

EG211芯片用户手册

内置FG频率输出的二相无刷风扇 驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2011年10月11日	EG211 用户手册初稿

目录

1.	特点	4
2.	描述	
3.	应用领域	4
4.	引脚	5
	4.1. 引脚定义	5
	4.2. 引脚描述	5
5.	结构框图	
6.	典型应用电路	6
7.	电气特性	
	7.1 极限参数	7
	7.2 典型参数	
	7.3 测试电路	9
	7.4 磁电参数	9
	7.5 磁场方向工作参数 1	.1
8.	封装尺寸1	.2

EG211 芯片用户手册 V1.0

1.特点

- 内置霍尔传感器和输出驱动
- 较宽的电压工作范围: 3.5V至20V
- 输出能力强:可持续接纳 400mA 电流
- 静态电流小于 5mA
- 内置 FG 频率输出
- 采用较小的 T0-94 封装

2. 描述

EG211 芯片内部集成了霍尔感应器、基准电压、前置放大器、施密特比较器以及互补集电极开路输出(DO、DOB 和 FG),主要用于电子转换的二相无刷直流风扇和无刷直流马达。

EG211 内带集电极开路 FG 频率信号输出,能检测风扇的转速来提供相应的方波信号输出。

当磁通密度(B)大于工作电(Bop),D0开启输出低电平,同时DOB和FG关闭输出高电平。两个输出管脚的状态会一直保持到B低于释放点(Brp),这时DO、DOB和FG改变各自的输出状态。

3.应用领域

- 双线圈无刷直流风扇
- 转速计

- 双线圈无刷直流电机
- 速度测量

4.引脚

4.1. 引脚定义



图 4-1. EG211 管脚定义

4.2. 引脚描述

引脚序号	引脚名称	I/O	描述
1	FG	0	频率信号输出
2	DO	0	驱动输出 1 脚/电源
3	DOB	0	驱动输出 2 脚/电源
4	GND	GND	芯片的地端

5.结构框图

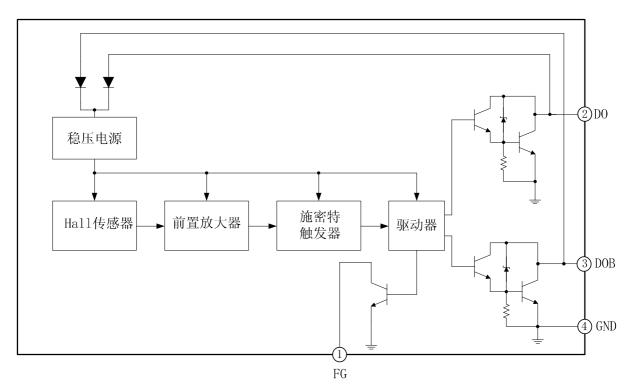


图 5-1. EG211 结构框图

6. 典型应用电路

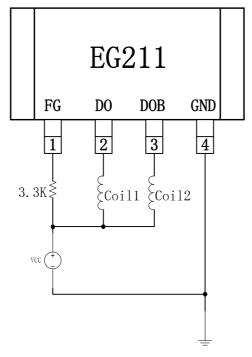


图 6-1. EG211 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称		测试条件	最小	最大	单位
Vcc	电源输入端		Vcc 引脚相对 GND 的 电压	-0.3	35	V
В	磁迫	通密度	_	无限制		G
	输出电流	连续电流	_	I	400	mA
ГОИТ	刊 田 电 / 爪	峰值电流	_	ı	600	mA
l _{FG}	FG 电流		_	-	20	mA
ТА	环境温度		-	-45	85	°C
Tstr	储才	字温度	-	-65	125	Ç
TL	焊接温度		T≤10S	-	300	°C
Ptot	功率消耗		-	-	550	mW

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明, 在 TA=25℃, Vcc=12V

符号	参数名称	测试条件	最小	典型	最大	单位
Vcc	工作电压	Vcc 端输入电压	3.5		20	V
Icc	静态电流	负载开路	-	4	7	mA
	於山營梅和丘阪	B>150Gauss, Vcc=3.5V, VD0B=Vcc, ID0=100mA (or B<-150Gauss, Vcc=3.5V, VD0=Vcc, ID0B=100mA)	-	0.8	1.0	V
Vce(sat)	输出管饱和压降	B>150Gauss, Vcc=12V, VD0B=Vcc, ID0=400mA (or B<-150Gauss, Vcc=12V, VD0=Vcc, ID0B=400mA)	-	1.0	7	٧
lcex	输出漏电流	Vcc=12V, Vce=12V	-	<0.1	10	uA
I _{FG} (sat)	FG 饱和压降	B<-150Gauss, VDO=VCC, $I_{FG} = 20 \text{mA}$	-	0.35	0.6	V
I _{FGX}	FG 漏电流	B>150Gauss, Vcc=12V, VD0B=VCC VFG=20V	-	0.1	10	uA
tr	输出上升时间	$R_L=1K\Omega$, $C_L=20pF$	-	1.5	5	uS
tf	输出下降时间	$R_L=1$ K Ω , $C_L=20$ pF	-	0.1	1	uS
Δt	转换时间差	$R_L=1$ K Ω , $C_L=20$ pF	-	5	10	uS
Vz	输出嵌位电压	-	_	50	_	V

7.3 测试电路

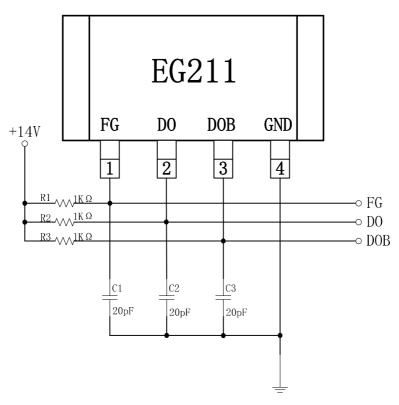


图 7-3. EG211 测试线路图

7.4 磁电参数

Α级

符号	参数名称	测试条件	最小	典型	最大	单位
Вор	翻转点	使用高斯计测量 S 极穿出 Marking 面 的磁通量密度 B	-	-	50	Gauss
Brp	释放点	使用高斯计测量 S 极穿入 Marking 面 的磁通量密度 B	-50	-	0	Gauss
Bhys	磁滞宽度	使用高斯计测量穿入和穿出的磁通量 密度 B	-	80	100	Gauss

B 级

符号	参数名称	测试条件	最小	典型	最大	单位
Вор	翻转点	使用高斯计测量 S 极穿出 Marking 面 的磁通量密度 B	-	-	70	Gauss
Brp	释放点	使用高斯计测量 S 极穿入 Marking 面 的磁通量密度 B	-70	1	1	Gauss
Bhys	磁滞宽度	使用高斯计测量穿入和穿出的磁通量 密度 B	-	80	100	Gauss

C级

符号	参数名称	测试条件	最小	典型	最大	单位
Вор	翻转点	使用高斯计测量 S 极穿出 Marking 面	ı	-	90	Gauss
	100 42 127	的磁通量密度 B				
Drn	释放点	使用高斯计测量 S 极穿入 Marking 面	-90	-	-	Gauss
Brp		的磁通量密度 B				
Bhys	磁滞宽度	使用高斯计测量穿入和穿出的磁通量		80	100	Gauss
ынуз		密度 B	-			

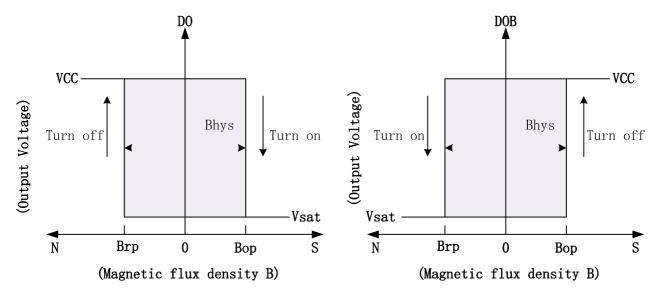
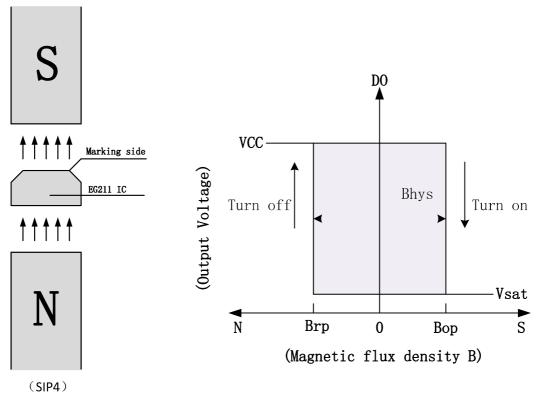


图 7-4a. EG211 的 2 脚 DO 输出磁电翻转特性 图 7-4b. EG211 的 3 脚 DOB 输出磁电翻转特性

当磁通量密度 B 大于翻转点 Bop 时,D0 开启为低电平**如图 7-4a** 右半轴,D0B 关断为高电平**如图 7-4b** 右半轴。当磁通量密度 B 小于释放点 Brp 时,D0 关断为高电平**如图 7-4a** 左半轴,D0B 开启为低电平**如图 7-4b** 左半轴。

7.5 磁场方向工作参数



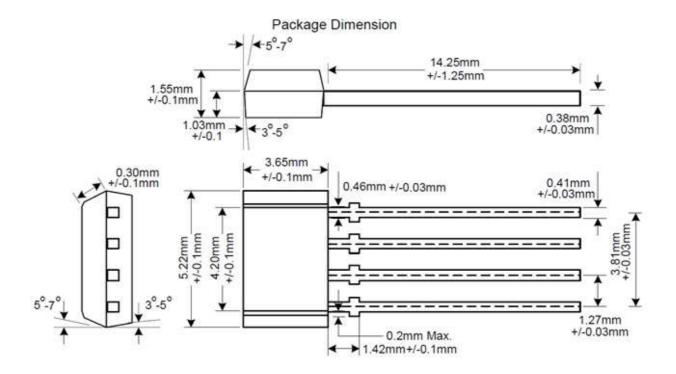
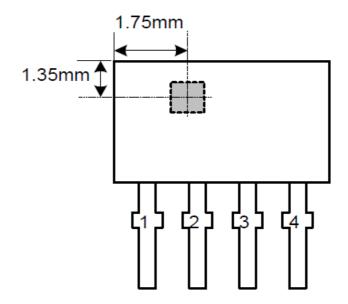

图 7-5a. 磁场 S 极穿出 EG211 Marking 面

图 7-5b. EG211 的 2 脚 DO 输出磁电翻转特性


当磁场 S 极穿出 EG211 芯片的 Marking 面或磁场 N 极穿入 EG211 的背面时**如图 7-5a**,并且磁通量密度 B 大于翻转点 Bop 时,D0 就开启为低电平**如图 7-5b**,当磁通量密度 B 小于释放点 Brp 时,D0 关断为高电平**如图 7-5b**。

8. 封装尺寸

a. TO-94

b. 霍尔传感器位置

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by EG manufacturer:

Other Similar products are found below:

ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8819AT-NA2-GR TW8825-LA1-CR TW8811-PC2-GR LX27901IDW

BD8153EFV-E2 LX1688IPW BD83854MUV-E2 S1D13742F01A200 LX1688CPW HV857LK7-G DLPA1000YFFT ICB2FL01GXUMA2

DLPC3435CZEZ DLP2000FQC SC401U PAD1000YFFR S1D13746F01A600 FIN324CMLX BL8023C DLPC6421ZPC HV852K7-G

HV859K7-G HV857K7-G DIO2133CT14 DLP4500NIRAFQD DLP9500BFLN S1D13515F00A100 S1D13517F00A100

S1D13743F00A200 S1D13748F00A100 S1D13A04F00A100 S1D13L01F00A100 S1D13L03F00A100-40 TW8816-LA3-GRS TW8816-LB3-CR TW8816-LB3-GRS TW8820-LA1-CR TW8823-LC2-CE S1D13513B01B100 TW2836-BA1-GR MP1015EM-LF-Z

MAX749CSA+T MAX4820EUP+T S1D13700F02A100 S1D13748B00B100 MAX749CPA+ ICL7135CQI+