## Description

- Six winding, surface mount devices that offer more than 500 usable inductor or transformer configurations
- High power density and low profile
- Low radiated noise and tightly coupled windings
- Power range from 1 Watt - 70 Watts
- Frequency range to over 1 MHz
- 500 VAC Isolation
- Ferrite core material


## Applications

- Inductors: buck, boost, coupled, choke, filter, resonant, noise filtering, differential, forward, common mode
- Transformers: flyback, feed forward, push-pull, multiple output, inverter, step-up, step-down, gate drive, base drive, wide band, pulse, control, impedance, isolation, bridging, ringer, converter, auto


## Environmental Data

- Storage temperature range: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Operating ambient temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (range is application specific). The internal "hot spot" temperature defines the maximum allowable currents, which are limited to $130^{\circ} \mathrm{C}$, including ambient
- Solder reflow temperature: $+260^{\circ} \mathrm{C}$ max for 10 seconds max.

| Part ${ }^{(1)}$ Number | $\begin{gathered} \text { L(BASE) } \\ \mu \mathrm{H} \\ (\text { NOM })^{(2)} \end{gathered}$ | Isat(base) Amps (TYP) ${ }^{(3)(4)}$ | Irms(base) Amps (TYP) ${ }^{(3)(5)}$ | R(bASE) Ohms (max) ${ }^{(6)}$ | $\begin{gathered} \text { Volt }-\mu \mathrm{SEC}(\mathrm{BASE}) \\ \mu \mathrm{Vs} \\ (\mathrm{MAX})^{(\tau)} \end{gathered}$ | $\begin{gathered} \text { EPEAK(BASE) } \\ \mu \mathrm{J} \\ (\mathrm{TYP})^{(8)} \\ \hline \end{gathered}$ | Leakage Inductance (BASE) $\mu \mathrm{H}$ (TYP) | Thermal Resistance ${ }^{\circ} \mathrm{C} /$ Watt (TYP) ${ }^{(9)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VPH1-1400-R ${ }^{(10)}$ | 201.6+/-30\% | 0.04 | 0.55 | 0.344 | 32.9 | 0.11 | 0.212 | 60.7 |
| VP1-1400-R ${ }^{(10)}$ | 89.6 +/-30\% | 0.06 | 0.85 | 0.145 | 21.8 | 0.11 | 0.096 | 60.7 |
| VPH1-0190-R | 27.4 +/-20\% | 0.29 | 0.55 | 0.344 | 32.9 | 0.77 | 0.212 | 60.7 |
| VP1-0190-R | $12.2+/-20 \%$ | 0.43 | 0.85 | 0.145 | 21.8 | 0.77 | 0.096 | 60.7 |
| VPH1-0102-R | 14.7+/-20\% | 0.53 | 0.55 | 0.344 | 32.9 | 1.45 | 0.212 | 60.7 |
| VP1-0102-R | $6.5+/-20 \%$ | 0.80 | 0.85 | 0.145 | 21.8 | 1.45 | 0.096 | 60.7 |
| VPH1-0076-R | 10.9+/-20\% | 0.72 | 0.55 | 0.344 | 32.9 | 1.92 | 0.212 | 60.7 |
| VP1-0076-R | $4.9+/-20 \%$ | 1.06 | 0.85 | 0.145 | 21.8 | 1.92 | 0.096 | 60.7 |
| VPH1-0059-R | $8.5+/-20 \%$ | 0.92 | 0.55 | 0.344 | 32.9 | 2.48 | 0.212 | 60.7 |
| VP1-0059-R | $3.8+/-20 \%$ | 1.37 | 0.85 | 0.145 | 21.8 | 2.48 | 0.096 | 60.7 |
| VPH2-1600-R ${ }^{(10)}$ | $160+/-30 \%$ | 0.07 | 0.95 | 0.159 | 48.3 | 0.29 | 0.165 | 44.0 |
| VP2-1600-R ${ }^{(00)}$ | $78.4+/-30 \%$ | 0.10 | 1.26 | 0.090 | 33.7 | 0.29 | 0.083 | 44.0 |
| VPH2-0216-R | $21.6+/-20 \%$ | 0.53 | 0.95 | 0.159 | 48.3 | 2.11 | 0.165 | 44.0 |
| VP2-0216-R | $10.6+/-20 \%$ | 0.76 | 1.26 | 0.090 | 33.7 | 2.11 | 0.083 | 44.0 |
| VPH2-0116-R | $11.6+/-20 \%$ | 0.99 | 0.95 | 0.159 | 48.3 | 3.94 | 0.165 | 44.0 |
| VP2-0116-R | $5.7+/-20 \%$ | 1.41 | 1.26 | 0.090 | 33.7 | 3.94 | 0.083 | 44.0 |
| VPH2-0083-R | 8.3 +/-20\% | 1.39 | 0.95 | 0.159 | 48.3 | 5.47 | 0.165 | 44.0 |
| VP2-0083-R | $4.1+$ +-20\% | 1.95 | 1.26 | 0.090 | 33.7 | 5.47 | 0.083 | 44.0 |
| VPH2-0066-R | $6.6+1-20 \%$ | 1.74 | 0.95 | 0.159 | 48.3 | 7.01 | 0.165 | 44.0 |
| VP2-0066-R | $3.2+$ +-20\% | 2.50 | 1.26 | 0.090 | 33.7 | 7.01 | 0.083 | 44.0 |
| VPH3-0780-R ${ }^{(10)}$ | $132+/-30 \%$ | 0.07 | 0.97 | 0.14 | 39.8 | 0.24 | 0.125 | 43.4 |
| VP3-0780-R ${ }^{(10)}$ | 63.2+/-30\% | 0.10 | 1.47 | 0.061 | 27.7 | 0.24 | 0.058 | 43.4 |
| VPH3-0138-R | $23.3+/-20 \%$ | 0.41 | 0.97 | 0.14 | 39.8 | 1.36 | 0.125 | 43.4 |
| VP3-0138-R | $11.2+/-20 \%$ | 0.59 | 1.47 | 0.061 | 27.7 | 1.36 | 0.058 | 43.4 |
| VPH3-0084-R | $14.2+/-20 \%$ | 0.67 | 0.97 | 0.14 | 39.8 | 2.23 | 0.125 | 43.4 |
| VP3-0084-R | $6.8+1-20 \%$ | 0.97 | 1.47 | 0.061 | 27.7 | 2.23 | 0.058 | 43.4 |
| VPH3-0055-R | $9.3+/-20 \%$ | 1.02 | 0.97 | 0.14 | 39.8 | 3.38 | 0.125 | 43.4 |
| VP3-0055-R | $4.5+/-20 \%$ | 1.46 | 1.47 | 0.061 | 27.7 | 3.38 | 0.058 | 43.4 |
| VPH3-0047-R | $7.94+/-20 \%$ | 1.19 | 0.97 | 0.14 | 39.8 | 4.00 | 0.125 | 43.4 |
| VP3-0047-R | $3.8+/-20 \%$ | 1.73 | 1.47 | 0.061 | 27.7 | 4.00 | 0.058 | 43.4 |


| Part ${ }^{(1)}$ <br> Number | $\begin{gathered} L \text { (BASE) } \\ \mu \mathrm{H} \\ (\mathrm{NOM})^{(2)} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { ISAT(BASE) } \\ & \text { Amps } \\ & \left(\text { TYP) }{ }^{(3) 4)}\right. \end{aligned}$ | $\begin{gathered} \text { IRMS(BASE) } \\ \text { Amps } \\ \left(\text { TYP) }{ }^{(3)(5)}\right. \\ \hline \end{gathered}$ | $\begin{gathered} \text { R(BASE) } \\ \text { Ohms } \\ (\mathrm{MAX})^{(6)} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Volt- } \mu \text { SEC(BASE) } \\ \mu \mathrm{Vs} \\ (\mathrm{MAX})^{(7)} \\ \hline \end{gathered}$ | $\begin{gathered} \text { EPEAK(BASE) } \\ \mu \mathrm{J} \\ (\mathrm{TYP})^{(8)} \\ \hline \end{gathered}$ | Leakage Inductance (BASE) $\mu \mathrm{H}$ (TYP) | Thermal Resistance ${ }^{\circ} \mathrm{C} /$ Watt (TYP) ${ }^{(9)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VPH4-0860-R ${ }^{(10)}$ | 159.65 +/-30\% | 0.11 | 1.41 | 0.0828 | 64.6 | 0.57 | 0.156 | 39.4 |
| VP4-0860-R ${ }^{(10)}$ | $87.0+/-30 \%$ | 0.15 | 1.70 | 0.057 | 44.7 | 0.57 | 0.075 | 39.4 |
| VPH4-0140-R | 23.7 +/-20\% | 0.65 | 1.41 | 0.0828 | 64.6 | 3.54 | 0.156 | 39.4 |
| VP4-0140-R | $11.3+/-20 \%$ | 0.95 | 1.70 | 0.057 | 44.7 | 3.54 | 0.075 | 39.4 |
| VPH4-0075-R | $12.7+/-20 \%$ | 1.21 | 1.41 | 0.0828 | 64.6 | 6.55 | 0.156 | 39.4 |
| VP4-0075-R | $6.1+/-20 \%$ | 1.75 | 1.70 | 0.057 | 44.7 | 6.55 | 0.075 | 39.4 |
| VPH4-0060-R | $10.1+/-20 \%$ | 1.52 | 1.41 | 0.0828 | 64.6 | 8.16 | 0.156 | 39.4 |
| VP4-0060-R | 4.9+/-20\% | 2.18 | 1.70 | 0.057 | 44.7 | 8.16 | 0.075 | 39.4 |
| VPH4-0047-R | $7.94+/-20 \%$ | 1.94 | 1.41 | 0.0828 | 64.6 | 10.52 | 0.156 | 39.4 |
| VP4-0047-R | $3.8+/-20 \%$ | 2.81 | 1.70 | 0.057 | 44.7 | 10.52 | 0.075 | 39.4 |
| VPH5-1200-R ${ }^{(10)}$ | 173 +/-30\% | 0.14 | 1.70 | 0.0711 | 98.4 | 1.11 | 0.235 | 30.3 |
| VP5-1200-R ${ }^{(10)}$ | $76.8+/-30 \%$ | 0.20 | 2.08 | 0.047 | 65.6 | 1.11 | 0.105 | 30.3 |
| VPH5-0155-R | $22.3+/-20 \%$ | 1.05 | 1.70 | 0.0711 | 98.4 | 8.83 | 0.235 | 30.3 |
| VP5-0155-R | 9.9 +/-20\% | 1.60 | 2.08 | 0.047 | 65.6 | 8.83 | 0.105 | 30.3 |
| VPH5-0083-R | 12+/-20\% | 1.96 | 1.70 | 0.0711 | 98.4 | 16.07 | 0.235 | 30.3 |
| VP5-0083-R | $5.3+/-20 \%$ | 2.95 | 2.08 | 0.047 | 65.6 | 16.07 | 0.105 | 30.3 |
| VPH5-0067-R | $9.65+/-20 \%$ | 2.43 | 1.70 | 0.0711 | 98.4 | 19.83 | 0.235 | 30.3 |
| VP5-0067-R | $4.3+/-20 \%$ | 3.63 | 2.08 | 0.047 | 65.6 | 19.83 | 0.105 | 30.3 |
| VPH5-0053-R | $7.63+/-20 \%$ | 3.07 | 1.70 | 0.0711 | 98.4 | 25.10 | 0.235 | 30.3 |
| VP5-0053-R | $3.4+/-20 \%$ | 4.59 | 2.08 | 0.047 | 65.6 | 25.10 | 0.105 | 30.3 |

(1) The first three digits in the part number signify the size of the package. The next four digits specify the $A_{\llcorner }$, or nanoHenries per turn squared.
(2) L Lase $=$ Nominal Inductance of a single winding.
(3) $I_{\text {Base }}$ is the lessor of $I_{\text {sar(base) }}$ and $I_{\text {mus(asas) }}$.
(4) Peak current that will result in $30 \%$ saturation of the core. This current value assumes that equal current flows in all six windings. For applications in which all windings are not simultaneously driven (i.e. flyback, SEPIC, Cuk', etc.), the saturation current per winding may be calculated as follows:

$$
\mathrm{I}_{\text {SAT }}=\frac{6 \times \mathrm{I}_{\mathrm{SAT}(\mathrm{BASE})}}{\text { Number of Windings Driven }}
$$

(5) RMS Current that results in a surface temperature of approximately $40^{\circ} \mathrm{C}$ above ambient. The $40^{\circ} \mathrm{C}$ rise occurs when the specified current flows through each of the six windings.
(6) Maximum DC Resistance of each winding.
(7) For multiple windings in series, the volt- $\mu$ second roral $(\mu \mathrm{Vs}$ ) capability varies as the number of windings in series (S):

$$
{\text { Volt- } \mu \mathrm{Sec}_{\text {TOTAL }}}=\mathrm{S} \times \text { Volt- }^{\text {SSec }}(\mathrm{BASE})
$$

For multiple windings in parallel, the volt- $\mu$ second $_{\text {отан }}(\mu \mathrm{Vs}$ ) capability is as shown in the table above.
(8) Maximum Energy capability of each winding. This is based on 30\% saturation of the core:

$$
\begin{aligned}
\text { Energy }_{\text {SERIIES }} & =S^{2} \times \frac{1}{2} \times 0.7 \mathrm{~L}_{\text {BASE }} \times l_{\text {SAT(BASE) }}^{2} \\
\text { Energy }_{\text {PARALLEL }} & =\mathrm{P}^{2} \times \frac{1}{2} \times 0.7 \mathrm{~L}_{\text {BASE }} \times \mathrm{l}_{\text {SAT(BASE) }}^{2}
\end{aligned}
$$

For multiple windings, the energy capability varies as the square of the number of windings. For example, six windings (either parallel or series) can store 36 times more energy than one winding.
(9) Thermal Resistance is the approximate surface temperature rise per Watt of heat loss under still-air conditions. Heat loss is a combination of core loss and wire loss. The number assumes the underlying PCB copper area equals $150 \%$ of the component area.
(10) These devices are designed for feed-forward applications, where load current dominates magnitizing current.

VERSA-PAC temperature rise depends on total power losses and size. Any other PCM configurations other than those suggested could run hotter than acceptable.
Certain topologies or applications must be analyzed for needed requirements and matched with the best VERSA-PAC size and configuration. Proper consideration must be used with all parameters, especially those associated with current rating, energy storage, or maximum volt-seconds.
VERSA-PAC should not be used in off-line or safety related applications. The breakdown voltage from one winding to any other winding is 500 VAC maximum.


## Mechanical Diagrams



FRONT VIEW


RECOMMENDED PCB LAYOUT



## NOTES

1) Tolerances A - I are $\pm 0.25 \mathrm{~mm}$ unless specified otherwise.
2) Tolerances J-P are $+/-0.1 \mathrm{~mm}$ unless specified otherwise.
3) Marking as shown
a) Dot for pin \#1 identification
b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.)
c) On top of unit: Versa Pac Logo (optional)
d) On bottom of unit: wwllyy = (date code) $\mathrm{R}=$ (revision level)
4) All soldering surfaces must be coplanar within 0.102 mm .

|  | $\begin{gathered} \mathrm{A} \\ \max \\ \mathrm{max} \end{gathered}$ | $\underset{\substack{\mathrm{mef}}}{\mathrm{~B}}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \\ \max \end{gathered}$ | $\underset{\text { ref }}{\mathrm{Dm}}$ | $\underset{\text { ref }}{\mathrm{Em}}$ | $\begin{gathered} \mathrm{F} \\ \mathrm{~mm} \\ \max \end{gathered}$ | $\underset{\substack{\mathrm{Gef} \\ \mathrm{Gm} \\ \hline}}{ }$ | $\underset{\substack{\mathrm{ref}}}{\mathrm{H}}$ | $\begin{gathered} \mathrm{I} \\ \mathrm{~mm} \\ \text { ref } \end{gathered}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\mathrm{J}}$ | $\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$ | $\underset{\substack{\mathrm{Mm} \\ \mathrm{~mm}}}{ }$ | $\begin{gathered} \mathrm{N} \\ \mathrm{~mm} \\ \max \end{gathered}$ | $\begin{gathered} \mathrm{O} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} P \\ \mathrm{~mm} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VP1 and VPH1 | 12.9 | 9.2 | 13.0 | 0.7 | 5.9 | 6.2 | 1.5 | 0.1 | 0.25 | 11.5 | 1.5 | 2.25 | 9.7 | 14.2 | 2.0 | 0.5 |

VP2 and VPH2


FRONT VIEW

(12PLCS)


|  | $\begin{gathered} \mathrm{A} \\ \mathrm{~mm}_{\mathrm{max}} \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \\ \mathrm{ref} \end{gathered}$ | $\underset{\substack{\mathrm{Cm} \\ \max }}{ }$ | $\underset{\text { ref }}{\mathrm{Dm}}$ | $\underset{\substack{\mathrm{E} \\ \mathrm{Em} \\ \hline}}{ }$ | $\underset{\substack{\mathrm{Fm} \\ \max }}{ }$ | $\underset{\substack{\mathrm{G} \\ \mathrm{ref}}}{ }$ | $\underset{\text { ref }}{\underset{\text { ref }}{\mathbf{H}}}$ | $\underset{\text { ref }}{\mathrm{I}}$ | $\underset{\substack{\mathrm{m} \\ \mathrm{ref}}}{\mathrm{~J}}$ | $\begin{gathered} \mathbf{K} \\ \mathrm{mm} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \\ \text { ref } \end{gathered}$ | $\underset{\mathrm{max}}{\mathrm{~N}} \underset{\mathrm{~mm}}{\mathrm{Nax}}$ | $\underset{\mathrm{mm}}{\mathrm{O}}$ | $\begin{gathered} \mathbf{P} \\ \mathbf{m m} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VP2 and VPH2 | 16.3 | 12.0 | 16.8 | 0.7 | 6.7 | 7.8 | 2.0 | 0.1 | 0.30 | 14.25 | 1.75 | 2.5 | 13.0 | 18.0 | 2.5 | 0.75 |

## Mechanical Diagrams

VP3 and VPH3



## NOTES

1) Tolerances A - I are $\pm 0.25 \mathrm{~mm}$ unless specified otherwise.
2) Tolerances J-P are +/- 0.1 mm unless specified otherwise.
3) Marking as shown
a) Dot for pin \#1 identification
b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.)
c) On top of unit: Versa Pac Logo (optional)
d) On bottom of unit: wwllyy = (date code) $\mathrm{R}=$ (revision level)
4) All soldering surfaces must be coplanar within 0.102 mm .

|  | $\underset{\max }{\mathrm{A}}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{ }$ | $\underset{\max }{\mathrm{C}}$ | $\underset{\substack{\mathrm{mef}}}{\mathrm{Dr}}$ | $\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \\ \mathrm{max} \end{gathered}$ | $\underset{\substack{\mathrm{mef}}}{\mathrm{~m}}$ | $\underset{\text { ref }}{\mathrm{Gm}}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\mathrm{H}}$ | $\underset{\text { mm }}{\mathrm{m}}$ | $\underset{\mathrm{mm}}{\mathrm{~J}}$ | $\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \\ \text { ref } \end{gathered}$ | $\begin{gathered} \mathrm{M} \\ \mathrm{~mm} \end{gathered}$ | $\underset{\mathrm{mm}}{\mathrm{~N}}$ | $\begin{gathered} \mathrm{O} \\ \mathrm{~mm} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VP3 and VPH3 | 17.1 | 16.0 | 22.3 | 0.7 | 8.4 | 3.0 | 0.1 | 0.4 | 14.49 | 1.79 | 3.43 | 16.88 | 23.74 | 2.54 | 0.75 |

VP4 and VPH4


FRONT VIEW


## NOTES

1) Tolerances A - I are $\pm 0.25 \mathrm{~mm}$ unless specified otherwise.
2) Tolerances J - P are +/- 0.1 mm unless specified otherwise.
3) Marking as shown
a) Dot for pin \#1 identification
b) On top of unit: -- VPHx-xxx (product code, size, 4 digit part number per family table.)
c) On top of unit: Versa Pac Logo (optional)
d) On bottom of unit: wwllyy = (date code) $\mathrm{R}=$ (revision level)
4) All soldering surfaces must be coplanar within 0.102 mm .

|  | $\mathbf{A}$ <br> $\mathbf{m m}$ <br> $\mathbf{m a x}$ | $\mathbf{B m}$ <br> ref | $\mathbf{C}$ <br> $\mathbf{m a x}$ <br> $\mathbf{m a x}$ | $\mathbf{D}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{E}$ <br> $\mathbf{m m}$ <br> $\mathbf{m a x}$ | $\mathbf{F}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{G}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{H}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{I}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{J}$ <br> $\mathbf{m m}$ | $\mathbf{K}$ <br> $\mathbf{m m}$ | $\mathbf{L}$ <br> $\mathbf{m m}$ <br> ref | $\mathbf{M}$ <br> $\mathbf{m m}$ <br> $\mathbf{m a x}$ | $\mathbf{N}$ <br> $\mathbf{m m}$ | $\mathbf{0}$ <br> $\mathbf{m m}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VP4 and VPH4 | 18.0 | 18.0 | 24.6 | 0.7 | 10.0 | 3.3 | 0.1 | 0.4 | 14.25 | 1.75 | 3.43 | 19.14 | 26.0 | 2.5 | 0.75 |

VERSA-PAC ${ }^{\circledR}$
COOPER Bussmann

## Mechanical Diagrams




NOTES

1) Tolerances A - I are $\pm 0.25 \mathrm{~mm}$ unless specified otherwise.
2) Tolerances J - P are $+/-0.1 \mathrm{~mm}$ unless specified otherwise.
3) Marking as shown
a) Dot for pin \#1 identification
b) On top of unit: -- VPHx-xxx (product code, size,
4 digit part number per family table.)
c) On top of unit: Versa Pac Logo (optional)
d) On bottom of unit: wwllyy = (date code) $\mathrm{R}=$ (revision level)
4) All soldering surfaces must be coplanar within 0.102 mm .

|  | $\begin{gathered} \mathbf{A} \\ \mathbf{m m} \end{gathered}$ $\max$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\text { B }}$ | $\underset{\max }{\mathrm{C}}$ | $\underset{\substack{\text { mm } \\ \text { ref }}}{ }$ | $\underset{\max }{\mathrm{E}}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\text { F }}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\mathrm{G}}$ | $\underset{\substack{\mathrm{mm} \\ \text { ref }}}{\substack{\mathrm{m}}}$ | $\underset{\text { ref }}{\mathrm{mm}}$ | $\underset{\mathrm{mm}}{\mathrm{~J}}$ | $\underset{\mathrm{mm}}{\mathrm{~K}}$ | $\underset{\mathrm{raf}}{\mathrm{~m}}$ | $\underset{\mathrm{mm}}{\mathrm{M}}$ $\max$ | $\underset{\mathrm{mm}}{\mathrm{~N}}$ | $\mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VP5 and VPH5 | 21.0 | 21.0 | 28.5 | 0.7 | 10.8 | 2.95 | 0.1 | 0.4 | 17.25 | 2.25 | 3.15 | 22.7 | 29.0 | 3.0 | 0.75 |

## Inductance Characteristics

OCL vs. Isat


## HOW TO USE MULTIPLE WINDINGS

Discrete inductors combine like resistors, when connected in series or parallel. For example, inductors in series add and inductors in parallel reduce in a way similar to Ohm's Law.

$$
\begin{gathered}
L_{\text {series }}=L 1+L 2+L 3 \ldots . . L n \\
L_{\text {Paralel }}=1 /[1 / L 1+1 / L 2+1 / L 3 \ldots . \ldots 1 / L n]
\end{gathered}
$$

Windings on the same magnetic core behave differently. Two windings in series result in four times the inductance of a single winding. This is because the inductance varies proportionately to the square of the turns.
Paralleled VERSA-PAC windings result in no change to the net inductance because the total number of turns remains unchanged; only the effective wire size becomes larger. Two parallel windings result in approximately twice the current carrying capability of a single winding. The net inductance of a given PCM configuration is based on the number of windings in series squared multiplied by the inductance of a single winding (Leass). The current rating of a PCM configuration is derived by multiplying the maximum current rating of one winding (lass) by the number of windings in parallel. Examples of simple two-winding devices are shown below:


## Where:

$L_{\text {BASE }}=$ Inductance of a single winding
$P=$ Number of windings in parallel (use 1 with all windings in series)
$S=$ Number of windings in series
$I_{\text {BASE }}=$ Maximum current rating of one winding

## HOW TO PIN-CONFIGURE VERSA-PAC

Each VERSA-PAC can be configured in a variety of ways by simply connecting pins together on the Printed Circuit Board (PCB). As shown below, the connections on the PCB are equal to the pin configuration statement shown at the bottom of the schematic symbol. Connecting a number of windings in parallel will increase the current carrying capability, while connecting in series will multiply the inductance. Each VERSA-PAC part can be configured in at least 6 combinations for inductor use or configured in at least 15 turns ratios for transformer applications. Given 25 VERSA-PAC part numbers, this allows for at least 500 magnetic configurations. The PCM configurations can either be created by the designer or simply chosen from the existing PCM diagrams. The following inductor example shows 6 windings in series, which result in an inductance of 36 times the base inductance and 1 times the base current.

## INDUCTOR EXAMPLE FOR SIZES VP3, VP4 AND VP5



Each VERSA-PAC may be used in at least 15 transformer applications. More than 375 transformer combinations may be achieved using the available 25 VERSA-PAC parts.

## TRANSFORMER EXAMPLE FOR SIZES VP3, VP4 AND VP5



The PCM configurations may be selected from the examples on the following pages or created by the designer. Six PCM inductor and fifteen PCM transformer configurations and equivalent circuit schematics are shown. The printed circuit board layout in each example illustrates the connections to obtain the desired inductance or turns ratio. The examples may be used by the PCB designer to configure VERSA-PAC as desired.
To assist the designer, VERSA-PAC phasing, coupling and thermal issues have been considered in each of the PCM configurations illustrated. Additionally, the inductance and current ratings, as a function of the respective base values from the following Data Tables, are shown in each PCM example. Turns ratios are also given for each PCM Transformer shown.
It is important to carefully select the proper VERSA-PAC part in order to minimize the component size without exceeding the RMS current capability or saturating the core. The Data Tables indicate maximum ratings.

VERSA-PAC ${ }^{\ominus}$ Performance Characteristics
Bipolar (Push-Pull) Power vs Frequency


Unipolar (Flyback) Power vs Frequency


These curves represent typical power handling capability.
Indicated power levels may not be achievable with all configurations.

### 3.3V Buck Converter

This circuit utilizes the gap of the VP5-0083 to handle the 12.5 Amp output current without saturating. In each of the five VERSAPAC sizes, the gap is varied to achieve a selection of specific inductance and current values (see VERSA-PAC Data Table).

All six windings are connected in parallel to minimize AC/DC copper losses and to maximize heat dissipation. With VERSAPAC, this circuit works well at or above 300 KHz . Also, the closed flux-path EFD geometry enables much lower radiation characteristics than open-path bobbin core style components.


## 5V to 3.3V Buck Converter With 5V Output

This circuit minimizes both board space and cost by eliminating a second regulator. VERSA-PAC's gap serves to prevent core saturation during the switch on-time and also stores energy for the +5 V load which is delivered during the flyback interval. The +3.3 V buck winding is configured by placing two windings in series while the +5 V is generated by an additional flyback winding stacked on the 3.3 V output. Extra windings are paralleled with primary windings to handle more current. The turns ratio of $2: 1$ adds 1.67 V to the +3.3 V during the flyback interval to achieve +5 V .


## LITHIUM-ION BATTERY TO 3.3V SEPIC CONVERTER

The voltage of a Lithium-lon Battery varies above and below +3.3 V depending on the degree of charge. The SEPIC configuration takes advantage of VERSA-PAC's multiple tightly coupled windings. This results in lower ripple current which lowers noise and core losses substantially. The circuit does not require a snubber to control the voltage "spike" associated with switch turnoff, and is quite efficient due to lower RMS current in the windings.


## COOPER Bussmann

## PM-4301 3/07 <br> © Cooper Electronic

Technologies 2007

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fixed Inductors category:
Click to view products by Eaton manufacturer:
Other Similar products are found below :
MLZ1608M6R8WTD25 MLZ1608N6R8LT000 MLZ1608N3R3LTD25 MLZ1608N3R3LT000 MLZ1608N150LT000
MLZ1608M150WTD25 MLZ1608M3R3WTD25 MLZ1608M3R3WT000 MLZ1608M150WT000 MLZ1608A1R5WT000
MLZ1608N1R5LT000 B82432C1333K000 PCMB053T-1R0MS PCMB053T-1R5MS PCMB104T-1R5MS CR32NP-100KC CR32NP-
151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-3R9MC CR32NP-680KC CR32NP-820KC
CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC
MGDQ4-00004-P MGDU1-00016-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53630NL PE-53824SNLT PE-
62892NL PE-92100NL PG0434.801NLT PG0936.113NLT PM06-2N7 PM06-39NJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HC8-1R2-R

