for subgroup 9, except T _C =					11 Same tests, terminal conditions and limits as for subgroup 10, except $T_c = \frac{1}{2}$
	Symbol		t _{PLH1}	tpHL1	t _{PLH2}	t _{PHL2}	фгнз	t _{PHL3}	Same te
	Subgroup		10						11

1/ For cases 2 and X pins not referenced are N/C. $2/\ln l$ limits (mA) min/max values for circuit shown:

_	_	-	
or circuit	Э	09'-/80'-	09'-/80'-
Min/Max limits in mA for circuit	В	03/60	03/60
Min/Max I	А	27/60	22/60
	Test no.	41 through 45	46
	Parameter	ᅦ	IL1

 $\underline{3}/$ A = 3.0 V minimum, B = 0.0 V or GND, H > 1.5 V, L < 1.5 V. $\underline{4}/$ Perform function sequence at V $_{CC}$ = 4.5 V and repeat at V $_{CC}$ = 5.5 V.

TABLE III. Group A inspection for device type 02.

		Unit		>	-	=	=	-	-		-	=	=	=	=	=	=	=	=	=	=		-	=	=		=	=	Αμ			=		-	= =			
		ςς.	Max	0.5	=	=	=	=	=	=	=													-1.2				=	20				-	100				
		Limits	Min									2.5	-	-	-	=	-	-	=	-	-	-	=															
-		Measured terminal		0 0a	0 1a	0 2a	0 3a	0 3b	Ō 2b	0 1b	90 O	0 0a	0 0a	0 1a	<u>0</u> 2a	0 3a	<u>0</u> 3a	<u>O</u> 3b	0 3b	_	0 1b	90 O	90 O	В	A0a	A1a	AID A0b	E b	В	A0a	A1a	AID A0b	ЕÞ	В	A0a	A1b	A0b	Ер
	16	20	Vcc	4.5 V	=	=	=	=	=	=	=	=	-	-	-	=	-	=	=	-	-	-	=	=			=		5.5 V			-		=		=		
•	15	19	E b					0.8 V	=	=	=							2.0 V	۸ 0			-	2.0 V					-18 mA					2.7 V				7.0	7.0 V
.(4	18	A0b					2.0 V	0.8 V	2.0 V	0.8 V							5.5 V	0.8 V	۸ 0	5.5 V	2.0 V	۸ 0				-18 mA					2.7 V					7.0 V	
or open	. 2	17	A1b					2.0 V	2.0 V (0.8 V	0.8 V										2.0 V	۸ 0	۸ 0			<	-10 mA				/ /	7.7 v				7.0 V		
0.8 V;	7	15	, qo					2	2	0	20 mA 0							2	2	0	2	-1 mA	-1 mA (Ť				c	7				7		_
/; low ≤			10							Αſ	20										Ψı	7	7															
≥ 2.0 \		14	0 1b						_	20 mA										_	-1 mA																H	
oe high	10	13	O 2b						20 mA											-1 mA																	Ц	
d may l	თ	12	O 3b					20 mA										-1 mA	-1 mA																		Ц	
signate	∞	10	GND	GND	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=		=	=	=				=	=				:
not de	7	6	_ O 3a				20 mA									-1 mA	-1 mA																					
Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).	ဖ	∞	_ O 2a			20 mA									-1 mA																							
ondition	2	7	0 1a		20 mA									-1 mA																								
minal c	4	2	O 0a	20 mA								-1 mA	-1 mA																									
	ო	4	A1a	0.8 V	0.8 V	2.0 V	2.0 V					۸ 0	۸ 0	2.0 V	0.8 V	5.5 V	5.5 V									-18 mA				;	2.7 \				707	> 0.		
•	7	က	A0a	0.8 V	2.0 V	0.8 V	2.0 V					۸ 0	2.0 V	5.5 V	۸ 0	0.8 V	5.5 V								-18 mA					2.7 V					7.0 \			
ŀ	-	7	В	0.8 V	=	=	=					2.0 V	Λ0	=	-		2.0 V							-18 mA					2.7 V		1			7.0 V	H		$ \cdot $	
	Cases E, F	Cases 2, X <u>1</u> /	Test no.	-	2	3	4	2	9	7	8	6	10	11	12		14	15	16	17	18	19	20		22	23	25	26		28	29	31	32		34	38	37	38
	MIL-STD-	883 C method 2		3007	_	_			<u> </u>	_	_	3006			_	_	_					_	_					<u> </u>	3010				_			_		_
	MIL	Symbol 88		Vol. 30								√он 30												V _{IC}					Ін1 30					l _{IH2}				
		Subgroup Syn		۱ ٪	Tc = 25°C							Š												>					<u> </u>					<u> </u>				_
		SqnS			= 2 2																																	

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02.
Terminal conditions (pins not designated may be high > 2.0 V; low < 0.8 V; or onen)

							Terminal conditions (pins not designated may be high ≥	ondition:	s (pins r	ot desig	inated m	ıay be l	.2 ≤ dgir	0 V; lov	2.0 V; low \leq 0.8 V; or open)	; or ope	n).						
		MIL-STD-	Cases E, F	-	7	က	4	2	9	_	∞	6	10	-	12	13	4	15	16				
Subgroup	Symbol	883 method	Cases 2, X <u>1</u> /	2	က	4	2	7	ω	6		12	13	41	15	17	18	19	20	Measured terminal	Limits	its	Onit
			Test no.	Еa	A0a	A1a	0 0a	<u>0</u> 1a	<u>0</u> 2a	<u>O</u> 3a		O 3b	0 2b	0 1b	90 O	A1b	A0b	E b	Vcc		Min	Мах	
~	ILI	6008	36	0.5 V							GND								5.5 V	Еа	77	/5	mA
$Tc = 25^{\circ}C$		-	40		0.5 V						=									A0a	"		
			41			0.5 V		1		1				1		7 30	1			Ala			- -
		-	42									-				v C: O	0.5 V			AOb			-
			44								=							0.5 V	=	Ер	=		=
	sol	3011	45	5.5 V	۸٥	۸٥	۸0				=								=	Ō 0a	09-	-150	=
		-	46	=	=	=		۸ 0			=								=	<u>0</u> 1a		=	=
			47			=			۸٥										=	_ O 2a		=	=
			48	=	=	=				۸0									=	_ ⊙ 3a		=	=
		-	49								=	۸٥				۸ 0	۸ 0	5.5 V	=	о 3b		=	=
			20										۸٥			=	=		=	Ō 2b		=	=
			51								=			۸ 0		=	=	=	=	Ō 1b	"	=	=
			52								=				۸٥	=	=	=	=	90 O		=	=
	qol		53	۸0	۸0	۸٥	2.5 V												4.5 V	0 0a	09		=
			54	=	5.5 V	۸0		2.5 V			=								=	<u>0</u> 1a			=
			22	=	۸0	5.5 V			2.5 V		=								-	<u> </u>	=		=
			26	=	5.5 V	5.5 V				2.5 V	=									<u>o</u> 3a			=
			25								= 2	2.5 V				5.5 V	5.5 V	Λ0	=	о 3b			=
			58								=		2.5 V			5.5 V	^ 0	Λ 0	=	Ō 2b			=
			29								=			2.5 V		۸ 0	5.5 V	Λ 0	=	0 1b			=
			09								=				2.5 V	۸ 0	۸ 0	Λ 0	=	90 <u>O</u>			=
c	8		61	۸٥	5.5 V	5.5 V					=					5.5 V	5.5 V	Λ 0	5.5 V	Vcc		20	=
3 8	Same te	ests, termina	Same tests, terminal conditions, and limits as subgroup 1, except $1_C = +$. Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +5$	and limits	as subgra	oup 1, exce	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	So and V	125°C and V _{IC} tests are omitted	re omitted.													
7	Func-	3014	62	В	B	B		T	H		GND	ェ	ェ	I	7	В	В	В	4 1	IIA			
$Tc = 25^{\circ}C$			63		¥	В	I	7	I	=		-	I	7	I	В	٧	=		outputs			
	test		64		ω <	∢ <		Ι:	_	= .			_	I:		∢ <	В						
	ઝો		66 66	< <	∢ M	∀ @	=	=	E =	<u> </u> -		_ _ _	r =		=	< @	< @	4		=			
			29	=	∢	Α	=	=	=	=	=	=	=	=	=	Α	Α	=	e	=			
			= = = = = = = = = = = = = = = = = = =		ω <	Α α		= =			= =		= =			Α α	а <	= =	: :				
α	tconog.	7 dilono	T to stoot	- 110E°C	Z E Fuc	نده ل										_	۲						
0	Кереа	subgroup ,	Kepeat subgroup / tests, at $1_c = +125^{\circ}$ C and $1_c = -55^{\circ}$ C.	- +172_C7 +=	and Ic=-	55.																	

See footnotes at end of device type 02.

	Unit		ns		=		=	=	=	=	=	=	=	=	=	=	=	=					=		=	=	=	=	=	=	=	=	=
	ts	Мах	7.0	-	=	-	=	=	-	=	6.5	=	=	=	=	=	=	=	7.0	=	-	=	=	=	-	=	=	=	=	=	=	-	-
	Limits	Min	1.5	-	=	-	=	=	-	=	1.5	=	=	=	=	=	=	=	1.5	=	-	=	-	=	-	-	=	=	-	-	-	-	
	Measured		Ē a to ⊙ 0a	Ēato ⊡ 1a	Ēato ō 2a	Ēato Ō3a	Ē b to ⊙ 0b	Ēbto ⊙1b	Ēbto Ō2b	Ē b to 0 3b	Ē a to ⊙ 0a	Ēato ⊙ 1a	Ēato ⊡ 2a	Ē a to Ō 3a	Ē b to ⊙ 0b	Ēbto 0 1b	Ē b to Ō 2b	Ē b to ⊙ 3b	A0a to 0 0a	A0a to 0 1a	A0a to 0 2a	A0a to 0 3a	A0b to 0 0b	A0b to 0 1b	A0b to \overline{O} 2b	A0b to \overline{O} 3b	A1a to 0 0a	A1a to 0 1a	A1a to 0 2a	A1a to 0 3a	A1b to 0 0b	A1b to 0 1b	A1b to 0 2b
16	20	Vcc	5.0 V	-	=	-	=	=	-	=	=	=	=	=	=	=	=	=	-	=	-	=	=	=	-	-	=	=	=	-	-	-	-
15	19	E b					N								N								Λ0								۸ 0		
41	18	A0b					۸ 0	2.7 V	۸ 0	2.7 V					۸ 0	2.7 V	۸ 0	2.7 V					Z	=	=	=					۸ 0	2.7 V	۸ 0
13	17	A1b					۸ 0	۸ 0	2.7 V	2.7 V					۸ 0	۸ 0	2.7 V	2.7 V					^ 0	۸ 0	2.7 V	2.7 V					Z	-	=
12	15	90 O					OUT								OUT								OUT								OUT		
1	14	0 1b						OUT								OUT								OUT								DUT	
4 5 6 7 8 9 10 11 12 13 1	13	O 2b							OUT								OUT								OUT								OUT
o o	12	о Э								OUT								OUT								OUT							
8	10	GND	GND	=	=	=	=	=		=	=	=	=	=	=	=	=		=	=	=	=	=	=			=	=		=	=	=	=
7	6	O 3a				OUT								DOUT								OUT								OUT			
, 9	8	_ O 2a			OUT								DOUT								OUT								OUT				
2	7	0 1a		TUO								DUT								TUO								DUT					
4	2	O 0a	DUT								TUO								DUT								OUT						
е	4	A1a	۸ 0	۸ 0	2.7 V	2.7 V					۸ 0	۸ 0	2.7 V	2.7 V					۸ 0	۸ 0	2.7 V	2.7 V					Z	=		=			
2	3	A0a	\ 0	2.7 V	۸٥	2.7 V					^0	2.7 V	\ 0	2.7 V					Z		-	=					۸٥	2.7 V	۸٥	2.7 V			
-	2	В	Z	-	=	-					Z	=		=					۸0	=	-	=					Λ0	=	=	=			
Cases E, F	Cases 2, X <u>1</u> /	Test no.	20	71	72	73	74	75	92	77	78	62	80	81	82	83	84	85	98	87	88	68	06	91	92	66	94	96	96	26	86	66	100
MIL-STD-	883 method	1	3003	Fig. 4		:		=	=	=	=						-			=	:	=	=	=	=	=	=		=	=	=		
2	Symbol		фгнл								фнгл								фгнз														
	npgroup		6	c = 25°C																													

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; low $\leq 0.8 \text{ V}$; or open).	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	3 4 5 7 8 9 10 12 13 14 15 17 18 19 20 Measured Limits Unit Leminal	A0a A1a \overline{O} 0a \overline{O} 1a \overline{O} 2a \overline{O} 3a \overline{O} MD \overline{O} 3b \overline{O} 2b \overline{O} 1b \overline{O} 0b \overline{A}b \overline{A} 1b \overline{O} 0b \overline{E} b \overline{V} \overline{C} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} \overline{O} 1b \overline{O} \overline{O} 0b \overline{O} \overli	IN 0.V OUT GND GND 1.5 8.0 ns	" AOa to OUT " AOa to O 1a	" 2.7 V A0a to $\overline{0}$ 2a " " "	" 2.7 V	" OUT 0 V IN 0 V IN 0 OUT	" " A0b to 01b	" 0UT 2.7 V " A0b to 0 2b " " "	2.7 V " Aob to $\overline{0}$ 3b " " "	0 V IN OUT " Afato 0 0a	2.7 \ " OUT	0V " Afa to 0 2a " " "	2.7 \ " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	" " OUT IN 0 V O V WI TO WI " A1b to O 0 O O	" 0UT " 2.7 V " A1b to 0 1b " "	OUT 0V " A1b to $\overline{0}$ 2b " "	OUT 2.7 V A1b to $\overline{0}$ 3b	1.5 9.0	Same tests and terminal conditions as for subgroup 9, except $T_c = 25^{\circ}C$ and limits as shown.	1.5 12.5 "	- KQ
rminal conditions (pins	5 6	7	0 1a 0	OUT	TUO	OUT						OUT	OUT	OUT							except $T_{\rm C}$ = 25°C and limits		
Tei	က				\ 0 -	2.7 V	2.7 V						2.7 \ "		2.7 \ "						s as for subgroup 9,		
	Cases 1 E, F	Cases 2 2 2, X 1/	Test no.	102 0 V	103 "	104	105 "	106	107	108	109	110 0 V	111	112 "	113 "	114	115	116	117		nd terminal condition.		
	MIL-STD-	Subgroup Symbol 883 C	<u> </u>	9 t _{РНL3} 3003	T _C = 25°C Fig. 4	=	=	=	=	=	=	=	=	=	=	=	=	=	=	10 t _{РLН1}	tpHL1 Same tests an	фгнз	фниз

 $\underline{1}/$ For cases 2 and X pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits (mA) min/max values for circuit shown:

		∥ Win/Max	Min/Max limits in mA for circuit	or circuit
Parameter	Test no.	Y	В	C
- -	39 through 44	25/60	03/60	03/60

 $\underline{3}/$ A = 3.0 V minimum, B = 0.0 V or GND, H > 1.5 V, L < 1.5 V. $\underline{4}/$ Perform function sequence at Vcc = 4.5 V and repeat at Vcc = 5.5 V.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
V _{IN}	Voltage level at an input terminal
V _{IC}	Input clamp voltage
I _{IN}	Current flowing into an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	54F138
02	54F139

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designations.

	Manufactu	rer's designatio	n
Device	Circuit A	Circuit B	Circuit C
type	National Semiconductor/	Motorola Inc.	Signetics Corp.
	Fairchild Semiconductor		
01	X	X	
02	X	X	

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

CONCLUDING MATERIAL

Custodians:

Army - CR

Navy - EC

Air Force - 11

Preparing activity:
DLA - CC

(Project 5962-2011)

Review activities:

DLA - CC

Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at www.dodssp.daps.mil.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by E2v manufacturer:

Other Similar products are found below:

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G

NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG

HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962
8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE

PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG

M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8

QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ)

74VHC4066AFT(BJ) 74VHCT138AFT(BJ)