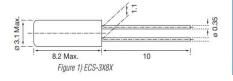


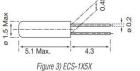
ECS-3X8X, 2X6X, 1X5X

32.768 KHz Tuning Fork Crystal

ECS tuning fork type crystals are used as a clock source in communication equipment, measuring instruments, microprocessors and other time management applications. Their low power consumption makes these crystals ideal for portable equipment.

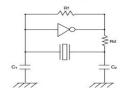

Request a Sample

ECS-3X8X, 2X6X, 1X5X



- Cost Effective
- Tight Tolerance
- Long Term Stability
- Excellent Resistance and **Environmental Characteristics**
- Pb Free/RoHS Compliant

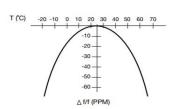
DIMENSIONS (mm)



OPERATING CONDITIONS / ELECTRICAL CHARACTERISTICS

PARAMETERS		3X8X	2X6X	1X5X	UNITS
Frequency	Fo	32.768	32.768	32.768	KHz
Frequency Tolerance	Δf/fo	±20	±20	± 20	ppm
Load Capacitance	C _L	12.5	12.5	8.0	рF
Drive Level (max)	D_L	1	1	1	μW
Resistance At Series Resonance	R_1	35(max)	35(max)	40(max)	ΚΩ
Q-Factor	Q	90,000(typ.)	70,000(typ.)	80,000(typ.)	
Turnover Temperature	T _M	+25 ±5	+25 ±5	+25 ±5	°C
Temperature Coefficient	ß	-0.040ppm/°C² max.	-0.040ppm/°C² max.	-0.040ppm/°C² max.	PPM/ΔC°
Shunt Capacitance	Co 1.60 (typ.)		1.35 (typ.)	1.00 (typ.)	pF
Capacitance Ratio		460 (typ.)	450 (typ.)	400 (typ.)	
Operating Temp	Topr	-10 ~ +60			°C
Storage Temperature	Tstg		°C		
Shock Resistance		Drop 3 times height o	PPM		
Insulation Resistance	IR	500	ΜΩ		
Aging (First Year)	Δf/fo	±3 ppr	ppm		
Motional Capacitance	C ₁	0.0035(typ.)	0.0030(typ.)	0.0025(typ.)	pF

RECOMMENDED OSCILLATION CIRCUIT



ELECTRICAL CHARACTERISTICS

IC: TC 4069P Rf: 10MΩ Rd: 330KΩ (As required) $C_1 = 22pF, C_2 = 22pF$ $V_{DD} = 3.0V$

In this circuit, low drive level with a maximum of 1µW is rec-ommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

1) Change in T (°C) 2) Change in frequency = $-0.04 \text{ PPM x } (\Delta T)^2$

= 45 -25 = 20°C

 $= -0.04 PPM \times (20)^2$ = -16.0 PPM

PART NUMBERING GUIDE:

TART HOMBERING GOIDE.								
Manufa	cturer	Frequency		Load Capacitance		Package Type*		
ECS	-	.327	-	12.5	-	8X		
ECS	-	.327	-	12.5	-	13X		
ECS	-	.327	-	12.5	-	14X		

^{*} Package type examples (8X = 3x8, 13X = 2x6, 14X = 1x5)

SOLDER PROFILE					
Peak solder Temp +260°C Max 10 sec Max.					
2 Cycles Max.					
MSL 1, Lead Finish Sn/Cu Matte					

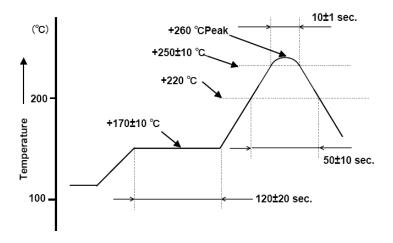


Figure 1) Suggested Solder Profile

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Crystals category:

Click to view products by ECS Inc manufacturer:

Other Similar products are found below:

MC405 32.0000K-R3:PURE SN 7B-27.000MBBK-T MP1-8.0 99-BU 9B-15.360MBBK-B PTX-A2JM-10.000M 9C-7.680MBBK-T H10S-12.000-18-EXT-TR ABLS-18.432MHZ-20-D-4-T R38-32.768-12.5-5PPM-NPB BTD1062E05A-513 21U15A-21.4MHZ RTX-781DF1-S-20.950 LFXTAL066198Cutt 9C-14.31818MBBK-T A-11.000MHZ-27 SPT2A-.032768B SPT2A.032768G SSPT7F-9PF20-R FX325BS-38.88EEM1201 MP-1-25.000MHZ-3L MP-1-6.000MHZ LFXTAL065253Cutt LFXTAL066431Cutt XT9S20ANA14M7456 XT9SNLANA16M 646G-24-2 7B-30.000MBBK-T 9B-14.31818MBBK-B 6504-202-1501 6526-202-1501 FA-118T 27.1200MB50P-K0 BTJ120E02C SG636PCE-20.000MC 3404 CX3225SB48000Z0DZNC1 C1E-24.000-7-2020-R C1E-19.200-12-1530-X-R C1E-16.000-12-1530-X-R FL5000014 EUCA18-3.1872M 425F35E027M0000 FP0800018 17196 MS3V-T1R-32.768kHz-7pF-20PPM-TA-QC-Au VXM7-1C1-16M000 MS1V-T1K-32.768kHz-10pF-20PPM-TA-QC-Au MS3V-T1R-32.768kHz-9pF-20PPM-TA-QC-Au CX2016DB48000C0FPLC1 ECS-80-18-30-JGN-TR