INCH-POUND

MIL-M-38510/339E

22 March 2011

SUPERSEDING

MIL-M-38510/339D

18 February 2004

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED SCHOTTKY TTL, DATA SELECTORS/MULTIPLEXERS WITH THREE-STATE OUTPUTS, MONOLITHIC SILICON

Reactivated after 18 February 2004 and may be used for either new or existing design acquisition.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, advanced Schottky TTL, data selectors and multiplexers (three-state) microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	8 - input, data selector/multiplexer
02	Dual, 4 - input, data selector/multiplexer
03	Quad, 2 - input, data selector/multiplexer
04	Quad, 2 - input, data selector/multiplexer with inverted output
05	8 - input, data selector/multiplexer with 3 - state outputs
06	Quad, 2 - input, data selector/multiplexer with 3 - state outputs
07	Quad, 2 - input, data selector/multiplexer with 3 - state inverted output
08	Dual, 4 - input, data selector/multiplexer with 3 - state outputs
09	Dual, 4 - input, data selector/multiplexer with inverted outputs
10	Dual, 4 - input, data selector/multiplexer with 3 - state inverted outputs

- 1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 $\underline{\text{Case outlines.}}$ The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: DLA Land and Maritime, ATTN: DLA Land and Maritime- VAS, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at https://assist.daps.dla.mil.

AMSC N/A FSC 5962

1.3 Absolute maximum ratings.

	Supply voltage range	-0.5 V dc to +7.0 V dc
	Input voltage range	-1.2 V dc at -18 mA to +7.0 V dc
	Storage temperature range	
	Maximum power dissipation, per device (P _D) 1/	
	Device type 01	116 mW
	Device type 02	
	Device type 03	127 mW
	Device type 04	
	Device type 05	
	Device type 06	
	Device type 07	127 mW
	Device type 08	121 mW
	Device type 09	110 mW
	Device type 10	127 mW
	Lead temperature (soldering, 10 seconds)	+300°C
	Thermal resistance, junction to case (θ_{JC}):	
	Cases E, F, and 2	(See MIL-STD-1835)
	Junction temperature (T _J) <u>2</u> /	
	· · · · · · · · · · · · · · · · · · ·	
4	Recommended operating conditions.	
	Supply voltage (V _{CC})	4.5 V minimum to 5.5 V maximum
	Minimum high level input voltage (V _{IH})	
	Maximum low level input voltage (V _{IL})	
	Case operating temperature range (T _C)	-55° to +125°C

2. APPLICABLE DOCUMENTS

1.4

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

 $[\]underline{1}$ / Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

Maximum junction temperature shall not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Terminal connections and pin assignments</u>. The terminal connections and pin assignments shall be as specified on figure 1.
 - 3.3.2 Logic diagrams. The logic diagrams shall be as specified on figure 2.
 - 3.3.3 Truth tables. The truth tables shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
 - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 <u>Methods of inspection.</u> Methods of inspection shall be specified as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Condi	tions	Device	Lir	mits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$		type	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V},$ $V_{IL} = 0.8 \text{ V},$	I _{OH} = -1.0 mA	01, 02, 03, 04, 09	2.5		٧
		V _{IH} = 2.0 V	I _{OH} = -3.0 mA	05, 06, 07, 08, 10	2.4		V
Low level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = V_{IH} = 2.0 \text{ V}, V_{IL} = 0.0 \text{ V}$		All		0.5	V
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} = T_{C} = +25^{\circ}\text{C}$		All		-1.2	V
High level input current	I _{IH1}	V _{CC} = 5.5 V, V _{IH} :	= 2.7 V	All		20	μΑ
	I _{IH2}	V _{CC} = 5.5 V, V _{IH} :	= 7.0 V	All		100	μΑ
Low level input current	I _{IL}	V _{CC} = 5.5 V, V _{IL} =	= 0.5 V	All	03	60	mA
Short circuit output current 1/	los	V _{CC} = 5.5 V, V _{OS}	= 0 V	All	-60	-150	mA
Output drive	I _{OD}	$V_{CC} = 4.5 \text{ V},$		01, 04, 09	60		mA
				02, 03, 05, 06, 07, 08, 10	35		mA
Supply current	Icc	V _{CC} = 5.5 V, V _{OS}	= 0 V	01		21	mA
				02		20	mA
				03		23	mA
				04		15	mA
				05		22	mA
High level supply current	Іссн	V _{CC} = 5.5 V		06		15	mA
				07		9.5	mA
				08		16	mA
				09		14	mA
				10		14	mA
Low level supply current	I _{CCL}	$V_{CC} = 5.5 \text{ V}$		06		22	mA
				07		23	mA
				08		23	mA
				09		20	mA
				10		20	mA

 $[\]underline{1}$ / Not more than one output should be shorted at a time.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	ctrical performance characteristics Conditions	Device	Lir	mits	Unit
		-55°C ≤ T _C ≤ +125°C	type	Min	Max	
Off state supply current	I _{CCZ}	V _{CC} = 5.5 V	05		24	mA
		Outputs disabled	06		23	mA
			07		17	mA
			08		23	mA
			10		23	mA
Off state output leakage	I _{OZH}	$V_{CC} = 5.5 \text{ V}, V_{ZH} = 2.7 \text{ V}$	05, 06, 07,		50	μΑ
cuurent			08, 10			
	I _{OZL}	$V_{CC} = 5.5 \text{ V}, V_{ZL} = 0.5 \text{ V}$			-50	μА
Propagation delay time,	t _{PLH1}	V _{CC} = 5.5 V	01	2.5	8.5	ns
low to high level, data to Z		(see figure 4)	02	2.5	9.0	ns
output			03	2.5	7.5	ns
			05	2.5	9.0	ns
			06	2.0	7.0	ns
			08	2.5	9.0	ns
Propagation delay time,	t _{PLH2}		01	2.5	7.5	ns
low to high level, data to \overline{Z}			04	2.5	8.5	ns
output			05	2.5	8.5	ns
			07	2.0	7.5	ns
			09	2.0	9.0	ns
			10	1.5	9.0	ns
Propagation delay time,	t _{PLH3}		01	4.5	13.5	ns
low to high level, select to Z			02	4.5	14.0	ns
output			03	4.0	12.0	ns
			05	3.5	14.0	ns
			06	3.5	11.5	ns
			08	3.5	15.0	ns
Propagation delay time,	t _{PLH4}		01	3.5	11.5	ns
low to high level, select to			04	3.0	10.5	ns
Z output			05	3.5	11.5	ns
			07	3.0	9.5	ns
			09	3.5	14.5	ns
			10	4.0	16.0	ns
Propagation delay time,	t _{PLH5}		01	4.0	12.0	ns
low to high level, enable			02	4.5	11.5	ns
to Z output			03	5.0	13.0	ns
Propagation delay time,	t _{PLH6}		01	3.0	7.5	ns
low to high level, enable to			04	2.5	8.0	ns
Z output			09	3.5	17.0	ns

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions	Device	Lir	nits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$	type	Min	Max	
Propagation delay time,	t _{PHL1}	V _{CC} = 5.5 V	01	3.5	9.0	ns
high to low level, data to Z		(see figure 4)	02	2.5	8.0	ns
output			03	1.5	7.5	ns
			05	3.5	9.0	ns
			06	1.5	7.0	ns
			08	2.5	8.0	ns
Propagation delay time,	t _{PHL2}		01	1.5	6.0	ns
high to low level, data to Z			04	1.5	5.0	ns
output			05	1.0	6.0	ns
			07	1.0	6.0	ns
			09	1.5	7.5	ns
			10	1.5	7.5	ns
Propagation delay time,	t _{PHL3}		01	4.0	9.5	ns
high to low level, select to Z			02	3.5	11.0	ns
output			03	3.0	9.0	ns
			05	3.0	10.5	ns
			06	2.5	9.0	ns
			08	2.5	11.0	ns
Propagation delay time,	t _{PHL4}		01	3.0	8.0	ns
high to low level, select to			04	2.5	8.0	ns
Z output			05	3.2	8.0	ns
			07	2.5	9.0	ns
			09	3.5	15.0	ns
			10	4.0	14.0	ns
Propagation delay time,	t _{PHL5}		01	3.0	8.0	ns
high to low level, enable			02	2.5	9.0	ns
to Z output			03	2.5	7.5	ns
Propagation delay time,	t _{PHL6}		01	2.5	6.5	ns
high to low level, enable to			04	2.0	8.5	ns
Z output			09	3.0	13.0	ns
Propagation delay time,	t _{PLZ5}		05	1.0	5.5	ns
low level to off state, output			06	2.0	8.5	ns
enable to Z output			08	2.0	8.0	ns
Propagation delay time,	t _{PLZ6}		05	1.0	5.0	ns
low level to off state, output			07	2.0	8.5	ns
enable to \overline{Z} output			10	2.0	8.5	ns

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions	Device	Lir	nits	Unit
		-55 °C $\leq T_C \leq +125$ °C	type	Min	Max	
Propagation delay time,	t _{PHZ5}	V _{CC} = 5.5 V	05	2.0	5.5	ns
high level to off state, output		(see figure 4)	06	2.0	7.0	ns
enable to Z output			08	2.0	6.5	ns
Propagation delay time,	t _{PHZ6}		05	2.0	6.0	ns
high level to off state, output			07	1.5	7.0	ns
enable to Z output			10	2.0	6.5	ns
Propagation delay time,	t _{PZL5}		05	2.5	9.0	ns
off state to low level output			06	2.5	9.0	ns
enable to Z output			08	2.5	10.0	ns
Propagation delay time,	t _{PZL6}		05	2.5	7.5	ns
off state to low level output			07	2.5	9.0	ns
enable to Z output			10	3.0	15.5	ns
Propagation delay time,	t _{PZH5}		05	3.0	8.5	ns
off state to high level output			06	2.0	8.0	ns
enable to Z output			08	2.5	10.0	ns
Propagation delay time,	t _{PZH6}		05	2.0	7.0	ns
off state to high level output			07	2.0	8.0	ns
enable to Z output			10	3.0	11.0	ns

TABLE II. <u>Electrical test requirements.</u>

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8, 9, 10, 11	N/A
Group C end-point electrical parameters	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

		Terminal assignments									
	Device t	ype 01	Device t	Device type 02 Device type 03 Device type 04			/pe 04	Device ty	/pe 05		
Terminal number	Cases	Case	Cases	Case	Cases	Case	Cases	Case	Cases	Case 2	
number	E and F	2	E and F	2	E and F	2	E and F	2	E and F		
1	13	N/C	Ea	N/C	S	N/C	S	N/C	13	N/C	
2	12	13	S1	Е́а	I0a	S	I0a	S	12	13	
3	I1	12	l3a	S1	l1a	I0a	l1a	I0a	I1	12	
4	10	l1	l2a	l3a	Za	l1a	Z a	l1a	10	l1	
5	Z	10	l1a	l2a	I0b	Za	I0b	_ Z a	Z	10	
6	Z	N/C	I0a	N/C	l1b	N/C	l1b	N/C	Z	N/C	
7	Ē	Z	Za	l1a	Zb	l0b	Ζ̄b	I0b	QE	Z	
8	GND	Z	GND	I0a	GND	l1b	GND	l1b	GND	Z	
9	S2	Ē	Zb	Za	Zd	Zb	₹ d	_ Z b	S2	QE	
10	S1	GND	I0b	GND	l1d	GND	l1d	GND	S1	GND	
11	S0	N/C	l1b	N/C	I0d	N/C	I0d	N/C	S0	N/C	
12	17	S2	I2b	Zb	Zc	Zd	₹ c	\overline{Z} d	17	S2	
13	16	S1	l3b	I0b	I1c	l1d	I1c	l1d	16	S1	
14	15	S0	S0	l1b	I0c	I0d	I0c	I0d	15	S0	
15	14	17	Ē b	l2b	Ē	Zc	Ē	Ζ̈́c	14	17	
16	Vcc	N/C	Vcc	N/C	Vcc	N/C	Vcc	N/C	Vcc	N/C	
17		16		I3b		I1c		I1c		16	
18		15		S0		I0c		I0c		15	
19		14		Ε̈́b		Ē		Ē		14	
20		Vcc		Vcc		Vcc		Vcc		Vcc	

FIGURE 1. <u>Terminal connections</u>.

					Terminal as	ssignmen	ts			
	Device t	ype 06	Device t	Device type 07 Device type 08 Device type 09			/pe 09	09 Device type 10		
Terminal number	Cases E and F	Case 2	Cases E and F	Case 2	Cases E and F	Case 2	Cases E and F	Case 2	Cases E and F	Case 2
1	S	N/C	S	N/C	OE a	N/C	Ē a	N/C	OE a	N/C
2	I0a	S	I0a	S	S1	OE a	S1	Ē a	S1	OE a
3	l1a	I0a	l1a	I0a	l3a	S1	l3a	S1	I3a	S1
4	Za	l1a	_ Z a	l1a	I2a	l3a	l2a	l3a	I2a	l3a
5	I0b	Za	I0b	_ Z a	l1a	l2a	l1a	I2a	l1a	I2a
6	l1b	N/C	l1b	N/C	I0a	N/C	I0a	N/C	I0a	N/C
7	Zb	I0b	b	l0b	Za	l1a	_ Z a	l1a	_ Z a	l1a
8	GND	l1b	GND	l1b	GND	l0a	GND	I0a	GND	I0a
9	Zd	Zb	\overline{Z} d	$\overline{\overline{Z}}$ b	Zb	Za	$\overline{\overline{Z}}$ b	_ Z a	$\overline{\overline{Z}}$ b	_ Z a
10	l1d	GND	l1d	GND	I0b	GND	I0b	GND	I0b	GND
11	I0d	N/C	I0d	N/C	I1b	N/C	l1b	N/C	l1b	N/C
12	Zc	Zd	Z c	¯Z d	I2b	Zb	l2b	_ Z b	I2b	_ Z b
13	I1c	l1d	I1c	l1d	I3b	l0b	l3b	I0b	I3b	I0b
14	I0c	I0d	I0c	I0d	S0	l1b	S0	l1b	S0	l1b
15	ŌĒ	Zc	ŌĒ	Ζc	OE b	l2b	Εb	l2b	OE b	I2b
16	Vcc	N/C	Vcc	N/C	Vcc	N/C	Vcc	N/C	Vcc	N/C
17		I1c		I1c		l3b		l3b		l3b
18		I0c		I0c		S0		S0		S0
19		ŌE		ŌE		OE b		Ēb		OE b
20		V _{CC}		V _{CC}		Vcc		V_{CC}		V _{CC}

FIGURE 1. <u>Terminal connections</u> - Continued.

FIGURE 2. Logic diagrams.

DEVICE TYPE 03

FIGURE 2. <u>Logic diagrams</u> - Continued.

FIGURE 2. Logic diagrams - Continued.

DEVICE TYPE 07

FIGURE 2. Logic diagrams - Continued.

DEVICE TYPE 09

FIGURE 2. <u>Logic diagrams</u> - Continued.

Device type 01

	INP	UTS		OUT	PUTS
Ē	S2	S1	S0	Z	Z
Н	Χ	X	Х	Н	L
L	L	L	L	Ī0	10
L	L	L	Н	Ī1	I 1
L	L	Н	L	Ī2	12
L	L	Н	Н	Ī3	13
L	Н	L	L		14
L	Н	L	Н		15
L	Н	Н	L	Ī6	16
L	Н	Н	Н		17

Device type 02

SELECT	INPUTS		INP	UTS (a o	r b)		OUTPUT
S0	S1	E	10	I 1	12	13	Z
Х	Х	Н	Х	Х	Х	Х	L
L	L	L	L	X	X	X	L
L	L	Ш	Ι	Χ	X	Х	Н
Н	L	L	X	L	X	X	L
Н	L	L	X	Н	X	X	Н
L	Η	Ш	Χ	Χ	L	Х	L
L	Н	L	X	X	Η	X	Н
Н	Н	L	Х	Х	Х	L	L
Н	Н	L	Х	Х	X	Н	Н

H = HIGH voltage level L = LOW voltage level X = Immaterial

FIGURE 3. Truth tables.

Device type 03

	INP	UTS		OUTPUT
Ē	S	10	I 1	Z
Н	Х	Х	Х	L
L	Ι	Χ	L	L
L	Ι	Χ	Ι	Н
L	L	L	Χ	L
L	L	Н	Χ	Н

Device type 04

	INP	UTS		OUTPUT
Ē	S	10	l 1	Z
Н	Х	Х	Х	Н
L	L	L	Χ	Η
L	L	Н	Χ	L
L	Н	Χ	L	Н
L	Н	Χ	Н	L

Device type 05

	INP	UTS		OUTI	PUTS
ŌE	S2	S1	S0	Z	Z
Н	Х	Х	Х	Z	Z
L	L	L	L	Ī0	10
L	L	L	Н	_ 1	I 1
L	L	Н	L	_ I 2	12
L	L	Н	Н	ī 3	13
L	Н	L	L	T 4	14
L	Н	L	Н	_ I 5	15
L	Н	Н	L	_ I 6	16
L	Н	Н	Н	_ 7	17

Device type 06

OUTPUT	SELECT	DA	TE	OUTPUTS
ENABLE	INPUT	INP		
ŌĒ	S	10	l 1	Z
Н	Х	Х	Х	(Z)
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	L	Н	Х	Н

H = HIGH voltage level L = LOW voltage level X = Immaterial

(Z) = High impedance

FIGURE 3. <u>Truth tables</u> - Continued.

Device type 07

OUTPUT	SELECT	DA	TE	OUTPUTS
ENABLE	INPUT	INP	UTS	
ŌĒ	S	10	I 1	Z
Н	Х	Х	Х	Z
L	Н	Х	L	Н
L	Н	X	Н	L
L	L	L	X	Н
L	L	Н	Х	L

Device type 08

						ı	1
	ECT UTS		DATA	OUTPUT ENABLE	OUTPUT		
S0	S1	10	I 1	12	13	ŌE	Z
Х	Х	Х	Х	Х	Х	Н	(Z)
L	L	L	Χ	Х	X	L	L
L	L	Н	X	Х	X	L	Н
Н	L	X	L	X	X	L	L
Н	L	Χ	Н	Х	X	L	Н
L	Н	Χ	Х	L	Х	L	L
L	Н	Χ	Χ	Н	Х	L	Н
Н	Н	Χ	Х	Х	L	L	L
Н	Н	Х	Х	Х	Н	L	Н

H = HIGH voltage level L = LOW voltage level X = Immaterial (Z) = High impedance

FIGURE 3. <u>Truth tables</u> - Continued.

Device type 09

SELECT	T INPUTS		IN	PUTS (a or	· b)		OUTPUT
S0	S1	E	10	l 1	12	13	Z
Х	Х	Н	Х	Х	Х	Х	Н
L	L	L	L	X	Χ	Χ	Н
L	L	L	Н	X	X	X	L
Н	L	L	Χ	L	Χ	Χ	Н
Н	L	L	Х	Н	Χ	Χ	L
L	Н	L	X	X	L	X	Н
L	Н	L	Χ	X	Н	Χ	L
Н	Н	L	Χ	Χ	X	L	Н
Н	Н	L	Χ	X	Χ	Н	L

Device type 10

SELECT	INPUTS		DATA II	NPUTS		OUTPUT ENABLE	OUTPUT
S0	S1	10	l 1	ŌE	Z		
Х	Х	Х	Х	Х	Х	Н	(Z)
L	L	L	X	X	X	L	Н
L	L	Н	X	X	X	L	L
Н	L	X	L	X	X	L	Н
Н	L	X	Н	X	Х	L	L
L	Н	X	X	L	X	L	Н
L	Н	X	X	Н	Х	L	L
Н	Н	Х	Х	Х	L	L	Н
Н	Н	Х	Х	Х	Н	L	L

Address inputs S0 and S1 are common to both sections

H = HIGH voltage level L = LOW voltage level X = Immaterial (Z) = High impedance

FIGURE 3. <u>Truth tables</u> - Continued.

Test Circuit

Test Type	S1
t _{PLH}	Open
t _{PHL}	Open
t _{PHZ}	Open
t _{PZH}	Open
t _{PLZ}	Closed
t _{PZL}	Closed

NOTES:

- 1. V_{IN} input pulse has the following characteristics: t_1 = $t_0 \le 2.5$ ns, PRR ≤ 1 MHz, $Z_{OUT} \approx 50\Omega$.
- 2. Inputs not under test are at ground.
- 3. C_L = 50 pF ±10% including scope probe, wiring and stray capacitance without package in test fixture.
- 4. $R1 = R2 = 499\Omega \pm 5\%$.
- 5. Voltage measurements are to be made with respect to network ground terminal.

FIGURE 4. Switching time test circuit and waveform for all device types.

DEVICE TYPES 01,02,03,05,06 AND 08

DEVICE TYPES 01,04,05,07,09 AND 10

DEVICE TYPES 01,02,03,05,06 AND 08

FIGURE 4. Switching time waveform - Continued.

FIGURE 4. Switching time waveform - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	I3	I2	I1	10	Z	z	Ē	GND	S2	S1	S0	17	16	15	14	V _{CC}
1	V _{OL}	3007	1				2.0 V		20 mA	0.8 V	GND	0.8 V	0.8 V	0.8 V					4.5 V
Tc = 25°C		"	2			2.0 V			"				0.8 V	2.0 V					
		"	3		2.0 V					"	"	"	2.0 V	0.8 V					
1		"	4	2.0 V						"	"	"	2.0 V	2.0 V					
1		"	5						-	-	"	2.0 V	0.8 V	0.8 V				2.0 V	
1		"	6							"	"	"	0.8 V	2.0 V			2.0 V		
1		"	7										2.0 V	0.8 V		2.0 V			
		"	8									"	2.0 V	2.0 V	2.0 V				
1		"	9				0.8 V	20 mA				0.8 V	0.8 V	0.8 V					
1	V _{OH}	3006	10						-1.0 mA	2.0 V									
		"	11				0.8 V			0.8 V		0.8 V	0.8 V	0.8 V					
1		"	12			0.8 V							0.8 V	2.0 V					
1		"	13		0.8 V				-	-	"	"	2.0 V	0.8 V					
1		"	14	0.8 V					-				2.0 V	2.0 V					
1		"	15							"		2.0 V	0.8 V	0.8 V				0.8 V	
1		"	16		1			ļ	-			-	0.8 V	2.0 V		0.01:	0.8 V		-
1			17						- :	-			2.0 V	0.8 V	0.01/	0.8 V			-
1			18 19				2.0 V	4.0 4	-			0.8 V	2.0 V	2.0 V	0.8 V				-
1	V _{IC}		20	-18 mA			2.0 V	-1.0 mA				0.6 V	0.8 V	0.8 V					
	VIC		21	-10 IIIA	-18 mA														
1		ŀ	22		1011111	-18 mA													
			23			10 1121	-18 mA												
			24							-18 mA	"								"
			25									-18 mA							
			26									-10 IIIA	-18 mA						
		-	27										-101117	-18 mA					
			28											10 1121	-18 mA				
			29								"					-18 mA			
			30														-18 mA		"
1			31								"							-18 mA	
	I _{IH1}	3010	32	2.7 V						4.5 V		4.5 V	0.0 V	0.0 V					5.5 V
1			33		2.7 V						-		0.0 V	4.5 V					-
		"	34			2.7 V	0.71/			-			4.5 V	0.0 V					-
			35				2.7 V			2.7 V			4.5 V	4.5 V					-
			36							2.7 V									
1		"	37								"	2.7 V							
1		"	38										2.7 V						
1		"	39							4.5.1	-	0.01	0.01/	2.7 V	0.71/		<u> </u>		-
1			40 41		1	-	1	-		4.5 V		0.0 V	0.0 V 0.0 V	0.0 V 4.5 V	2.7 V	2.7 V	1		- :
1		,,	41		-	-		 			-		4.5 V	4.5 V 0.0 V		2.1 V	2.7 V		
1		,,	43										4.5 V	4.5 V			Z.1 V	2.7 V	
1	I _{IH2}	"	44	7.0 V								4.5 V	0.0 V	0.0 V					
1	11 12	"	45		7.0 V					"		"	0.0 V	4.5 V					
1		"	46			7.0 V				"		"	4.5 V	0.0 V					
		"	47				7.0 V			"		"	4.5 V	4.5 V					
1		"	48							7.0 V									
1		"	49								"	7.0 V							
1		"	50										7.0 V						
		"	51											7.0 V					"
1		"	52							4.5 V		0.0 V	0.0 V	0.0 V	7.0 V				
		"	53	l	Ì	l	1	1					0.0 V	4.5 V		7.0 V			
		"	54 55										4.5 V 4.5 V	0.0 V 4.5 V			7.0 V	7.0 V	-

See footnotes at end of table.

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Cumbal	_	Case 2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
Subgroup	Symbol	method	1/		3	4	5	,	0	9	10	12	13	14	15	17	10	19	20
			Test no.	13	I2	I1	10	Z	Z	Ē	GND	S2	S1	S0	17	16	15	14	V _{CC}
1	I _{II}	3009	56	0.5 V						0.0 V	GND	0.0 V	4.5 V	4.5 V					5.5 V
Tc = 25°C	"IL	"	57	0.0 1	0.5 V					"	"	"	4.5 V	0.0 V	1				"
10 = 25 0			58		0.0 1	0.5 V							0.0 V	4.5 V					
			59			0.5 V	0.5 V			"			0.0 V	0.0 V					
			60				0.5 V			0.5 V	"		0.0 V	0.0 V					"
			61									0.5 V							
			62									0.5 V	0.5 V						
			63										0.5 V	0.5 V					
			64							0.0 V		4.5 V	4.5 V	4.5 V	0.5 V				
	l		65							U.U V	,	4.5 V	4.5 V	0.0 V	0.5 V	0.5 V	 		-
	l									-						U.5 V	0.5.1/		—
	l		66 67	-	<u> </u>	<u> </u>	<u> </u>			-	-	-	0.0 V 0.0 V	4.5 V 0.0 V			0.5 V	0.5 V	
	.	0044					451/	0.01/		0.01/	"							0.5 V	
	Ios	3011	68				4.5 V	0.0 V	0.0 V	0.0 V 4.5 V		0.0 V	0.0 V	0.0 V					
		3011	69						0.0 V	4.5 V									
	I _{OD}		70					2.5 V		5.5 V	"								4.5 V
			71				5.5 V		2.5 V	0.0 V	"	0.0 V	0.0 V	0.0 V					4.5 V
	Icc	3005	72	4.5 V	4.5 V	4.5 V	4.5 V			4.5 V	"	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V
2		ests, termina	al conditions	and limits		oup 1. exc		-125°C and	d V _{ic} tests	are omitte	ed.								
3			al conditions																
7				, and min		oup i, one	opt ic - i	00 0 4114		no omittou									
			73	Δ	Δ	Δ	Δ	1	н	Δ	GND	В	R	R	Δ	Δ	Δ	Δ	4/
	Func-	3014	73 74	Α "	Α "	Α "	Α "	L "	H	Α "	GND "	B **	B	В	A "	A "	Α "	A	4/
Tc = 25°C	tional		74	A "	A "	A "	A "	" "	H "	A "	GND "		В	Α		A	A "	A	<u>4/</u> "
	tional test		74 75	A "		A "	A "	" "	H	A "	GND "	"	B A	A B		A	A	A "	<u>4</u> /
	tional		74 75 76	A "	"	A "		" "	H "	"	GND "		B A A	A B A	"	A	A	A "	<u>4</u> /
	tional test		74 75 76 77	A "	"	A "		"""""""""""""""""""""""""""""""""""""""	H "	"	GND "	" " A	B A A B	A B A B	"	A "	A "	A "	<u>4</u> /
	tional test		74 75 76 77 78	A " " " " " " " " " " " " " " " " " " "	" "	A "		" " " " " " " " " " " " " " " " " " " "	H " "	"	GND "		B A A B B	A B A B	" "	A "	A	A "	<u>4</u> /
	tional test		74 75 76 77 78 79	A " " " " " " " " " " " " " " " " " " "	" "	A " " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	H " " " " " " " " " " " " " " " " " " "	"	GND " " " " " "	" " A	B A A B B	A B A B A B	" "	A "	A "	A " " " " " " " " " " " " " " " " " " "	<u>4/</u> " " " " " "
	tional test		74 75 76 77 78 79 80	11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" A "	B A A B B A	A B A B A B	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	H H H H H H H H H H H H H H H H H H H	<u>4/</u> " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81	A " " " " " " " " " B B " "	" " " " " B	" " " " " B	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " "	H " " " " " " L " " " " " " " " " " " "	"	GND	" " A	B A A B B A A B	A B A B A B A B B A B	" "	A " " " " " " " " " " " " " " " " " " "	A " " " " " " " " " " " " " " " " " " "	A " " " " " " " " B B " "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82	11 11 11 11 11 11	" " " " B B	" " " " B A	" " " " " " " " " " " " " " " " " " " "	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " B	B A A B A A B B B	A B A B A B A B A A A A A	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	H H H H H H H H H H H H H H H H H H H	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83	" " " " " " B	" " " " B B A	" " " " " B	11 11 11 11 11 11 11 11 11 11 11 11 11	" " H	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " B B "	B A A B B B A A	A B A B A B A B A B A B B A B B	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	H H H H H H H H H H H H H H H H H H H	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83	" " " " B "	" " " " B B	" " " " B A	11 11 11 11 11 11 11 11 11 11 11 11 11	" " H	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " B " " " " " " " " " " " " "	B A A B B A A B B A A A A A A A A A A A	A B A B A B A B A B A B A A B A	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84	" " " " " " B	" " " " B B A	" " " " B A	11 11 11 11 11 11 11 11 11 11 11 11 11	" " H	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " B " " "	B A A B B B A A B B B A A B B B A A A B B B A A A B B B A A A B B B B A A A B B B B B A A A B B B B B A A A B B B B B A A A B B B B B A A A B	A B A B A B A B A B A B B A B B B B B B	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " B	" " " B "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85	" " " " B "	" " " " " " B B B A B B " "	" " " " B A B " " "	" " " " " " " " " " " " " " " " " " "	" " H	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " B " " " A A	B A A B B B A A B B B B B	A B A B A B A B A B A B A B A B A A B A A B A A B A B A	" " " " " B	" " " " " " " " " " " " " " " " " " "	" " " B " " A	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87	" " " " B "	" " " " B B B A B B " " "	" " " " B A B " " "	" " " " " " B	" " H	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" A " " A " " A " " " " " A " " " " " "	B A A B B A A A A B B B A A A A B B A A A A B B A A A B B A	A B A B A A B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B B A A B	" " " " " " " " " " " " " " " " " " "	" " " " B " "	" " " " " " " " " " " " " " " " " " "	" " " B "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87	" " " " B " " A B B " " " " " " " " " "	" " " " B B B A B B " " " " " " " " " "	" " " " " B A B " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" H " " " " " " "		" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " " A A " " " " " " " " " " "	B A A B B A A A B B A A A A B A A A A A	A B A B A B A B A B A A B A A B A A B A A B A A B A A B A A B B A B A B B A A B B A A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B B B A B	" " " " " " B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " A B "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	" " " " B "	" " " " " B B A A B " " " " " A A	" " " " B A A B " " " " A A	" " " " " " " " " " " " " " " " " " "	" H " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" A " " A " " A " " " " " A " " " " " "	B A A B B B A A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B B A A B B B B B A B B B B B B A B	A B A B A A B B A A B B A B B A B B A B B A B B B A B B B B A B	" " " " " " " " " " " " " " " " " " "	" " " " B " "	" " " " " " " " " " " " " " " " " " "	" " " B " " A B	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 990	" " " " B " " A B B " " " " " " " " " "	" " " B B B A A B " " " A A A	" " " B A A B B " " " A A B B	" " " " " " " " " " " " " " " " " " "	" H " " " " " "		" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " " " A A " " " " " " " " " " "	B A A B B B A A A B B B B B B B B B B B	A B A B A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B B A B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " A B "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	" " " B B " " A B B " " " A B B " " " "	" " " " " " " " " " " " " " " " " " "	" " " " B A A B " " " " A A	" " " " " " " " " " " " " " " " " " "	" H " " " " " "		" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A " " A " " " B B " " B B " " B B " " B B " " B B " " B B " " B B " " B B " " B B B " " B B B " " B B B " " B B B " " B B B " " B B B B " " B	B A A B B B A A A B B B A A A B B B A A A B B B A A A B B B A A A B B B B A A A B B B B B A A A B B B B B B A A A B	A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B B A B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " A B "	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "		B B III		" " A A " " " " A A " " " " " " B B " " " "	B A A B B A A B B B A A A B B B A A A A	A B A B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B	B B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	" " " B B " " A B B " " " A B B " " " "	" " " " " " " " " " " " " " " " " " "	" " " " B B A B " " " " " A B B A A	" " " " " " " " " " " " " " " " " " "	" H " " " " " "		" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " A A " " " A A " " " B B " " " B B " " " B B " " " B B " " " B B " " " " B B " " " " B B " " " " " " B B "	B A A B B A A A B B B A A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A A B B B B A B B B A B B B B A B B B B A B B B B A B B B B B A B	A B A B A B A B B A B B A B B A B B B A B B B A B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " B B " " A B B " " " B B B " " " B B B B	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 91 92 93	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "		B B III		" " A A " " " " A A " " " " " " B B " " " "	B A A B B B A A A B B B A A B B B B B A A B B B B B A A B	A B A B A A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B B A B	B B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	" " " " " " " " " " " " " " " " " " " "
	tional test		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 99 90 91 92 93 94	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "		B B III		" A A " " " A A " " " " " " A A " " " "	B A A B B B A A A B B B B A A A B B B B	A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B B A B B B B A B B B B B B A B	B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " B B " " A B B " " " B B B " " " B B B B	" " " " " " " " " " " " " " " " " " " "
	tional test <u>3</u> /		74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 91 92 93	" " " B B " " " " " B B A " " " " " B B A " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	* * * * * * * * * * * * * * * * * * *	" H " " " " " " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " "		" A A " " " A A " " " " " " A A " " " "	B A A B B B A A A B B B A A B B B B B A A B B B B B A A B	A B A B A A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B B A B	B B	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " B B " " A B B " " " B B B " " " B B B B	" " " " " " " " " " " " " " " " " " " "

See footnotes at end of device types 01.

TABLE III. Group A inspection for device type 01 - Continued.

T	erminal	conditio	ns (pins	not de	signated	d may	be high ≥	2.0 V; I	0.8	V; or op	en).
3	4	5	6	7	8	9	10	11	12	13	14

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
		ŀ	Test no.	13	I2	I1	10	Z	z	Ē	GND	S2	S1	S0	17	16	15	14	V _{CC}
9	t _{PLH1}	3003	97				IN	OUT		0.0 V	GND	0.0 V	0.0 V	0.0 V					5.0 V
$T_C = 25^{\circ}C$		Fig. 4	98			IN		"		"	"	"	0.0 V	2.7 V					"
		"	99		IN			"		"		"	2.7 V	0.0 V					"
			100	IN				- "		- "	- "	"	2.7 V	2.7 V					- "
		,	101 102					"		"	"	2.7 V	0.0 V 0.0 V	0.0 V 2.7 V			IN	IN	
			103					"		"	"	"	2.7 V	0.0 V		IN	IIN		
			104					"		"	"	"	2.7 V	2.7 V	IN				
	t _{PHL1}		105				IN	"		"		0.0 V	0.0 V	0.0 V					
		"	106			IN		"		"	"	"	0.0 V	2.7 V					"
			107		IN			"		- "	-	- "	2.7 V	0.0 V					- :
			108 109	IN				- "		- "		2.7 V	2.7 V 0.0 V	2.7 V 0.0 V				IN	- "
			110					"		"	"	2.7 V	0.0 V	2.7 V			IN	IIN	
			111					"		"	"	"	2.7 V	0.0 V		IN			
		"	112					"		"	"	"	2.7 V	2.7 V	IN				
	t _{PLH2}	"	113				IN		OUT	"	"	0.0 V	0.0 V	0.0 V					"
			114			IN			"	"	"	"	0.0 V	2.7 V					
			115		IN				"	"	"	"	2.7 V	0.0 V					
		"	116	IN					"	"	"	"	2.7 V	2.7 V					"
		"	117							"	"	2.7 V	0.0 V	0.0 V				IN	"
			118						"	"	"	"	0.0 V	2.7 V			IN		
			119						"	"	"	"	2.7 V	0.0 V		IN			
		"	120							"	"	"	2.7 V	2.7 V	IN				
	t _{PHL2}	"	121				IN			"	=	0.0 V	0.0 V	0.0 V					
		"	122			IN			"	"	"	"	0.0 V	2.7 V					
		"	123		IN					"	=	"	2.7 V	0.0 V					
		"	124	IN						"	"	"	2.7 V	2.7 V					
		"	125							"	"	2.7 V	0.0 V	0.0 V				IN	
		"	126						"	"	"	"	0.0 V	2.7 V			IN		
		"	127						"	"	"	"	2.7 V	0.0 V		IN			
		"	128							"	"	"	2.7 V	2.7 V	IN				
	t _{PLH5}	"	129	2.7 V	2.7 V	2.7 V	2.7 V	OUT		IN	"	0.0 V	0.0 V	0.0 V	2.7 V	2.7 V	2.7 V	2.7 V	
	t _{PHL5}	"	130	2.7 V	2.7 V	2.7 V	2.7 V	OUT		IN	"	0.0 V	0.0 V	0.0 V	"	2.7 V	2.7 V	2.7 V	"
	t _{PLH6}	"	131	0.0 V	0.0 V	0.0 V	0.0 V		OUT	"	-	2.7 V	2.7 V	2.7 V	"	0.0 V	0.0 V	0.0 V	"
	t _{PHL6}	"	132	0.0 V	0.0 V	0.0 V	0.0 V		OUT	"	"	2.7 V	2.7 V	2.7 V	"	0.0 V	0.0 V	0.0 V	
	t _{PLH3}	"	133			2.7 V	0.0 V	OUT		0.0 V		0.0 V	0.0 V	IN					"
			134		2.7 V			"				0.0 V	IN O O V	0.0 V				0.717	- "
	+	-	135 136			0.0 V	2.7 V	"				0.0 V	0.0 V 0.0 V	0.0 V IN				2.7 V	-
	t _{PHL3}		137		0.0 V	0.0 v	2.7 V	"		"	"	0.0 V	IN	0.0 V					"
			138	1	0.0 v		-	-			-	IN	0.0 V	0.0 V	 	1	!	0.0 V	+

See footnotes at end of device types 01.

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	13	I2	I1	10	Z	z	Ē	GND	S2	S1	S0	17	16	15	14	V _{CC}
9	t _{PLH4}	3003	139			0.0 V	2.7 V		OUT	0.0 V	GND	0.0 V	0.0 V	IN					5.0 V
		Fig 4	140		0.0 V		"		"	"	"	0.0 V	IN	0.0 V					
		"	141				"		"	"	"	IN	0.0 V	0.0 V				0.0 V	"
	t _{PHL4}	"	142			2.7 V	0.0 V		"	"	"	0.0 V	0.0 V	IN					
		"	143		2.7 V		"		"	"	"	0.0 V	IN	0.0 V					
		"	144				"		"	"	"	IN	0.0 V	0.0 V				2.7 V	
10											1		I	1	I		ı	ı	
		ests and ter $t_{PLH1} = 2.5 t_{PLH3} = 4.5 t_{PLH5} = 4.0 t_{PLH5}$	o 8.5 ns o 13.5 ns		$t_{PHI,1} = 3.5$	to 9.0 ns to 9.5 ns		and for the $t_{PLH2} = 2.5$ $t_{PLH4} = 3.5$ $t_{PLH6} = 3.0$	to 7.5 ns to 11.5 ns	5	$t_{PHL2} = 1.5$ $t_{PHL4} = 3.0$ $t_{PHL6} = 2.5$) to 8.0 ns	6						
11	Same to	ete tarmina	I conditions	and limite	as for sub	aroun 10	eveent To	55°C											

- $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

	Min/Max I	imits in mA f	or circuit
Test	Α	В	С
In	25/60	03/60	03/60

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883	Case 2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
	·	method	<u>1</u> /																
			Test no.	E a	S1	I3a	I2a	I1a	I0a	Za	GND	Zb	I0b	l1b	I2b	I3b	S0	ĒЬ	V _{cc}
1	V _{OH}	3006	1	0.8 V	0.8 V				2.0 V	-1 mA	GND						0.8 V		4.5 V
Tc = 25°C		"	2	=	0.8 V			2.0 V			"						2.0 V		"
		"	3	=	2.0 V		2.0 V										0.8 V		"
		"	4	"	2.0 V	2.0 V				"	"						2.0 V		"
		"	5		0.8 V							-1 mA	2.0 V				0.8 V	0.8 V	
			6		0.8 V							- "		2.0 V	0.01/		2.0 V	- :- -	- "
		,	7		2.0 V 2.0 V						-	-			2.0 V	2.0 V	0.8 V		-
	V _{OL}	3007	8	2.0 V	2.0 V					20 mA						2.0 V	2.0 V		
	VOL	3007	10	0.8 V	0.8 V				0.8 V	ZU IIIA	"						0.8 V		
		"	11	U.O V	0.8 V			0.8 V	0.0 1								2.0 V		
		"	12	"	2.0 V		0.8 V	0.0 1			"						0.8 V		
		"	13	"	2.0 V	0.8 V				"	"						2.0 V		"
		"	14								"	20 mA						2.0 V	"
		"	15		0.8 V						"	"	0.8 V				0.8 V	0.8 V	"
		"	16		0.8 V						"	"		0.8 V			2.0 V	"	"
			17		2.0 V						- "				0.8 V		0.8 V	"	
	V _{IC}	"	18 19	-18 mA	2.0 V							-				0.8 V	2.0 V		-
	10				40. 4													<u> </u>	
			20		-18 mA	40 4												ļ	- "
			21 22			-18 mA	-18 mA					1							- "
			23				-10 IIIA	-18 mA										 	
			24					-10111/	-18 mA		"								
			25						10 110 ("		-18 mA						"
			26								"			-18 mA					"
			27								"				-18 mA				
			28								"					-18 mA			"
			29								"						-18 mA		"
			30								"							-18 mA	"
	I _{IH1}	3010	31	2.7 V							"								5.5 V
		"	32		2.7 V						"								"
		"	33	4.5 V	0.0 V	2.7 V					"						0.0 V		"
		"	34	"	0.0 V		2.7 V				"						4.5 V		"
		"	35		4.5 V			2.7 V			"						0.0 V		
		"	36	"	"				2.7 V		"						4.5 V		"
		"	37		"						"	1	2.7 V			1	4.5 V	4.5 V	"
			38			ļ	ļ		ļ			1		2.7 V	0.71/	1	0.0 V	"	
			39 40		0.0 V 0.0 V							-			2.7 V	2.7 V	4.5 V 0.0 V		- "
		"	40		U.U V	 	 		 			1		-	-	Z./ V	2.7 V	 	
		"	42														2.1 V	2.7 V	
	I _{IH2}	"	43	7.0 V															"
	'IH2	,		7.0 V	701/									1					
			44	4 E V	7.0 V	7.0 V					-	-				-	0.0 V	 	-
		"	45 46	4.5 V	0.0 V 0.0 V	7.U V	7.0 V					1		1		}	4.5 V	 	
		"	46		4.5 V		7.U V	7.0 V			-	1		1		1	0.0 V	 	-
		"	48	"	7.5 V			7.0 0	7.0 V		"						4.5 V	†	"
		"	49		"				T		"	1	7.0 V			1	4.5 V	4.5 V	"
		"	50		"						"			7.0 V		Ì	0.0 V	"	"
		"	51		0.0 V						"				7.0 V		4.5 V	"	"
		"	52		0.0 V						"					7.0 V	0.0 V	"	"
		"	53								"						7.0 V	<u> </u>	"
		"	54								"							7.0 V	. "
		oc at and	1 - 6 (- 1-1 -	1							•								

See footnotes at end of table.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	E a	S1	I3a	I2a	l1a	I0a	Za	GND	Zb	I0b	I1b	I2b	I3b	S0	E b	V _{CC}
1	I _{IL1}	3009	55	0.5 V							GND								5.5 V
Tc = 25°C			56		0.5 V						"								
1.0 - 20 0			57	0.0 V	4.5 V	0.5 V					"						4.5 V		
			58	"	4.5 V	0.0 1	0.5 V				"						0.0 V		
			59	"	0.0 V		0.0 1	0.5 V			"						4.5 V		
			60	"	"				0.5 V		"						0.0 V		
			61		"						"		0.5 V				0.0 V	0.0 V	
			62		"						"		0.0 1	0.5 V			4.5 V	"	
			63		4.5 V						"			0.0 1	0.5 V		0.0 V		
			64		4.5 V						"					0.5 V	4.5 V		
			65								"						0.5 V		
			66								"							0.5 V	"
	Ios	3011	67	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	4.5 V	0.0 V	"			1			0.0 V		"
		3011	68		0.0 V						"	0.0 V	4.5 V	0.0 V	"				
1	I _{OD}		69	5.5 V						2.5 V	"								4.5 V
	1		70	0.0 V							"	2.5 V						5.5 V	4.5 V
	I _{cc}	3005	71	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V		"		0.0 V	5.5 V					
2	Same to	ests, termina	al conditions	s, and limit	s as subgr	oup 1, exc	ept T _C = +	-125°C and	d V _{IC} tests	are omitte	ed.								
3			al conditions																
7	Func-	3014	72	Α	A	A	A	Α	Α	L	GND	L	Α	Α	Α	Α	Α	Α	<u>4</u> /
Tc = 25°C	tional	"	73	В	В	"	"	"	В	L	"	L	В	"	"	"	В	В	"
	test		74	"	"	"	"	"	Α	Н	"	Н	Α	"	"	"	В	"	"
	<u>3</u> /		75	"	"	"		В		L	"	L		В	"	"	Α	"	"
			76	"	"	"	"	Α		Н	"	Н		Α	"	"	Α	"	
			77	"	Α	"	В		"	L	"	L	"	"	В	"	В	"	"
			78	"	"	"	Α		"	Н	"	Н	"	"	Α	"	В	"	"
			79	"	"	В	"			L	"	L		-	"	В	Α	"	
			80	"	"	Α	"			Н	"	Н		"	"	Α	Α	"	
	1	"	81	Α	В	"		"	"	L	"	L	"	"	"	"	В	Α	
		"	82	"	В	"		"	"	"	"	"	"	"	"	"	Α	"	"
		"	83	"	Α	"	"	"	"		"	"	"	"	"	"	В	"	"
8			al conditions			bgroup 7,	except To	= +125°C											
9	t _{PLH1}	3003	84	0.0 V	0.0 V				IN	OUT	GND						0.0 V		5.0 V
$T_C = 25^{\circ}C$		Fig. 4	85	"	0.0 V			IN			"						2.7 V		"
		"	86	"	2.7 V		IN			"	"						0.0 V		"
		"	87	"	2.7 V	IN				"	"						2.7 V		"
		"	88		0.0 V						"	OUT	IN				0.0 V	0.0 V	"
		"	89		0.0 V						"			IN			2.7 V	"	"
		"	90		2.7 V						"				IN		0.0 V	"	"
		"	91		2.7 V						"	-				IN	2.7 V	"	"
	t _{PHL1}		92	0.0 V	0.0 V				IN	OUT	"						0.0 V		"
			93		0.0 V			IN			-						2.7 V		- "
			94		2.7 V		IN										0.0 V		"
			95	- "	2.7 V	IN											2.7 V		"
			96		0.0 V							OUT	IN	***			0.0 V	0.0 V	"
			97		0.0 V							-:-		IN			2.7 V	"	
1			98	ļ	2.7 V					ļ					IN		0.0 V		- "
	ĺ		99		2.7 V		l	1	l		. "	"	l	1		IN	2.7 V	"	

See footnotes at end of table.

29

TABLE III. $\underline{\text{Group A inspection for device type } 02}$ - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		$\overline{}$	0						_			_	40	4.4	40	40	- 44		1.0
		MIL-STD-	Cases E, F	1	2	3	4	5	6		8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883	Case 2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
	1	method	<u>1</u> /	<u> </u>	lı	lı	! ı	lı	! ı	! ı	ا <u></u>	l	' i	lı	<u> </u>	· ı	<u> </u>	<u> </u>	
,		1	Test no.	E a	S1	I3a	I2a	l1a	I0a	Za	GND	Zb	I0b	l1b	I2b	I3b	S0	Ē b	V _{CC}
9	t _{PLH5}	3003	100	IN	0.0 V	T i	,	T	2.7 V	OUT	GND		' i	T	T ,		0.0 V		5.0 V
T _C = 25°C		Fig. 4	101	t i	"	 	 	 	 	 -	"	OUT	2.7 V	 	 ,	T .	"	IN	"
,	t _{PHL5}	"	102	IN	"	Г ј	 1	Г ј	2.7 V	OUT		\sqcap	<u> </u>	Г 	 ,	 	"		"
,			103	\vdash	"	— і	 1	— і	 1	 ,		OUT	2.7 V	Г	 ,	 	"	IN	"
	t _{PLH3}	"	104	0.0 V	2.7 V	0.0 V	2.7 V	<u> </u>	<u> </u>	OUT			<u> </u>	<u> </u>	 ,		IN		
1 1	1 1	1 " 1	105		2.7 V	<u> </u>	''	<u> </u>	'i	·	"	OUT	'i	<u> </u>	2.7 V	0.0 V	IN	0.0 V	
1 1	1	1 " i	106	0.0 V	IN	2.7 V		0.0 V		OUT	"						2.7 V		
"	L1	l1	107		IN						"	OUT	'	0.0 V		2.7 V	2.7 V	0.0 V	"
"	t _{PHL3}	1	108	0.0 V	0.0 V			0.0 V	2.7 V	OUT	"						IN		"
1 1	1 1	I " լ	109		0.0 V							OUT	2.7 V	0.0 V			IN	0.0 V	"
1 .	1 1	I " լ	110	0.0 V	IN		0.0 V		2.7 V	OUT			'i				0.0 V		
L i	L1	l1	111		IN						"	OUT	2.7 V		0.0 V		0.0 V	0.0 V	"
10																			

Same tests and terminal conditions as subgroup 9, except T_C = +125°C and for the following limits. t_{PLH1} = 2.5 to 9.0 ns t_{PLH3} = 4.5 to 14.0 ns t_{PHL3} = 3.5 to 11.0 ns

t_{PLH5} = 4.5 to 11.5 ns $t_{PHL5} = 2.5 \text{ to } 9.0 \text{ ns}$

Same tests, terminal conditions and limits as for subgroup 10, except $T_C = -55^{\circ}C$.

- $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ I $_{\rm IL}$ limits shall be as follows:

I		Mir	n/Max limits i	n mA for circu	uit
	Test	Α	В	С	D
	I _{IL}	25/60	03/60	03/60	0.0/-0.30

- $\underline{3}/~$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/~$ Perform function sequence at V_CC = 4.5 V and repeat at V_CC = 5.5 V.

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

									(թ		,.ga.c.		, e g			٠, ٥. ٥			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Za	I0b	l1b	Zb	GND	Zd	I1d	l0d	Zc	I1c	I0c	Ē	V _{cc}
1	V _{OL}	3007	1	0.8 V	0.8 V	2.0 V	20 mA				GND							0.8 V	4.5 V
Tc = 25°C	VOL	3007	2	2.0 V	2.0 V	0.8 V	20 mA				UND							0.0 V	T.5 V
10 - 25 0			3	0.8 V	2.0 1	0.0 1	201101	0.8 V	2.0 V	20 mA								"	
			4	2.0 V				2.0 V	0.8 V	20 mA								"	
			5	0.8 V				2.0 V	0.0 V	2011174		20 mA	2.0 V	0.8 V				"	
			6	2.0 V								20 mA	0.8 V	2.0 V				"	
			7	0.8 V								20 1117	0.0 V	2.0 V	20 mA	2.0 V	0.8 V		
			8	2.0 V											20 mA	0.8 V	2.0 V		
	V _{OH}	3006	9	0.8 V	2.0 V	0.8 V	-1 mA								2011111	0.0 1	2.0 V	"	
	VOH	"	10	2.0 V	0.8 V	2.0 V	-1 mA											"	
			11	0.8 V	0.0 1	2.0 1		2.0 V	0.8 V	-1 mA								"	
		"	12	2.0 V				0.8 V	2.0 V	-1 mA		 					 	"	
		"	13	0.8 V				0.0.				-1 mA	0.8 V	2.0 V			 	"	
		"	14	2.0 V								-1 mA	2.0 V	0.8 V				"	"
			15	0.8 V											-1 mA	0.8 V	2.0 V	"	
			16	2.0 V											-1 mA	2.0 V	0.8 V	"	
	Vic		17	-18 mA															
	110		18		-18 mA														"
			19			-18 mA													
			20					-18 mA											
			21						-18 mA		"								"
			22								"		-18 mA						"
			23								"			-18 mA					"
			24													-18 mA			"
			25														-18 mA		
			26															-18 mA	"
	I _{IH1}	3010	27	2.7 V														4.5 V	5.5 V
		"	28	4.5 V	2.7 V													"	
		"	29	0.0 V		2.7 V												"	
			30	4.5 V				2.7 V										"	
		"	31	0.0 V					2.7 V										"
		"	32	0.0 V									2.7 V					"	"
		"	33	4.5 V										2.7 V				"	"
		"	34	0.0 V							"					2.7 V		"	"
		"	35	4.5 V							"						2.7 V	"	"
		"	36								"							2.7 V	"
	I _{IH2}	"	37	7.0 V							"							4.5 V	"
		"	38	4.5 V	7.0 V													"	"
		"	39	0.0 V		7.0 V												"	"
		"	40	4.5 V				7.0 V			"							"	"
		"	41	0.0 V					7.0 V		"							"	"
		"	42	0.0 V							"		7.0 V					"	"
		"	43	4.5 V										7.0 V				"	
		"	44	0.0 V												7.0 V		"	
		"	45	4.5 V							-						7.0 V	=	
		"	46															7.0 V	"

See footnotes at end of table.

TABLE III. <u>Group A inspection for device type 03</u>. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	I1a	Za	I0b	I1b	Zb	GND	Zd	l1d	I0d	Zc	I1c	I0c	Ē	V _{CC}
1	I _{IL1}	3009	47	0.5 V							GND								5.5 V
Tc = 25°C		"	48	0.0 V	0.5 V														"
		"	49	4.5 V		0.5 V													"
		"	50	0.0 V				0.5 V											"
		"	51	4.5 V					0.5 V										"
		"	52	4.5 V									0.5 V						"
		"	53	0.0 V										0.5 V					"
		"	54	4.5 V												0.5 V			"
		"	55	0.0 V													0.5 V		"
		"	56			0.0 V			0.0 V		"		0.0 V			0.0 V		0.5 V	"
	Ios	3011	57	0.0 V	4.5 V		0.0 V				-							0.0 V	"
	00	"	58					4.5 V		0.0 V									"
		"	59	"								0.0 V		4.5 V					"
		"	60	"											0.0 V		4.5 V		"
	I _{OD}		61				2.5 V											5.5 V	4.5 V
	-00		62							2.5 V								"	"
			63									2.5 V							"
			64												2.5 V				"
	Icc	3005	65	4.5 V	4.5 V	4.5 V		4.5 V	4.5 V				4.5 V	4.5 V		4.5 V	4.5 V	4.5 V	5.5 V
2		ests, termina					ept T _c = +			are omitte	ed.								
3		ests, termina																	
7	Func-	3014	66	Α	A	A	L	Α	Α	L	GND	L	Α	Α	L	Α	Α	Α	<u>4</u> /
Tc = 25°C	tional	"	67	В	"	Α	L		Α	L		L	Α	"	L	Α	"	Α	-
	test	"	68	В	"	В	Н		В	Н		Н	В	"	Н	В	"	В	
	<u>3</u> /	"	69	Α	"	В	L		В	L		L	В	"	L	В	"		
	_	"	70	В	В	Α	L	В	Α	L		L	Α	В	L	Α	В		
		"	71	Α	В	Α	Н	В	Α	Н		Н	Α	В	Н	Α	В	"	
8	Same to	ests, termina	al conditions	, and limits	s as for su	bgroup 7,	except T _C	= +125°C	and T _C =	-55°C.									
9	t _{PLH1}	3003	72	0.0 V	IN		OUT				GND							0.0 V	5.0 V
$T_C = 25^{\circ}C$		Fig. 4	73	2.7 V		IN	OUT												
		"	74	0.0 V				IN		OUT									
		"	75	2.7 V					IN	OUT	"							"	"
		"	76	2.7 V							"	OUT	IN					"	"
		"	77	0.0 V							"	OUT		IN				"	"
		"	78	2.7 V							"				OUT	IN		"	"
		"	79	0.0 V							"				OUT		IN	"	"
	t _{PHL1}	"	80	0.0 V	IN		OUT				"							"	"
		"	81	2.7 V		IN	OUT				"							"	"
		"	82	0.0 V				IN		OUT	-							"	"
		"	83	2.7 V					IN	OUT	"							"	"
		"	84	2.7 V							"	OUT	IN					"	"
		"	85	0.0 V								OUT		IN				"	"
		"	86	2.7 V							"				OUT	IN		"	"
		"	87	0.0 V							"				OUT		IN	"	"
	t _{PLH5}	"	88	2.7 V		2.7 V	OUT				"							IN	"
		"	89	"					2.7 V	OUT	"				1			"	"
		"	90	"							"	OUT	2.7 V			1	1	"	"
		"	91	"							"				OUT	2.7 V			"
				•	•				•		•			1		•			

See footnotes at end of table.

32

$\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

Cases E, F

Case 2

1/ Test no.

92

93

94

95

96

97 98

99

100

101 102

103

S

0.0 V

MIL-STD-

883 method

3003

Fig. 4

Subgroup

T_C = 25°C

10

Symbol

 t_{PLH3}

t_{PHL3}

	Mir	n/Max limits in	n mA for circu	uit
Test	Α	В	С	D
I _{IL}	25/60	03/60	03/60	0.0/-0.30

3

I0a

2.7 V

0.0 V

Same tests and terminal conditions as subgroup 9, except T_C = +125°C and use limits from table I.

5

Za

OUT

I0b

2.7 V

0.0 V

2.7 V 0.0 V

2.7 V

8

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

12

Zd

OUT

OUT

OUT

13

l1d

0.0 V

2.7 V

14

I0d

2.7 V

2.7 V

0.0 V

15

Zc

OUT

OUT

OUT

17

18

I0c

2.7 V

0.0 V

10

GND

GND

OUT

OUT

OUT

15

19

Ē

IN

0.0 V

20

 V_{CC}

5.0 V

- $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V. $\underline{5}/$ I_{OD} minimum limit for circuit D shall be 35 mA.

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

									- 11 -		9	,				, 1			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	– Z a	I0b	I1b	Z̄ b	GND	Z d	l1d	l0d	Ζ̄c	I1c	I0c	Ē	V _{CC}
1	V _{OL}	3007	1	0.8 V	2.0 V	0.8 V	20 mA				GND							0.8 V	4.5 V
Tc = 25°C		"	2	2.0 V	0.8 V	2.0 V	20 mA				"							"	
		"	3	0.8 V				2.0 V	0.8 V	20 mA	"							"	
		"	4	2.0 V				0.8 V	2.0 V	20 mA	"							"	
		"	5	0.8 V							"	20 mA	2.0 V	0.8 V				"	
		"	6	2.0 V							=	20 mA	0.8 V	2.0 V				"	
		"	7	0.8 V							"				20 mA	2.0 V	0.8 V	"	
		"	8	2.0 V							-				20 mA	0.8 V	2.0 V	"	
	V _{OH}	3006	9	0.8 V	0.8 V	2.0 V	-1 mA											"	
		"	10	2.0 V	2.0 V	0.8 V	-1 mA				=							"	
		"	11	0.8 V				0.8 V	2.0 V	-1 mA	"							"	
		"	12	2.0 V				2.0 V	0.8 V	-1 mA	"							"	
		"	13	0.8 V								-1 mA	0.8 V	2.0 V				"	
			14	2.0 V								-1 mA	2.0 V	0.8 V				"	
			15	0.8 V											-1 mA	0.8 V	2.0 V	"	
	.,,		16	2.0 V											-1 mA	2.0 V	0.8 V	"	
	V _{IC}		17 18	-18 mA	-18 mA						-								
			19 20			-18 mA		-18 mA			"								-
			21					-10 IIIA	-18 mA		- "								
			22 23								-		-18 mA	-18 mA					-
			24													-18 mA	40 4		
			25 26								"						-18 mA	-18 mA	
	I _{IH1}	3010	27	2.7 V							"							4.5 V	5.5 V
		"	28 29	4.5 V 0.0 V	2.7 V	2.7 V					"							"	-
		"	30	4.5 V		Z.1 V		2.7 V										"	
		"	31 32	0.0 V 0.0 V					2.7 V		"		2.7 V					"	-
			33	4.5 V										2.7 V		0.71/		"	
		"	34 35	0.0 V 4.5 V							-					2.7 V	2.7 V	"	
		"	36								"							2.7 V	
	I _{IH2}	"	37 38	7.0 V 4.5 V	7.0 V													4.5 V	
		"	39	0.0 V	7.U V	7.0 V					"							"	
		"	40 41	4.5 V 0.0 V				7.0 V	7.0 V		"							"	
		"	42	0.0 V									7.0 V	7.01/				"	
			43 44	4.5 V 0.0 V							-			7.0 V		7.0 V		"	-
		"	45	4.5 V							"						7.0 V	7.0 V	
			46															7.0 V	

See footnotes at end of table.

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	E, F	·	-	Ü	•	Ŭ	Ü	,			10		1.2	10		10	10
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Z a	I0b	l1b	Z b	GND	Z d	l1d	I0d	Ζc	I1c	I0c	Ē	V _{CC}
1	l _{II 1}	3009	47	0.5 V							GND								5.5 V
Tc = 25°C		"	48	0.0 V	0.5 V						"								"
		"	49	4.5 V		0.5 V					"								
		"	50	0.0 V				0.5 V			"								"
		"	51	4.5 V					0.5 V		"								"
		"	52	4.5 V							"		0.5 V						
		"	53	0.0 V										0.5 V					
		"	54	4.5 V												0.5 V			
		"	55	0.0 V							"						0.5 V		
		"	56								"		0.0 V			0.0 V		0.5 V	
	Ios	3011	57	0.0 V	0.0 V	4.5 V	0.0 V				"							0.0 V	"
		"	58	"				0.0 V	4.5 V	0.0 V	"							"	
		"	59	"							"	0.0 V	4.5 V	0.0 V				"	"
		"	60	"							"				0.0 V	4.5 V	0.0 V	"	
	I _{OD}		61	"	5.5 V		2.5 V											5.5 V	"
			62					5.5 V		2.5 V								"	
		ŀ	63								"	2.5 V		5.5 V				"	"
			64												2.5 V		5.5 V	"	"
	Icc	3005	65	4.5 V	4.5 V	4.5 V		4.5 V	4.5 V				4.5 V	4.5 V		4.5 V	4.5 V	4.5 V	
2	Same to	ests, termina	al conditions	, and limits	as subgr	oup 1, exc	ept T _C = +	-125°C and	d V _{IC} tests	are omitte	ed.								
3	Same to	ests, termina	al conditions	, and limits	as subgr	oup 1, exc	ept T _C = -	55°C and	V _{IC} tests a	are omitted	i.								
7	Func-	3014	66	Α	A	A	H	Α	А	Н	GND	Н	Α	Α	Н	Α	Α	Α	4/
Tc = 25°C	tional	"	67	В	"	Α	Н	"	Α	Н	"	Н	Α	"	Н	Α	"	Α	"
	test	"	68	В	"	В	L		В	L	"	L	В		L	В		В	"
	<u>3</u> /	"	69	Α		В	Н		В	Н	"	Н	В		Н	В			"
		"	70	В	В	Α	Н	В	Α	Н	"	Н	Α	В	Н	Α	В	"	"
		"	71	Α	В	Α	L	В	A	L	"	L	Α	В	L	Α	В	"	"
8	Same to		al conditions			bgroup 7,		= +125°C	and T _C =	-55°C.									
9	t _{PLH2}	3003	72	0.0 V	IN		OUT				GND							0.0 V	5.0 V

OUT

OUT

OUT

OUT

IN

IN

OUT

IN

IN

See footnotes at end of table.

2.7 V

0.0 V

2.7 V

2.7 V

0.0 V

2.7 V

75

77

78

OUT

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	– Z a	I0b	I1b	Z b	GND	Z d	l1d	I0d	Ζc	I1c	I0c	Ē	V _{CC}
9	t _{PHL2}	3003	80	0.0 V	IN		OUT				GND							0.0 V	5.0 V
T _C = 25°C		Fig. 4	81	2.7 V		IN	OUT												"
		"	82	0.0 V				IN		OUT									"
		"	83	2.7 V					IN	OUT	"							"	"
		"	84	2.7 V								OUT	IN						"
		"	85	0.0 V							"	OUT		IN				"	"
		"	86	2.7 V							"				OUT	IN			"
		"	87	0.0 V							"				OUT		IN		"
	t _{PLH6}	"	88	2.7 V		2.7 V	OUT				"							IN	"
		"	89						2.7 V	OUT	"								"
		"	90								"	OUT	2.7 V						"
		"	91								"				OUT	2.7 V			"
	t _{PHL6}	"	92	0.0 V	2.7 V		OUT				"								"
		"	93					2.7 V		OUT									"
		"	94								"	OUT		2.7 V					"
		"	95								"				OUT		2.7 V		"
	t _{PLH3}	"	96	IN	0.0 V	2.7 V	OUT				"							0.0 V	"
		"	97					0.0 V	2.7 V	OUT	"								"
		"	98								"	OUT	2.7 V	0.0 V					"
		"	99												OUT	2.7 V	0.0 V		"
	t _{PHL4}	"	100	"	2.7 V	0.0 V	OUT				"							"	"
		"	101					2.7 V	0.0 V	OUT	"								"
		"	102	"							"	OUT	0.0 V	2.7 V				"	"
		"	103								"				OUT	0.0 V	2.7 V		

 $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

	Min/Max limits in mA for circuit												
Test	Α	В	С	D									
In	25/60	03/60	03/60	0.0/-0.30									

 $\underline{3}/$ A = 2.5 V minimum, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

TABLE III. Group A inspection for device type 05. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

Γc = 25°C	V _{OL}	883 method 3007 " " " " " 3006	Case 2 1/ Test no. 1 2 3 4 5 6 7 8 9 10 11	2 3 	3 I2 2.0 V	4 I1 2.0 V	5 I0 2.0 V	7 Z	8 Z 20 mA	9 QE 0.8 V	10 GND GND	12 S2 0.8 V	13 S1 0.8 V	14 S0 0.8 V	15 17	17 I6	18 I5	19 I4	20 V _{CC} 4.5 V
Fc = 25°C			1 2 3 4 5 6 7 8 9 10					Z		0.8 V					17	16	15	14	
Fc = 25°C			2 3 4 5 6 7 8 9 10	2.0 V	2.0 V	2.0 V	2.0 V		20 mA	"	GND	0.8 V	0.8 V	0.8 V					4.5 V
	V _{ОН}	3006	3 4 5 6 7 8 9 10	2.0 V	2.0 V	2.0 V			"										
	V _{ОН}	3006	3 4 5 6 7 8 9 10	2.0 V	2.0 V				"			"	0.8 V	2.0 V					
	V _{OH}	3006	4 5 6 7 8 9 10	2.0 V								"	2.0 V	0.8 V					
_	V _{OH}	3006	6 7 8 9 10							"	"	"	2.0 V	2.0 V					"
_	V _{OH}	3006	7 8 9 10 11						"	"		2.0 V	0.8 V	0.8 V				2.0 V	"
	V _{OH}	3006	8 9 10 11						"			"	0.8 V	2.0 V			2.0 V		
_	V _{OH}	3006	9 10 11									-	2.0 V	0.8 V	0.01/	2.0 V			-
-	V _{OH}	3006	10 11				0.8 V	20 mA			-	0.8 V	2.0 V 0.8 V	2.0 V 0.8 V	2.0 V				-
	•он	"	11				2.0 V	-3.0 mA		0.8 V		0.8 V	0.8 V	0.8 V					
		"					0.8 V	0.0	-3.0 mA	"		"	"	0.8 V					
			12			0.01/								2.0 V					-
		"	13		0.8 V	0.8 V							2.0 V	0.8 V					-
		"	14	0.8 V	0.0 V								2.0 V	2.0 V					
		"	15	0.0 1					"	"		2.0 V	0.8 V	0.8 V				0.8 V	
		"	16						"	"	"	"	0.8 V	2.0 V			0.8 V		"
		"	17								"	"	2.0 V	0.8 V		0.8 V			
<u> </u>		"	18						"	"	-		2.0 V	2.0 V	0.8 V				
	V _{IC}		19 20	-18 mA	-18 mA														 -
			21		-18 IIIA	-18 mA													
			22			-10111/4	-18 mA												
			23							-18 mA									"
			24 25								-	-18 mA	-18 mA						-
			26										-10 IIIA	-18 mA					-
			27											1011111	-18 mA				
			28													-18 mA			
			29														-18 mA		
L			30															-18 mA	"
	I _{IH1}	3010	31	2.7 V						4.5 V		4.5 V	0.0 V	0.0 V					5.5 V
			32		2.7 V	271/						"	0.0 V	4.5 V					-
		"	33 34			2.7 V	2.7 V				-		4.5 V 4.5 V	0.0 V 4.5 V					-
		"	35				Z.1 V			2.7 V			4.5 V	4.5 V					-
			36								-:-	2.7 V	0.71/						- :-
		"	37 38								-		2.7 V	2.7 V					-
		"	39							4.5 V		0.0 V	0.0 V	0.0 V	2.7 V				
		"	40							7.0 V		" "	0.0 V	4.5 V	4.1 V	2.7 V			
		"	41									"	4.5 V	0.0 V			2.7 V		"
L		"	42								"		4.5 V	4.5 V				2.7 V	"
	I_{IH2}	"	43	7.0 V	7.5.1							4.5 V	0.0 V	0.0 V					
			44		7.0 V	701/							0.0 V	4.5 V					
		"	45 46			7.0 V	7.0 V				-		4.5 V 4.5 V	0.0 V 4.5 V					-
		"	47		1	1	7.0 V	1	1	7.0 V			7.J V	7.J V					-
		_																	<u> </u>
			48									7.0 V	701/						<u> </u>
		"	49				-		-				7.0 V	7.0 V					- "
		"	50 51								-	0.0 V	0.0 V	7.0 V 0.0 V	7.0 V				-
		"	52				 		 			U.U V	0.0 V	4.5 V	7.U V	7.0 V			-
		"	53									"	4.5 V	0.0 V		7.0 0	7.0 V		
		"	54									"	4.5 V	4.5 V				7.0 V	

See footnotes at end of table.

TABLE III. Group A inspection for device type 05.

						Ta	rminal						a hiah >		<u>.oo</u> . ow ≤ 0.8	V or or	nen)		
	1		Cases	1	2	3		5	6 (Piris	7	8	I IIIay b	e nign ∠ I 10	2.0 V, I	0W ≤ 0.6 12	13	14	15	16
		MIL-STD-	E, F	1	2	3	4	5	b	7	δ	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	13	I2	I1	10	Z	z	QE	GND	S2	S1	S0	17	16	15	14	V _{CC}
1	I _{IL}	3009	55	0.5 V						0.0 V	GND	0.0 V	4.5 V	4.5 V					5.5 V
Tc = 25°C	-IL	"	56		0.5 V					"	"	"	4.5 V	0.0 V					"
			57			0.5 V							0.0 V	4.5 V					
			58			0.0 1	0.5 V						0.0 V	0.0 V					
		"	59				0.0 1			0.5 V	"		0.0 1	0.0 1					"
			60							0.0 V	"	0.5 V							
			61										0.5 V						
			62											0.5 V					
			63							0.0 V		4.5 V	4.5 V	4.5 V	0.5 V				
			64										4.5 V	0.0 V		0.5 V			
			65										0.0 V	4.5 V			0.5 V		
			66									"	0.0 V	0.0 V			1 /	0.5 V	
	I _{OZH}		67				0.0 V	2.7 V		4.5 V	"	0.0 V	0.0 V	0.0 V					
	-OZH		68				4.5 V		2.7 V	"	"	"	"	"					"
	I _{OZL}		69				4.5 V	0.5 V		"									
	OZE		70				0.0 V		0.5 V	"	"	"	"	"					"
	Ios	3011	71				4.5 V	0.0 V		0.0 V	"			"					
	00	3011	72				0.0 V		0.0 V	"		"	"	"					"
	I _{OD}		73				0.0 V	2.5 V		"									4.5 V
	OD		74				5.5 V		2.5 V	"									4.5 V
	Icc	3005	75	4.5 V	4.5 V	4.5 V	4.5 V					4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V
	I _{CCZ}	3005	76	4.5 V	4.5 V	4.5 V	4.5 V			4.5 V		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V
3	Same te	ests, termina	al conditions	, and limit	s as subgr	oup 1, exc	cept I _C = +	-125°C an	d V _{IC} tests	are omitt	ed.								
7	Func-		al conditions								GND	В	В	В	В	В	В	В	1 4/
	tional	3014	77 78	B	B B	B A	A B	H	L "	B	GND "	В :	В	A	В "		_ B	B	<u>4</u> /
Tc = 25°C			78			В	В.							В				-	-
	test		80		A	В	-			-			A		-	-		-	-
	<u>3</u> /		80	A B	B	-				-		^	A B	A B		-			-
			82	D								A	В				А	A B	
			83		-	-	-	-	-		-			A B		^	В	B	-
			84										A A	A	Α	A B	В	"	-
			85	Α	Α	Α		L	Н			В	В	В		A	A	Α	
			86	A	A	В		"	"			- D	В	A		- A	- A	A	
			87		В	A		"	"				A	В					
			88	В	A	- "		"	"				A	A				"	
			89	A	- ~			"	"			Α	В	В				В	
			90	A				"	"			- A	A	В		В		D #	
			90					"	"				A		В	D ::		"	
			91					"	"				В	A	В		В	"	
8	Samo to	ete tormine	al conditions	and limit	e as for au	haroun 7	ovcont T	_ +12F°C	L and T -	55°C	l	ı	D		_ 0	1	D	ı	1
9		3003	93	, and milli	5 d5 101 SU	ibgroup 7,	IN	OUT	anu ic=	0.0 V	GND	0.0 V	0.0 V	0.0 V		1	1		5.0 V
_	t _{PLH1}		93		1	IN	IIN	001		U.U V	UND "	0.0 V	0.0 V	2.7 V	1	1	1		3.0 V
Tc = 25°C		Fig. 4		<u> </u>	18.1	IIN		-		-		-				 	1		-
			95	INI	IN	!		-		-			2.7 V	0.0 V	1	1	1		<u> </u>
1			96	IN		<u> </u>		<u> </u>		<u> </u>			2.7 V	2.7 V		<u> </u>		IN.	-
			97		1	!		-		-	- "	2.7 V	0.0 V	0.0 V		1	Įk i	IN	-
			98	 	!	!		-		-		-	0.0 V	2.7 V	1	INI	IN		<u> </u>
			99		1	!		-		-	-	-	2.7 V	0.0 V	INI	IN	1		-

TABLE III. Group A inspection for device type 05. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

									(թ		J. 9. 1410 C	a,	<u> </u>	, .		٠, ٠. ٠٢	, .		
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	13	I2	I1	10	Z	Z	QE	GND	S2	S1	S0	17	16	15	14	V _{CC}
9	t _{PHL1}	3003	101				IN	OUT		0.0 V	GND	0.0 V	0.0 V	0.0 V					5.0 V
Tc = 25°C	PHLI	Fig. 4	102			IN		"		"	"	"	0.0 V	2.7 V					"
10-20 0		g	103		IN								2.7 V	0.0 V					
			104	IN									2.7 V	2.7 V					
			105					"				2.7 V	0.0 V	0.0 V				IN	
			106					"					0.0 V	2.7 V			IN		
			107					"					2.7 V	0.0 V		IN			
			108										2.7 V	2.7 V	IN				
	t _{PLH2}	"	109				IN		OUT	"		0.0 V	0.0 V	0.0 V					"
			110			IN			"	"		"	0.0 V	2.7 V					"
			111		IN							"	2.7 V	0.0 V					"
		"	112	IN					"	"			2.7 V	2.7 V					"
		"	113									2.7 V	0.0 V	0.0 V				IN	"
		"	114							"			0.0 V	2.7 V			IN		"
		"	115										2.7 V	0.0 V		IN			
		"	116							=		"	2.7 V	2.7 V	IN				
	t _{PHL2}		117				Z					0.0 V	0.0 V	0.0 V					-
			118			IN						"	0.0 V	2.7 V					-
			119		IN							"	2.7 V	0.0 V					
			120	IN						"	-	"	2.7 V	2.7 V					"
		"	121									2.7 V	0.0 V	0.0 V				IN	"
		"	122							•		"	0.0 V	2.7 V			IN		"
		"	123									"	2.7 V	0.0 V		IN			"
			124									"	2.7 V	2.7 V	IN				
	t _{PLH3}		125		0.71/	2.7 V	0.0 V	OUT		-		0.0 V	0.0 V	IN			ļ		- "
		i i	126		2.7 V		- :	-		-	- :	0.0 V	IN O O V	0.0 V			1	0.7.1/	
	-	-	127 128		 	0.0 V	2.7 V			-	-	0.0 V	0.0 V 0.0 V	0.0 V IN			1	2.7 V	-
	t _{PHL3}		128		0.0 V	0.0 V	Z./ V	-				0.0 V	IN	0.0 V			 		-
			130		0.0 V							IN	0.0 V	0.0 V			†	0.0 V	-
	t _{PLH4}	"	131			0.0 V			OUT			0.0 V	0.0 V	IN				0.0 V	
			132		0.0 V							0.0 V	IN	0.0 V					
			133									IN	0.0 V	0.0 V				0.0 V	
	t _{PHL4}	"	134		İ	2.7 V	0.0 V		"	"		0.0 V	0.0 V	IN					"
			135		2.7 V							0.0 V	IN	0.0 V					"
			136									IN	0.0 V	0.0 V				2.7 V	

TABLE III. Group A inspection for device type 05.

Terminal conditions	(pins not designated may	be high $\geq 2.0 \text{ V}$	$ low \le 0.8 \text{ V} low \ge 0.$	pen).
---------------------	--------------------------	------------------------------	--	-------

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	13	12	I1	10	Z	Z	QE	GND	S2	S1	S0	17	16	15	14	V _{CC}
9	t _{PZH5}	3003	137				2.7 V	OUT		IN	GND	0.0 V	0.0 V	0.0 V					5.0 V
Tc = 25°C	t _{PZH6}	Fig. 4	138				0.0 V		OUT	"	"	"	"	"					"
	t _{PZL5}	"	139				0.0 V	OUT			"	"	"						"
	t _{PZL6}	"	140				2.7 V		OUT		"		"						"
	t _{PHZ5}	"	141				2.7 V	OUT			"	"	"						"
	t _{PHZ6}	"	142				0.0 V		OUT		"	"	"						"
	t _{PLZ5}	"	143				0.0 V	OUT			"	"	"	"					"
	t _{PLZ6}	"	144				2.7 V		OUT		"	"	"						"
10	Cama t		nainal aandisi		h averus O	awaant T	.40500	a a d f a u 4 h	a fallousina	limita				l.					•
		esis and ien t _{PI H1} = 2.5 t	minal conditi		t _{PLH3} = 3.5				to 8.5 ns		+ -20) to 5.5 ns							
		$t_{PLH1} = 2.5 \text{ t}$ $t_{PLH2} = 2.5 \text{ t}$			$t_{PLH3} = 3.5$ $t_{PLH4} = 3.5$	to 14.0 II	•		to 7.0 ns			to 6.0 ns							
		$t_{PHL1} = 3.5 t_{PHL1}$			$t_{PHI3} = 3.0$				to 9.0 ns		$t_{PLZ5} = 1.0$								
		$t_{PHL2} = 3.0 \text{ t}$			$t_{PHL3} = 3.0$				to 7.5 ns		$t_{PLZ6} = 1.0$								
11			l conditions								1 120								
					000	3 10;		-50.											

- $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

	Min/Max I	imits in mA f	or circuit
Test	Α	В	С
- In	- 25/- 60	- 03/- 60	- 03/- 60

- $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Za	I0b	l1b	Zb	GND	Zd	l1d	I0d	Zc	I1c	I0c	ŌĒ	V _{cc}
1	V _{OL}	3007	1	0.8 V	0.8 V	2.0 V	20 mA				GND							0.8 V	4.5 V
Tc = 25°C	OL.	"	2	2.0 V	2.0 V	0.8 V	20 mA											"	
			3	0.8 V				0.8 V	2.0 V	20 mA								"	
			4	2.0 V				2.0 V	0.8 V	20 mA								"	
		"	5	0.8 V							"	20 mA	2.0 V	0.8 V				"	"
		"	6	2.0 V							"	20 mA	0.8 V	2.0 V				"	"
		"	7	0.8 V											20 mA	2.0 V	0.8 V	"	
			8	2.0 V											20 mA	0.8 V	2.0 V	"	
	V _{OH}	3006	9	0.8 V	2.0 V	0.8 V	-3 mA				"							"	"
	0	"	10	2.0 V	0.8 V	2.0 V	-3 mA				"							"	"
		"	11	0.8 V				2.0 V	0.8 V	-3 mA								"	
		"	12	2.0 V				0.8 V	2.0 V	-3 mA								"	
		"	13	0.8 V								-3 mA	0.8 V	2.0 V				"	
		"	14	2.0 V								-3 mA	2.0 V	0.8 V				"	
		"	15	0.8 V											-3 mA	0.8 V	2.0 V	"	
		"	16	2.0 V							=				-3 mA	2.0 V	0.8 V	"	
	Vic		17	-18 mA							-								
			18		-18 mA						-								
			19			-18 mA					"								
			20					-18 mA											"
			21						-18 mA		"								"
			22										-18 mA						"
			23											-18 mA					"
			24													-18 mA			"
			25								-						-18 mA		
			26								"							-18 mA	
	I _{IH1}	3010	27	2.7 V							"							4.5 V	5.5 V
		"	28	4.5 V	2.7 V													"	"
		"	29	0.0 V		2.7 V					"							"	
		"	30	4.5 V				2.7 V										"	"
		"	31	0.0 V					2.7 V									"	
			32	0.0 V							-		2.7 V					"	
			33	4.5 V							-			2.7 V				"	
			34	0.0 V							-:-					2.7 V		"	
			35	4.5 V													2.7 V		
		"	36															2.7 V	
	I _{IH2}	"	37	7.0 V														4.5 V	
	·Inz		38	4.5 V	7.0 V													"	
			39	0.0 V		7.0 V												"	
		"	40	4.5 V				7.0 V								İ	Ì	"	"
		"	41	0.0 V					7.0 V							İ	Ì	"	"
		"	42	0.0 V							"		7.0 V					"	"
		"	43	4.5 V							"			7.0 V				"	"
		"	44	0.0 V							"					7.0 V		"	"
		"	45	4.5 V							"						7.0 V	"	
		"	46								"							7.0 V	"
	l	l		l	1	L	<u> </u>	l	l	l		1		L		1	1	l	l

$$\label{eq:table_equation} \begin{split} & \text{TABLE III. } \underline{\text{Group A inspection for device type 06}}. \\ & \text{Terminal conditions (pins not designated may be high} \geq 2.0 \text{ V; low} \leq 0.8 \text{ V; or open)}. \end{split}$$

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
		mounou	Test no.	S	I0a	l1a	Za	I0b	I1b	Zb	GND	Zd	l1d	I0d	Zc	I1c	I0c	ŌE	V _{CC}
1	I _{IL1}	3009	47	0.5 V							GND								5.5 V
Tc = 25°C	'IL1	3003	48	0.0 V	0.5 V						UND "								3.5 V
10 - 23 0			49	4.5 V	0.5 V	0.5 V					-								
			50	0.0 V		0.5 V		0.5 V			-								
			51	4.5 V				0.0 1	0.5 V		-								"
			52	4.5 V					0.0 ¥				0.5 V						"
		"	53	0.0 V									0.0 1	0.5 V					"
		"	54	4.5 V										0.0 1		0.5 V			"
		"	55	0.0 V							-					0.0 1	0.5 V		"
		"	56	0.0 1							"						0.0 1	0.5 V	"
	Ios	3011	57	0.0 V	4.5 V		0.0 V				-							0.0 V	"
	105	"	58	0.0 V	7.0 V		0.0 v	4.5 V		0.0 V								U.U V	"
		"	59	"				7.0 V		0.0 ¥		0.0 V		4.5 V					"
		"	60	"								0.0 7			0.0 V		4.5 V		"
	I _{OD}		61	0.0 V	0.0 V		2.5 V												4.5 V
	-05		62					0.0 V		2.5 V									"
			63									2.5 V		0.0 V					"
			64												2.5 V		0.0 V	"	"
	I _{OZH}		65	4.5 V	4.5 V	4.5 V	2.7 V				"							2.0 V	5.5 V
	OZII		66	"				4.5 V	4.5 V	2.7 V									"
			67	"								2.7 V	4.5 V	4.5 V					"
			68	"											2.7 V	4.5 V	4.5 V		"
	I _{OZL}		69	0.0 V	0.0 V	4.5 V	0.5 V												"
	OLL		70	"				0.0 V	4.5 V	0.5 V	"								"
			71	"								0.5 V	4.5 V	0.0 V					"
			72	"											0.5 V	4.5 V	0.0 V		"
	I _{CCH}	3005	73	4.5 V	0.0 V	4.5 V		0.0 V	4.5 V				4.5 V	0.0 V		4.5 V	0.0 V	0.0 V	"
	I _{CCL}	3005	74	0.0 V	0.0 V	0.0 V		0.0 V	0.0 V		-		0.0 V	0.0 V		0.0 V	0.0 V	0.0 V	
	I _{CCZ}	3005	75	0.0 V	0.0 V	0.0 V		0.0 V	0.0 V		"		0.0 V	0.0 V		0.0 V	0.0 V	4.5 V	"
2		ests, termina																	
3		ests, termina					$ept T_C = -$			re omitted				,					
7	Func-	3014	76	Α	Α	В	L	Α	В	L	GND	L	В	Α	L	В	A	В	<u>4</u> /
Tc = 25°C	tional	"	77	"	В	В	L	В	В	L	"	L	В	В	L	В	В		"
	test		78	"	В	Α	Н	В	Α	Н	"	Н	Α	В	Н	Α	В	"	"
	<u>3</u> /		79		Α	Α	Н	Α	Α	Н	"	Н	Α	Α	Н	Α	Α		
			80	B	В	Α	L	В	Α	L	- "	L	A	В	L	A	В		-
			81		В	В	L	В	В	L	-	L	В	В	L	В	В		
		"	82	"	A	В	Н	A	В	H	-	Н	В	A	H	В	A	-	
	_	L <u>.</u>	83	L	A	Α	H	A	A	H		Н	Α	Α	Н	Α	Α		
8		ests, termina				pgroup 7,		= +125°C	and I _C =	: -55°C.	ONE					1		0.01/	L 5 0 1
9	t _{PLH1}	3003	84	0.0 V	IN	INI	OUT				GND "	1				1		0.0 V	5.0 V
$T_C = 25^{\circ}C$		Fig. 4	85	2.7 V		IN	OUT	L		OUT							1		
			86	0.0 V				IN	IN I	OUT	-:-	1				<u> </u>	1		
		"	87	2.7 V					IN	OUT	-	OUT	INI	!		1	 		-
		"	88	2.7 V							-	OUT	IN	INI		1		-	-
		"	89	0.0 V 2.7 V							-	001		IN	OUT	INI		-	-
			90 91	0.0 V								1			OUT	IN	INI		
1	l	1	91	U.U V	1	l	l	1	l	1	ı	1	1	1	001	1	IN	1	

TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	I1a	Za	I0b	l1b	Zb	GND	Zd	l1d	I0d	Zc	I1c	I0c	ŌE	V _{CC}
9	t _{PHL1}	3003	92	0.0 V	IN		OUT				GND							0.0 V	5.0 ∖
c = 25°C		Fig. 4	93	2.7 V		IN	OUT				"							"	"
-			94	0.0 V				IN		OUT								"	"
		"	95	2.7 V					IN	OUT	=							"	
			96	2.7 V							"	OUT	IN					"	
			97	0.0 V							-	OUT		IN					-
			98	2.7 V											OUT	IN		-	- "
		"	99 100	0.0 V IN	0.0 V	2.7 V	OUT								OUT		IN	-	-
	t _{PLH3}		101	IIN "	0.0 V	2.7 V	001	0.0 V	2.7 V	OUT						 			-
			102					0.0 V	Z.1 V	001		OUT	2.7 V	0.0 V		-			-
		"	103	"								001	2.7 V	0.0 1	OUT	2.7 V	0.0 V	"	
	t _{PHL3}	"	104		2.7 V	0.0 V	OUT											"	
		"	105	"				2.7 V	0.0 V	OUT								"	"
			106								-	OUT	0.0 V	2.7 V				"	
		"	107	"											OUT	0.0 V	2.7 V	"	"
	t _{PZH5}	"	108	0.0 V	2.7 V		OUT											IN	"
		"	109	"				2.7 V		OUT	-								"
		"	110								"	OUT		2.7 V					"
		"	111								"				OUT		2.7 V	"	"
	t _{PZL5}	"	112	2.7 V		0.0 V	OUT				"							"	"
			113						0.0 V	OUT								"	"
		"	114	"							"	OUT	0.0 V						"
		"	115	"							"				OUT	0.0 V			"
	t _{PHZ5}	"	116	"		2.7 V	OUT				"								"
		"	117	"					2.7 V	OUT	"								"
		"	118	"								OUT	2.7 V					"	"
		"	119	"							"				OUT	2.7 V			"
	t _{PLZ5}	"	120	0.0 V	0.0 V		OUT				"								"
		"	121	"				0.0 V		OUT	"								"
			122	"								OUT		0.0 V				"	
		"	123	"											OUT		0.0 V		"

 $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ I $_{\rm IL}$ limits shall be as follows:

	Mir	n/Max limits in	n mA for circ	uit
Test	Α	В	С	D
I _{IL}	25/60	03/60	03/60	0.0/-0.30

 $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

TABLE III. Group A inspection for device type 07. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Z a	I0b	l1b	Z b	GND	Z d	l1d	l0d	Ζc	I1c	I0c	OE OE	V _{CC}
1	V _{OL}	3007	1	0.8 V	2.0 V	0.8 V	20 mA				GND							0.8 V	4.5 V
Tc = 25°C		"	2	2.0 V	0.8 V	2.0 V	20 mA				-							"	"
		"	3	0.8 V				2.0 V	0.8 V	20 mA	"							"	"
		"	4	2.0 V				0.8 V	2.0 V	20 mA								"	"
		"	5	0.8 V							-	20 mA	0.8 V	2.0 V V				"	
		"	6	2.0 V								20 mA	2.0 V V	0.8 V				"	"
		"	7	0.8 V											20 mA	0.8 V	2.0 V	"	"
		"	8	2.0 V							"				20 mA	2.0 V	0.8 V	"	"
	V _{OH}	3006	9	0.8 V	0.8 V	2.0 V	-3 mA				"							"	"
		"	10	2.0 V	2.0 V	0.8 V	-3 mA											"	"
		"	11	0.8 V				0.8 V	2.0 V	-3 mA								"	"
		"	12	2.0 V				2.0 V	0.8 V	-3 mA	"							"	"
		"	13	0.8 V								-3 mA	2.0 V	0.8 V				"	"
		"	14	2.0 V							"	-3 mA	0.8 V	2.0 V				"	"
		"	15	0.8 V							"				-3 mA	2.0 V	0.8 V	"	"
		"	16	2.0 V											-3 mA	0.8 V	2.0 V	"	"
	V _{IC}		17	-18 mA	40. 4														
			18 19		-18 mA	-18 mA					-								
			20					-18 mA			-								"
			21 22						-18 mA		-		-18 mA						- "
			23										-1011174	-18 mA					"
			24								-					-18 mA			"
			25 26								-						-18 mA	-18 mA	
	I _{IH1}	3010	27 28	2.7 V 4.5 V	2.7 V													4.5 V	5.5 V
		"	29	0.0 V	2.7 V	2.7 V												"	
		"	30	4.5 V				2.7 V										"	"
		"	31	0.0 V					2.7 V		"							"	"
			32	0.0 V							-		2.7 V	0.71/				"	-
		,,	33 34	4.5 V 0.0 V								-		2.7 V		2.7 V		"	- "
		"	35	4.5 V												Z.1 V	2.7 V	"	
		"	36															2.7 V	
	I _{IH2}	"	37	7.0 V														4.5 V	
	·Inz	"	38	4.5 V	7.0 V													"	"
		"	39	0.0 V		7.0 V					"							"	"
		"	40	4.5 V				7.0 V			"							"	"
		"	41 42	0.0 V					7.0 V				701/	-				"	
		"	42	0.0 V 4.5 V			-						7.0 V	7.0 V		1		"	
		"	44	0.0 V										7.0 V		7.0 V		"	
		"	45	4.5 V							-						7.0 V	"	"
		"	46								"							7.0 V	"
		toc at and	1 -4 4-1-1-								1								

TABLE III. <u>Group A inspection for device type 07.</u>
Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Z̄ a	I0b	l1b	Z̄ b	GND	Z̄ d	l1d	I0d	Ζ̄c	I1c	I0c	ŌE	V _{CC}
1	I _{II 1}	3009	47	0.5 V							GND								5.5 V
Tc = 25°C			48	0.0 V	0.5 V						"								"
			49	4.5 V		0.5 V					"								"
			50	0.0 V				0.5 V			"								"
			51	4.5 V					0.5 V		"								"
			52	4.5 V							"		0.5 V						"
			53	0.0 V							"			0.5 V					"
			54	4.5 V							"					0.5 V			"
			55	0.0 V							"						0.5 V		"
		"	56								"							0.5 V	
	Ios	3011	57	0.0 V	0.0 V	4.5 V	0.0 V				"							0.0 V	"
		"	58					0.0 V	4.5 V	0.0 V	"							"	"
1		"	59	"							"	0.0 V	4.5 V	0.0 V					"
		"	60								"				0.0 V	4.5 V	0.0 V	"	"
	I _{OD}		61		5.5 V		2.5 V				"							"	4.5 V
			62					5.5 V		2.5 V	"							"	"
			63	"							"	2.5 V		5.5 V					"
			64								"				2.5 V		5.5 V	"	"
	I _{OZH}		65		4.5 V	4.5 V	2.7 V				"							2.0 V	5.5 V
			66					4.5 V	4.5 V	2.7 V	"								"
			67								"	2.7 V	4.5 V	4.5 V				"	"
			68								"				2.7 V	4.5 V	4.5 V	"	"
	I _{OZL}		69	4.5 V	4.5 V	0.0 V	0.5 V				"								"
			70					4.5 V	0.0 V	0.5 V	"								
			71								"	0.5 V	0.0 V	4.5 V					
			72	"							"				0.5 V	0.0 V	4.5 V		"
	I _{CCH}	3005	73	0.0 V	0.0 V	0.0 V		0.0 V	0.0 V		"		0.0 V	0.0 V		0.0 V	0.0 V	0.0 V	"
	I _{CCL}	3005	74	4.5 V	0.0 V	4.5 V		0.0 V	4.5 V		"		4.5 V	0.0 V		4.5 V	0.0 V	0.0 V	"
	Icc	3005	75	0.0 V	0.0 V	0.0 V		0.0 V	0.0 V		"		0.0 V	0.0 V		0.0 V	0.0 V	4.5 V	"
2			al conditions																
3			al conditions				ept T _C = -			re omitted						,	,	_	
7	Func-	3014	76	В	A	В	L	A	В	<u> </u>	GND	<u>L</u>	В	A	<u> </u>	В	A	В	4/
Tc = 25°C			77	-	A	A	L	A	A	L	- "	L	A	A	L	A	A		
	test		78		В	A	H	В	A	H	-:-	H	A	В	H	A	В		⊢ ;⊢
	<u>3</u> /		79 80		B A	B B	-	B A	B B			-	B B	В		B B	В		
			80	Α "	B	В		B	В	-			В	A B	-	В	A B		-
			82		В	A	1	В	A	L		L	A	В		A	В		
			83		A	A	-	A	A	<u> </u>		L	A	A	L	A	A		-
8	Same to	ests termina	al conditions	and limits													, ,,		
	Jame to	2013, IGITIII IC	ai conditions	, and mille	5 43 IUI 3U	ogroup 1,	onoopi I	, = +123 C	and ic-	. 55 0.									-

TABLE III. Group A inspection for device type 07. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	S	I0a	l1a	Z a	I0b	l1b	Z b	GND	Z d	l1d	I0d	Ζc	I1c	I0c	ŌE	V _{CC}
9	t _{PLH2}	3003	84	0.0 V	IN		OUT				GND							0.0 V	5.0 V
T _C = 25°C		Fig. 4	85	2.7 V		IN	OUT				"							"	"
		"	86	0.0 V				IN		OUT	"							"	"
		"	87	2.7 V					IN	OUT	"								
		"	88	2.7 V							"	OUT	IN						"
		"	89	0.0 V							"	OUT		IN				"	
		"	90	2.7 V							"				OUT	IN		"	
			91	0.0 V							=				OUT		IN		"
	t _{PHL2}	"	92	0.0 V	IN		OUT				=								
		"	93	2.7 V		IN	OUT				-								
		"	94	0.0 V				IN		OUT	"								"
		"	95	2.7 V					IN	OUT	"							"	"
		"	96	2.7 V							-	OUT	IN					"	"
			97	0.0 V							-	OUT		IN				•	
			98	2.7 V											OUT	IN			
			99	0.0 V											OUT		IN		
	t _{PLH4}		100	IN	2.7 V	0.0 V	OUT											IN	
			101					2.7 V	0.0 V	OUT	-	OLIT.	0.01/	0.71/					
			102 103								-	OUT	0.0 V	2.7 V	OUT	0.0 V	2.7 V		
			103		0.0 V	2.7 V	OUT								001	0.0 V	2.7 V		
	t _{PHL4}		104		0.0 V	2.7 V	001	0.0 V	2.7 V	OUT								"	
			106					0.0 V	2.7 V	001		OUT	2.7 V	0.0 V				"	
			107								"	001	Z.1 V	0.0 V	OUT	2.7 V	0.0 V	"	
	t _{PZH6}		107	0.0 V	0.0 V		OUT								001	2.7 V	0.0 V		
	*PZH6		109	0.0 1	0.0 1			0.0 V		OUT								"	
								0.0 V		001		OUT		0.0 V					
			110									001		0.0 V	OUT		0.01/		
			111												OUT		0.0 V	"	
	t _{PZL6}	"	112	2.7 V		2.7 V	OUT				"							"	"
		"	113	"					2.7 V	OUT	•							*	"
		"	114	"							"	OUT	2.7 V					"	"
		"	115	"							"				OUT	2.7 V		"	"

46

$\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

Cases E, F

Case 2

Test no.

116

118 119

120

121

122

123

MIL-STD-883

method

3003

Fig. 4

Symbol

 $t_{\text{PHZ}6}$

 t_{PLZ6}

Subgroup

T_C = 25°C

10

11

	Mir	n/Max limits in	n mA for circu	uit
Test	Α	В	С	D
I _{IL}	25/60	03/60	03/60	0.0/-0.30

Same tests and terminal conditions as subgroup 9, except $T_C = +125^{\circ}C$ and use limits from table I.

2

3

I0a

0.0 V

4

l1a

2.7 V

5

¯ Z a

OUT

I0b

0.0 V

2

S

0.0 V

2.7 V

TABLE III. Group A inspection for device type 07. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

12

 \overline{Z} d

OUT

OUT

13

l1d

2.7 V

10

GND

GND

6

8

l1b

2.7 V

9

₹ b

OUT

OUT

11

14

I0d

0.0 V

12

15

 \overline{Z} c

OUT

OUT

13

17

I1c

2.7 V

14

18

I0c

0.0 V

15

19

ŌE

IN

16

20

 V_{CC}

5.0 V

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

 $[\]underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

TABLE III. Group A inspection for device type 08. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

						- 1	Jiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ooriaitio	no (pinc	Tiol do	Jigiliatot	a illiay k	o mgm =	2.0 V, IV	JW <u>= 0.0</u>	v, or op	,011).		
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883	Case 2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
		method	1/ Test no.	-	S1	l3a	I2a	l1a	I0a	Za	GND	Zb	I0b	l1b	I2b	l3b	S0		V _{CC}
	.,			OE a														OE b	
1	V _{OH}	3006	1	0.8 V	0.8 V			0.01/	2.0 V	-3 mA	GND						0.8 V		4.5 V
Tc = 25°C			2		0.8 V		0.01/	2.0 V									2.0 V		
			<u>3</u>	"	2.0 V	2.0 V	2.0 V			- "		1					0.8 V		
			5		2.0 V 0.8 V	2.0 V						-3 mA	2.0 V				2.0 V 0.8 V	0.8 V	
			6		0.8 V							-3 IIIA	2.0 V	2.0 V			2.0 V	U.O V	
			7		2.0 V						"			2.0 V	2.0 V		0.8 V	"	
			8		2.0 V										2.0 V	2.0 V	2.0 V	"	
	V _{OL}	3007	9	0.8 V	0.8 V				0.8 V	20 mA	"					2.0 V	0.8 V		"
	OL.	"	10	"	0.8 V			0.8 V		"	"						2.0 V		"
		"	11	"	2.0 V		0.8 V				"						0.8 V		"
		"	12	"	2.0 V	0.8 V					"						2.0 V		
			13		0.8 V						"	20 mA	0.8 V				0.8 V	0.8 V	"
		"	14		0.8 V						"	"		0.8 V			2.0 V	"	"
			15		2.0 V						"	"			0.8 V		0.8 V	"	
	L	"	16	40 :	2.0 V		1				- "			1		0.8 V	2.0 V		
	V _{IC}		17	-18 mA															"
			18		-18 mA						"								"
			19			-18 mA					"								"
			20				-18 mA				- "								
			21					-18 mA	40. 4		-:-								- "
			22 23						-18 mA		-		40 1						
			24				-						-18 mA	-18 mA					
			25											-10 IIIA	-18 mA				
			26												-10 IIIA	-18 mA			
			27								"					-10 IIIA	-18 mA		
			28								"						1011111	-18 mA	"
	I _{IH1}	3010	29	2.7 V															5.5 V
			30		2.7 V						"								"
		"	31		0.0 V	2.7 V					"						0.0 V		
		"	32		0.0 V		2.7 V				"						4.5 V		"
			33		4.5 V			2.7 V			"	ļ				ļ	0.0 V		
	1		34		"		<u> </u>	ļ	2.7 V		- "	<u> </u>	0.7.1/				4.5 V		
		,	35 36	1	"	1	1	1	-	1	-	1	2.7 V	2711		1	4.5 V		- "
			36	1	0.0 V	1	1	1	-	1		1		2.7 V	2.7 V	1	0.0 V 4.5 V		
			38		0.0 V										Z.1 V	2.7 V	0.0 V		
			39		0.0 V		1				"					2.1 V	2.7 V		
		"	40								"							2.7 V	"
	I _{IH2}	"	41	7.0 V						1	"					<u> </u>			"
			42		7.0 V														"
		"	43		0.0 V	7.0 V											0.0 V		"
		"	44		0.0 V		7.0 V				"						4.5 V		"
		"	45		4.5 V			7.0 V			"						0.0 V		"
		"	46		"				7.0 V		"						4.5 V		"
	1	"	47		"						"		7.0 V				4.5 V		"
		"	48		"						"			7.0 V			0.0 V		"
		"	49		0.0 V						"				7.0 V		4.5 V		"
			50		0.0 V						"					7.0 V	0.0 V		"
		. "	51		1		1		ļ		- "	1		1		ļ	7.0 V	-	"
	1	"	52						1		"		1					7.0 V	_ "
							1							1					

TABLE III. Group A inspection for device type 08 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883	Case 2	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
3		method	<u>1</u> /																
			Test no.	OE a	S1	l3a	I2a	l1a	I0a	Za	GND	Zb	I0b	l1b	I2b	I3b	S0	OE b	V _{cc}
1	I _{IL1}	3009	53	0.5 V							GND								5.5 V
Tc = 25°C			54		0.5 V						"								
10 - 23 0			55		4.5 V	0.5 V					"						4.5 V		
			56		4.5 V	0.0 1	0.5 V				"						0.0 V		
			57		0.0 V		0.0 1	0.5 V			"						4.5 V		"
			58		"				0.5 V		"						0.0 V		
			59		"						"		0.5 V				0.0 V		"
			60		"						"			0.5 V			4.5 V		"
			61		4.5 V						"				0.5 V		0.0 V		"
			62		4.5 V						"					0.5 V	4.5 V		"
			63								"						0.5 V		"
		"	64				_		-		"			_		_		0.5 V	"
	Ios	3011	65	0.0 V	0.0 V				4.5 V	0.0 V	"						0.0 V		"
		3011	66		0.0 V						"	0.0 V	4.5 V				"	0.0 V	"
	I _{OD}		67	0.0 V	0.0 V				0.0 V	2.5 V	-						-	0.0 V	4.5 V
			68	0.0 V	0.0 V						-	2.5 V	0.0 V					0.0 V	4.5 V
	I _{OZH}		69	2.0 V	0.0 V				0.0 V	2.7 V	"								5.5 V
			70		0.0 V						"	2.7 V	0.0 V					2.0 V	"
	I _{OZL}		71	2.0 V	4.5 V	4.5 V				0.5 V	"						4.5 V		
			72		4.5 V						"	0.5 V				4.5 V	4.5 V	2.0 V	
	I _{CCL}	3005	73	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V		"		0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	"
	I _{CCH}	3005	74	0.0 V	0.0 V	4.5 V	0.0 V	0.0 V	4.5 V		"		4.5 V	0.0 V	0.0 V	4.5 V	0.0 V	0.0 V	"
	I _{CCZ}	3005	75	4.5 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V		"		0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	4.5 V	
2		ests, termina									d.								
3		ests, termina									0110			_		-			
7	Func-	3014	76	В	В	В	В	В	В	L	GND	L	В	В	В	В	В	В	<u>4</u> /
Tc = 25°C			77		"			В	A	H		Н	Α	В			В		
	test		78		- "	- "		В	В	L		L.	B	В		- :	A		
	<u>3</u> /		79 80	- "		- "	- "	A B		H	- "	H L	-	A B	- "	- "	A B	- "	
			81		A		Α	B #		H		H		В	A		В		-
			82	"	"	-	В			L	"	L		-	В	,	A	"	-
			83	"	"	Α	В			H	"	H		"	В	Α	A	"	
8	Same t	ests, termina		and limits	s as for su			= +125°C	and T _C =		l		l .	1				l .	1
9	t _{PI H1}	3003	84	0.0 V	0.0 V	. J 1 ,		1	IN	OUT	GND						0.0 V		5.0 V
T _C = 25°C		Fig. 4	85	"	0.0 V			IN									2.7 V		
		"	86	"	2.7 V		IN			"							0.0 V		"
		"	87	"	2.7 V	IN				"	"						2.7 V		"
		"	88		0.0 V						"	OUT	IN				0.0 V	0.0 V	"
		"	89		0.0 V						"	"		IN			2.7 V	"	"
		"	90		2.7 V						-	-			IN		0.0 V	"	"
		"	91		2.7 V							"				IN	2.7 V	"	"
	t _{PHL1}	"	92	0.0 V	0.0 V				IN	OUT							0.0 V		"
		"	93	"	0.0 V			IN		"							2.7 V		"
		"	94	"	2.7 V		IN			"							0.0 V		"
		"	95	"	2.7 V	IN				"	-						2.7 V		"
		"	96		0.0 V							OUT	IN				0.0 V	0.0 V	"
			97		0.0 V									IN			2.7 V	"	"
			98		2.7 V							-			IN		0.0 V	"	- "
	1	. "	99		27 V								ī			IN	27 V		

TABLE III. Group A inspection for device type 08 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).

		MIL-STD-	E, F																
Subgroup S	Symbol	883 method	Case 2 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
		moulou	Test no.	OE a	S1	I3a	I2a	I1a	I0a	Za	GND	Zb	l0b	I1b	I2b	I3b	S0	OE b	V _{CC}
9	t _{PLH3}	3003	100	0.0 V	0.0 V			2.7 V	0.0 V	OUT	GND						IN	02 2	5.0 V
_C = 25°C	*PLH3	Fig. 4	101	0.0 1	0.0 V			Z.7 V	0.0 V	001	"	OUT	0.0 V	2.7 V			IN	0.0 V	"
0 - 23 0		g	102	0.0 V	IN		2.7 V		0.0 V	OUT			0.0 1	•			0.0 V	0.0 1	"
			103	0.0	IN							OUT	0.0 V		2.7 V		0.0 V	0.0 V	"
	t _{PHL3}	"	104	0.0 V	0.0 V			0.0 V	2.7 V	OUT	"						IN		"
		"	105		0.0 V							OUT	2.7 V	0.0 V			IN	0.0 V	"
		"	106	0.0 V	IN		0.0 V		2.7 V	OUT	"						0.0 V		"
L		"	107		IN							OUT	2.7 V		0.0 V		0.0 V	0.0 V	"
	t _{PZH5}	"	108	IN	2.7 V	2.7 V				OUT							2.7 V		"
		"	109		2.7 V						"	OUT				2.7 V	2.7 V	IN	"
	t _{PZL5}	"	110	IN	0.0 V				0.0 V	OUT							0.0 V		"
		"	111		0.0 V						"	OUT	0.0 V				0.0 V	IN	"
	t _{PHZ5}	"	112	IN	2.7 V	2.7 V				OUT	"						2.7 V		"
		"	113		2.7 V						"	OUT				2.7 V	2.7 V	IN	"
	t _{PLZ5}	"	114	IN	0.0 V				0.0 V	OUT	"						0.0 V		"
		"	115		0.0 V						"	OUT	0.0 V				0.0 V	IN	"

 $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ I $_{\rm IL}$ limits shall be as follows:

	Mir	n/Max limits in	n mA for circu	uit
Test	Α	В	С	D
I _{IL}	25/60	03/60	03/60	0.0/-0.30

 $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C

TABLE III. <u>Group A inspection for device type 09</u>. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	E a	S1	I3a	I2a	l1a	I0a	_ Z a	GND	Z b	I0b	l1b	I2b	l3b	S0	Ē b	V _{cc}
1	V _{OH}	3006	1	2.0 V						-1 mA	GND								4.5 V
Tc = 25°C		"	2	0.8 V	0.8 V				0.8 V								0.8 V		
		"	3	"	0.8 V			0.8 V		"	"						2.0 V		"
		"	4	"	2.0 V		0.8 V			"							0.8 V		"
		"	5		2.0 V	0.8 V											2.0 V		
		"	6								"	-1 mA						2.0 V	"
		"	7		0.8 V							"	0.8 V				0.8 V	0.8 V	"
		"	8		0.8 V							"		0.8 V			2.0 V	"	
			9		2.0 V						"	"			0.8 V		0.8 V	"	-
		2007	10	0.8 V	2.0 V				2.0 V	20 mA	-:-	- "				0.8 V	2.0 V 0.8 V		
	V _{OL}	3007	11	0.8 V	0.8 V				2.0 V										
			12	"	0.8 V			2.0 V			-						2.0 V		"
		i i	13		2.0 V 2.0 V	2.0 V	2.0 V				- ;						0.8 V 2.0 V		-
		"	14 15		0.8 V	2.0 V						20 mA	2.0 V				0.8 V	0.8 V	
		,	16		0.8 V									2.0 V			2.0 V	"	
			17		2.0 V									2.0 V	2.0 V		0.8 V		
			18		2.0 V										2.0 V	2.0 V	2.0 V	"	
	Vic		19	-18 mA	2.0 1											2.0 1	2.0 1		
			20		-18 mA														
			21		-101117	-18 mA													
			22				-18 mA												
			23					-18 mA											
			24						-18 mA										"
			25								-:-		-18 mA	40. 4					
			26 27								-			-18 mA	-18 mA				-
			28												-18 IIIA	-18 mA			
			29													1011111	-18 mA		
			30															-18 mA	
	I _{IH1}	3010	31	2.7 V															5.5 V
			32		2.7 V														
		"	33	4.5 V	0.0 V	2.7 V						1					0.0 V		
		"	34	"	0.0 V		2.7 V										4.5 V		
		"	35	"	4.5 V			2.7 V			"						0.0 V		"
		"	36	"	"				2.7 V		-						4.5 V		"
			37		"								2.7 V				4.5 V	4.5 V	-
		i i	38		0.0 V						- ;			2.7 V	2.7 V		0.0 V	- "	
			39 40		0.0 V										2.7 V	2.7 V	4.5 V 0.0 V		
		"	41		0.0 V											Z.1 V	2.7 V		
		"	42								"							2.7 V	"
	I _{IH2}	"	43	7.0 V							"								
			44		7.0 V														
		"	45	4.5 V	0.0 V	7.0 V											0.0 V		
		"	46	"	0.0 V		7.0 V										4.5 V		"
		"	47	"	4.5 V			7.0 V									0.0 V		
		"	48	"	4.5 V				7.0 V			<u> </u>					4.5 V		"

TABLE III. Group A inspection for device type 09 - Continued.

						T	erminal						evice typ oe high ≥				nen)		
			Cases	1	2	3	4	5	6 6	7	8	9	10	11	12	13	14	15	16
		MIL-STD-	E, F																
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	Ē a	S1	l3a	l2a	l1a	I0a	– Z a	GND	_ Z b	I0b	I1b	I2b	l3b	S0	Ē b	V _{cc}
1	I _{IH2}	3010	49		4.5 V						GND		7.0 V				4.5 V	4.5 V	5.5 V
Tc = 25°C			50		4.5 V						"			7.0 V			0.0 V		
			51		0.0 V						"				7.0 V		4.5 V		
			52		0.0 V											7.0 V	0.0 V		
			53								"						7.0 V		
			54															7.0 V	
	I _{IL1}	3009	55	0.5 V							"								"
			56		0.5 V						"								
			57	0.0 V	4.5 V	0.5 V					"						4.5 V		"
			58	-	4.5 V		0.5 V	0.51:		ļ		ļ				1	0.0 V		<u> </u>
			59	- "	0.0 V			0.5 V	0.517		- '-	ļ				1	4.5 V		
			60		-				0.5 V	-	-	1	0.5.17			-	0.0 V	0.01/	
			61 62	-	-	-		-			-	 	0.5 V	0.5 V		-	0.0 V 4.5 V	0.0 V	-
			62	 	4.5 V	 	-	 	-	 	-	 		V.5 V	0.5 V	 	4.5 V 0.0 V	-	-
			64		4.5 V										0.5 V	0.5 V	4.5 V		
			65		7.5 V											0.5 V	0.5 V		
			66								"						0.5 V	0.5 V	
	Ios	3011	67	0.0 V	0.0 V				0.0 V	0.0 V	"						0.0 V		
		3011	68		0.0 V						"	0.0 V	0.0 V				0.0 V	0.0 V	"
	I _{OD}		69	0.0 V	0.0 V				5.5 V	2.5 V							0.0 V		4.5 V
			70		0.0 V						"	2.5 V	5.5 V				0.0 V	0.0 V	4.5 V
	I _{CCH}	3005	71	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V		-		0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	5.5 V
	I _{CCL}	3005	72	0.0 V	0.0 V	4.5 V	4.5 V	4.5 V	4.5 V		<u> </u>		4.5 V	4.5 V	4.5 V	4.5 V	0.0 V	0.0 V	5.5 V
3			al conditions																
7	Func-	3014	al conditions								GND		Α .	Λ .	Ι Λ	Ι Δ	۸.	Ι Λ	4/
Tc = 25°C	tional	3014	73 74	A B	A B	A	Α "	A	A B	H	UND "	H	A B	A A	Α "	Α "	A B	A B	<u>4</u> /
10 = 25-0	test		75	_ D	 "			A	A	-		L	A	A			В	B #	
	3/		76					В	A	Н		Н	- A	В			A		
	<u>J</u>		77					A		L'		L'	"	A		"	A		
			78		Α		В	- "		H		Н	"	- "	В	"	В		
			79	"		"	A	"	"	L.	"	Ŀ	"	"	A	"	В		
			80	"	"	В	A	"	"	H	"	H	"	"	A	В	A		"
			81	"	"	A	Α	"	"	L	"	L	"	"	Α	A	Α		
			82	Α	В	В	В	В	В	Н	"	Н	В	В	В	В	В	Α	"
			83	В	"	"	"	"	В	Н	"	Н	В	"	"	"	В	В	"
		"	84	"	"	"	"	"	Α	L	"	L	Α	"	"	"	В	"	"
		"	85	"	"	"	"	"	В	Н	"	Н	В	"	"	"	Α	"	"
		"	86		"	"	"	Α	"	L	"	L	В	Α	-	"	Α		
			87	"	Α	"	"	В	"	Н	"	Н	"	В	"	"	В	"	"
			88				Α			L		L	"		Α	"	В		
			89 90	"	-	Α	B B	-	-	H L	"	H L	"	-	B B	Α	A A		
8	Same to	ests, termina	al conditions	s, and limit	s as for su		_	= +125°C	and To =	-55°C.				•				•	•
9	t _{PLH2}	3003	91	0.0 V	2.7 V	IN				OUT	GND						2.7 V		5.0 V
T _C = 25°C		Fig. 3	92	"	2.7 V		IN			"	"						0.0 V		"
			93	"	0.0 V			IN		"	"						2.7 V		"
			94	"	0.0 V				IN	"	"						0.0 V		

TABLE III. Group A inspection for device type 09 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	E a	S1	l3a	I2a	l1a	I0a	_ Z a	GND	Z b	I0b	l1b	I2b	I3b	S0	Ē b	V _{CC}
9	t _{PLH2}	3003	95		0.0 V						"	OUT	IN				0.0 V	0.0 V	5.0 V
T _C = 25°C		Fig. 4	96		0.0 V						"	"		IN			2.7 V	"	"
		"	97		2.7 V						"	"			IN		0.0 V		"
		"	98		2.7 V						"	"				IN	2.7 V	"	"
	t _{PHL2}	"	99	0.0 V	2.7 V	IN				OUT	"						2.7 V		"
		"	100	"	2.7 V		IN			"	"						0.0 V		"
		"	101	"	0.0 V			IN		"	"						2.7 V		"
		"	102	"	"				IN	"	"						0.0 V		"
		"	103		"						"	OUT	IN				0.0 V	0.0 V	"
		"	104		"						"	"		IN			2.7 V	"	"
		"	105		2.7 V						"	"			IN		0.0 V	"	"
		"	106		2.7 V						"	"				IN	2.7 V	"	"
	t _{PLH4}	"	107	0.0 V	2.7 V	2.7 V	0.0 V			OUT	"						IN		"
		"	108		2.7 V						"	OUT			0.0 V	2.7 V	IN	0.0 V	"
		"	109	0.0 V	IN	0.0 V		2.7 V		OUT	"						2.7 V		"
		"	110		IN						"	OUT		2.7 V		0.0 V	2.7 V	0.0 V	"
	t _{PHL4}	"	111	0.0 V	0.0 V			2.7 V	0.0 V	OUT	"						IN		"
		"	112		0.0 V						"	OUT	0.0 V	2.7 V			IN	0.0 V	"
		"	113	0.0 V	IN		2.7 V		0.0 V	OUT	"						0.0 V		"
		"	114		IN						"	OUT	0.0 V		2.7 V		0.0 V	0.0 V	"
	t _{PLH6}	"	115	IN	0.0 V				2.7 V	OUT	"						0.0 V		"
		"	116		"						"	OUT	2.7 V					IN	"
	t _{PHL6}	"	117	IN	"				2.7 V	OUT	"						"		"
		"	118		"						"	OUT	2.7 V					IN	"
10		ests and ten t _{PLH2} = 2.0 to t _{PLH4} = 3.5 to t _{PLH6} = 3.5 to	o 9.0 ns o 14.5 ns o 17.0 ns		$t_{PHL2} = 1.5$ $t_{PHL4} = 3.5$ $t_{PHL6} = 3.5$	to 7.5 ns to 15.0 ns to 13.0 ns	S S		e following	limits.									

 $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

	Min/Max	limits in mA	for circuit
Test	Α	В	С
IIL	25/60	03/60	03/60

Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

 $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

TABLE III. Group A inspection for device type 10. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

							Jiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ooriaitio	no (pine	Thou doe	ngnato		o mgm =			v , o. o.			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	OE a	S1	l3a	l2a	l1a	I0a	_ Z a	GND	Z b	l0b	l1b	l2b	I3b	S0	OE b	V _{cc}
1	V _{OH}	3006	1	0.8 V	0.8 V				0.8 V	-3 mA	GND						0.8 V		4.5 V
Tc = 25°C			2	"	0.8 V			0.8 V									2.0 V		
10-20 0			3	"	2.0 V		0.8 V	0.0 1		"							0.8 V		
			4	"	2.0 V	0.8 V											2.0 V		
		"	5		0.8 V							-3 mA	0.8 V				0.8 V	0.8 V	
		"	6		0.8 V									0.8 V			2.0 V	"	
		"	7		2.0 V						"	"			0.8 V		0.8 V	"	
		"	8		2.0 V						"					0.8 V	2.0 V	"	
	V _{OL}	3007	9	0.8 V	0.8 V				2.0 V	20 mA	"						0.8 V		
		"	10	"	0.8 V			2.0 V		"							2.0 V		
		" "	11	"	2.0 V		2.0 V										0.8 V		"
		"	12 13		2.0 V 0.8 V	2.0 V					-	20 ^	2.0 V				2.0 V	0.8 V	
								<u> </u>	<u> </u>			20 mA	2.0 V				0.8 V	U.8 V	
		"	14		0.8 V						"	"		2.0 V			2.0 V	"	
			15		2.0 V										2.0 V	ļ.,,,,	0.8 V		
			16	40 4	2.0 V						-:-					2.0 V	2.0 V	"	-
	V _{IC}		17	-18 mA															
			18		-18 mA						"								
			19			-18 mA					"								
			20				-18 mA												
			21 22					-18 mA	-18 mA			1							
			23						-10 IIIA				-18 mA						
			24										-101117	-18 mA					
			25												-18 mA				
			26													-18 mA			-
			27														-18 mA		-
			28								"							-18 mA	
	I _{IH1}	3010	29	2.7 V															5.5 V
			30		2.7 V														
		"	31	4.5 V	0.0 V	2.7 V					"						0.0 V		"
		"	32	"	0.0 V		2.7 V	0 = 1 /			"	ļ					4.5 V		"
		"	33 34	- "	4.5 V	1	1	2.7 V	2.7 V		- "	<u> </u>		-		1	0.0 V 4.5 V		
			35	-	"	1			2.1 V	-		 	2.7 V				4.5 V	4.5 V	
		"	36		"								Z.1 V	2.7 V			0.0 V	T.5 V	
		"	37		0.0 V							1			2.7 V		4.5 V	"	
		"	38		0.0 V						"					2.7 V	0.0 V	"	"
		"	39														2.7 V		
		"	40								"							2.7 V	"
	I _{IH2}	"	41	7.0 V							"								"
		"	42		7.0 V														
		"	43	4.5 V	0.0 V	7.0 V					"						0.0 V		"
		"	44	"	0.0 V		7.0 V				"						4.5 V		
			45	- "	4.5 V		1	7.0 V	7.01/			 				1	0.0 V		
	l		46		4.5 V	1]		7.0 V							J	4.5 V		

TABLE III. Group A inspection for device type 10 - Continued.

						Τe	erminal						evice typ oe high ≥				pen).		
			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		MIL-STD-	E, F				·			-									
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	OE a	S1	l3a	I2a	l1a	I0a	Z a	GND	Z b	I0b	l1b	I2b	I3b	S0	OE b	V _{cc}
1	I _{IH2}	3010	47		4.5 V						GND		7.0 V				4.5 V	4.5 V	5.5 V
Tc = 25°C		"	48		4.5 V						-			7.0 V			0.0 V		
		"	49		0.0 V						-				7.0 V		4.5 V	-	"
		"	50		0.0 V						-					7.0 V	0.0 V	"	"
		"	51														7.0 V		"
		"	52															7.0 V	
	I _{IL}	3009	53	0.5 V							"								"
		"	54		0.5 V						=								
		"	55	0.0 V	4.5 V	0.5 V					"						4.5 V		-
		"	56	-	4.5 V		0.5 V				-						0.0 V		
			57		0.0 V			0.5 V	17		-			ļ		ļ	4.5 V		
			58	"	- "				0.5 V		- "		0.51/				0.0 V	0.017	- "
		Ţ,	59		- :							1	0.5 V	0.5.1	1	1	0.0 V	0.0 V	-
			60 61		4.5 V									0.5 V	0.5 V		4.5 V 0.0 V	-	
			62		4.5 V										0.5 v	0.5 V	4.5 V		
			63		4.0 V											0.0 1	0.5 V		
			64								"						0.0 1	0.5 V	"
	I _{OZH}		65	2.0 V	0.0 V				2.0 V	2.7 V							0.0 V		"
			66		"						"	2.7 V	2.0 V				"	2.0 V	"
	I _{OZL}		67	2.0 V	"				0.8 V	0.5 V							"		"
			68									0.5 V	0.8 V				"	2.0 V	"
	Ios		69	0.0 V	0.0 V				0.0 V	0.0 V							"		"
			70		0.0 V							0.0 V	0.0 V				"	0.0 V	"
	I_{OD}		71	0.0 V	0.0 V				5.5 V	2.5 V	"						"		4.5 V
			72		0.0 V							2.5 V	5.5 V				"	0.0 V	4.5 V
	I _{CCH}		73	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V				0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	5.5 V
	I _{CCL}		74	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	4.5 V		-		4.5 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	
2	I _{CCZ}	ete tormine	75 al conditions	4.5 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	aro omitto	"		0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	4.5 V	"
3			al conditions																
7	Func-	3014	76	B B	B as subgr	B B	:еріт _с = -:	B	B B	H	GND	Н	В	В	В	В	В	В	4/
Tc = 25°C	tional	"	77	-	,	-	,	В	A	L	"	L	A	В	-	"	В	-	"
	test		78	"		"		В	В	H		H	В	В		"	A	"	"
	<u>3</u> /	"	79	"	"	"		A		L	"	L	"	A		"	Α		
	_	"	80	"	Α	"		В	"	Н	"	Н	"	В	"	"	В	"	"
		"	81			"	Α			L		L	"	"	Α	"	В	"	
		"	82			"	В			Н		Н		- "	В	"	A		"
			83		= 6	A	В	"		L.		L		-	В	A	A		- "
			84	-	B	- 1	A	A		H		Н		A	A	B	В		-
			85 86		-			A B	Α	H	-	H	Α "	A B		- "	B A		
			87			"		A		L		L		A		-	A		
			88		Α		В	"		Н		Н		7	В	-	В		
			89		"		A			L		L	"		A	"	В	"	"
		"	90	"		В	A			H		H	"		A	В	A	"	"
			91		"	Α	Α	"		L	"	L	"		Α	Α	Α	"	
8	Same te	sts, termina	al conditions	, and limits	s as for su	pgroup 7,	except T _c	; = +125°C	and T _C =	-55°C.									

TABLE III. Group A inspection for device type 10 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	OE a	S1	l3a	l2a	l1a	I0a	Z a	GND	Z b	I0b	l1b	I2b	I3b	S0	OE b	V _{CC}
9	t _{PLH2}	3003	92	0.0 V	2.7 V	IN				OUT	GND						2.7 V		5.0 V
T _C = 25°C		Fig. 4	93		2.7 V		IN				"						0.0 V		
			94		0.0 V			IN			"						2.7 V		
			95		"				IN		"						0.0 V		
			96		"						"	OUT	IN				0.0 V	0.0 V	
			97		"						"			IN			2.7 V	"	
			98		2.7 V						"	"			IN		0.0 V	"	
			99		2.7 V						"					IN	2.7 V	"	
	t _{PHL2}		100	0.0 V	2.7 V	IN				OUT	"						2.7 V		"
			101	"	2.7 V		IN			"	"						0.0 V		"
			102		0.0 V			IN			"						2.7 V		"
			103		"				IN		"						0.0 V		"
			104		"						"	OUT	IN				0.0 V	0.0 V	"
			105		"						"			IN			2.7 V	"	
			106		2.7 V						"	"			IN		0.0 V		"
			107		2.7 V						"	"				IN	2.7 V		"
	t _{PLH4}		108	0.0 V	2.7 V	2.7 V	0.0 V			OUT	"						IN		
			109		2.7 V						"	OUT			0.0 V	2.7 V	IN	0.0 V	"
			110	0.0 V	IN	0.0 V		2.7 V		OUT	"						2.7 V		"
			111		IN						"	OUT		2.7 V		0.0 V	2.7 V	0.0 V	
	t _{PHL4}		112	0.0 V	0.0 V			2.7 V	0.0 V	OUT	"						IN		"
			113		0.0 V						"	OUT	0.0 V	2.7 V			IN	0.0 V	"
			114	0.0 V	IN		2.7 V		0.0 V	OUT	"						0.0 V		"
			115		IN						"	OUT	0.0 V		2.7 V		"	0.0 V	"
	t _{PLZ6}	"	116	IN	0.0 V				2.7 V	OUT	"						"		"
			117		"						"	OUT	2.7 V				"	IN	
	t _{PHZ6}		118	IN	"				0.0 V	OUT	"						"		
			119		"							OUT	0.0 V			1		IN	

TABLE III. Group A inspection for device type 10 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20
			Test no.	OE a	S1	l3a	l2a	l1a	I0a	Z̄ a	GND	_ Z b	l0b	l1b	I2b	l3b	S0	OE b	V _{cc}
9	t _{PZL6}	3003	120	IN	0.0 V				2.7 V	OUT	GND						0.0 V		5.0 V
T _C = 25°C		Fig. 4	121		"						"	OUT	2.7 V				"	IN	"
	t _{PZH6}	"	122	IN	"				0.0 V	OUT	"						"		"
			123		"						"	OUT	0.0 V				"	IN	"
10	Same tests and terminal conditions as subgroup 9, except $T_C = +125^{\circ}C$ and for the following limits. $t_{PLH2} = 1.5$ to 9.0 ns $t_{PHL2} = 1.5$ to 7.5 ns $t_{PLZ6} = 2.0$ to 8.5 ns $t_{PZL6} = 3.5$ to 15.5 ns $t_{PZL6} = 3.0$ to 11.0 ns																		
11	Same te	sts, termina	l conditions	and limits	as for sub	group 10,	except T _C	= -55°C.											

 $\underline{1}/$ For case 2 pins not referenced are N/C. $\underline{2}/$ $I_{\rm IL}$ limits shall be as follows:

	Min/Max limits in mA for circuit							
Test	Α	В	С					
In	25/60	03/60	03/60					

 $\underline{3}/$ A = 2.5 V, B = 0.5 V. H \geq 1.5 V, L \leq 1.5 V. $\underline{4}/$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime-VQ, P.O. Box, Columbus, Ohio 43218-3990.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IN}	Voltage level at an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type			
01	54F151A			
02	54F153			
03	54F157A			
04	54F158A			
05	54F251A			
06	54F257A			
07	54F258A			
08	54F253			
09	54F352			
10	54F353			

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designations.

	Circuits								
Device	А	В	С	D					
type	National Semiconductor/	Motorola Inc.	Signetics	Texas					
	Fairchild Semiconductor		Corp.	Instruments					
01	X	X							
02	X	X		X					
03	X			X					
04	X								
05	X	X							
06	X			X					
07	X								
08	X	X		Х					
09		X							
10		X							

MIL-M-38510/339E

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

CONCLUDING MATERIAL

Custodians: Army - CR Navy - EC Air Force - 85 DLA - CC Preparing activity: DLA Land and Maritime- CC

(Project 5962-2011-001)

Review activities:

Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.daps.dla.mil.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by E2v manufacturer:

Other Similar products are found below:

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G

NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG

HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962
8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE

PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG

M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8

QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ)

74VHC4066AFT(BJ) 74VHCT138AFT(BJ)