EG6599S 芯片数据手册

高压 LLC 谐振控制器

版本变更记录

日期	描述
2022年11月11日	EG6599S 数据手册初稿

見 录

_	ıl.+ kıl.		
2.	描述.		1
3.	応用る	须域	1
4.	, , , ,		
т.	7门/AP · 4.1	引脚定义	
	4.2	引脚描述	
5.		框图	
6.			
7.		导性	
	7.1	极限参数	3
	7.2	典型参数	4
8.	应用证	兑明	6
	8.1	振荡器	7
	8.2	无负载或极轻载运行	9
	8.3	软启动	. 12
	8.4	电流检测、过流保护、过载保护	. 13
	8.5	锁死关断	. 16
	8.6	母线检测功能	. 16
9.	封装/	7寸	. 18
	Q 1	SOP16 封装尺寸	15

EG6599S 芯片数据手册 V1.0

1. 特性

- 50%占空比,变频控制谐振半桥
- 高精度振荡器,工作频率高达 500kHz
- 两级 OCP, 频移和锁存关掉
- 与 PFC 控制器接口
- 锁存禁用输入
- 轻负载时的猝发模式保护
- 带软启动保护和掉电保护
- 带高压线电压保护
- 高侧 650V 栅极驱动器
- -0.3A/0.8A 高侧和低侧门极驱动
- 无铅无卤符合ROHS标准
- 封装形式: SOP16L

2. 描述

EG6599S 是一款专用于谐振半桥拓扑结构的双端控制器。提供 50%互补占空比,高侧开关和低侧开关的时间相同,两者相位差 180°,通过调制工作频率调节输出电压。固定的死区时间保证软开关和高频操作,外部振荡器可以设置转换器的工作频率,内部带有自举二极管。在启动时,为了防止不受控制的浪涌电流,开关频率从最大值并逐渐衰减,到达稳态值由控制回路决定。该频移是非线性的,使输出最小电压过冲,持续时间可以编程。可以强制 IC 在轻负载下进入受控突发模式操作,以便保持转换器的输入功耗降至最低。IC 的功能包括一个未锁存的低电平有效禁用输入,电流滞和欠压保护,电流检测输入,频率自动重启,切换和延迟关机。如果第一级保护不足以控制 IC,则更高级别的 0CP 会锁定 IC 初级电流。它们的组合可提供完整的过载和短路保护电路。附加的锁存禁用输入(DIS)容易实现 0TP 或 0VP。提供了与 PFC 控制器的接口,可以在故障情况下关闭,例如 0CP 关闭和 DIS 高,或在猝发模式期间操作。

3. 应用领域

- LCD & PDP TV
- AC-DC 适配器
- 台式 PC,入门级服务器
- 电信设备开关电源

4. 引脚

4.1 引脚定义

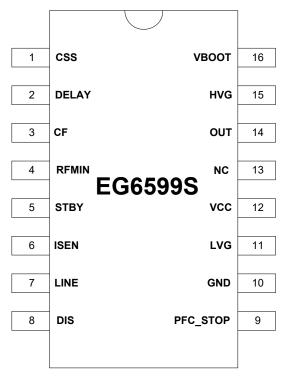


图 4-1. EG6599S 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/0	描述		
1	CSS	0	软启动。当 VCC 小于 UVLO, LINE 小于 1.25V 或大于 6V, DIS 大于		
1	CSS	U	1.85V, ISEN 大于 1.5V, DELAY 大于 3.5V 时, 电容放电。		
			过流延迟。当引脚电压大于 2V,则软启动电容完全放电,将开关频		
2	DELAY	0	率达到最大值。当引脚电压超过 3.5V 时,内部关闭。当电压降低		
			到 0.3V 以下,重新软启动。		
3	CF	0	外接振荡器电容		
4	RFMIN	Ι	最小振荡器频率设置,该引脚提供 2V 基准电压。		
			突发模式。当引脚上的电压低于 1.25V, 进入低功耗状态。当电压		
5	STBY I		大于 1.25V 时,正常工作。当轻负载时,实现突发模式,如果不使		
			用突发模式,则将引脚连接到 RFmin。		
6	ICEM	Т	电流检测输入。当引脚电压大于 0.8V 时,软启动电容放电。当电		
6 ISEN I		1	压大于 1.5V 进入低功耗状态,并且需要电源重新启动,解除锁存。		
7	LIME	LINE I	高端电压检测。当引脚电压低于 1.25V, 低功耗状态。如果不使用		
1	7 LINE		该功能,则将引脚偏置在 1.25V 和 6V 之间。		

_			
8	DIS	I	锁存关闭。当引脚电压大于 1.85V, 低功耗状态, 并且需要电源重新启动, 解除锁存。如果不使用该功能, 则将引脚连接到 GND。
9	PFC_STOP	0	PFC 漏极控制。当 DIS> 1.85V, ISEN> 1.5V, LINE> 6V, STBY < 1.25V, DELAY 大于 2V, 引脚低电平。如果不使用,则将引脚悬空。
10	GND	GND	芯片的地端。
11	LVG	0	低侧栅极驱动输出。驱动器拉电流 0.3A,灌电流 0.8A。
12	VCC	Power	芯片工作电源输入端。
13	NC	_	悬空
14	OUT	0	高端驱动悬浮地
15	HVG	0	高侧栅极驱动输出。驱动器拉电流 0.3A,灌电流 0.8A。
16	VBOOT	Power	高端驱动悬浮电源输入端。

5. 结构框图

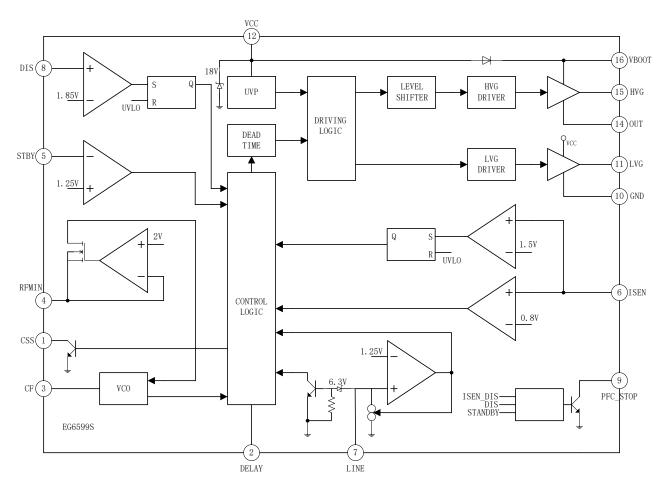


图5-1. EG6599S内部电路图

6. 典型应用电路

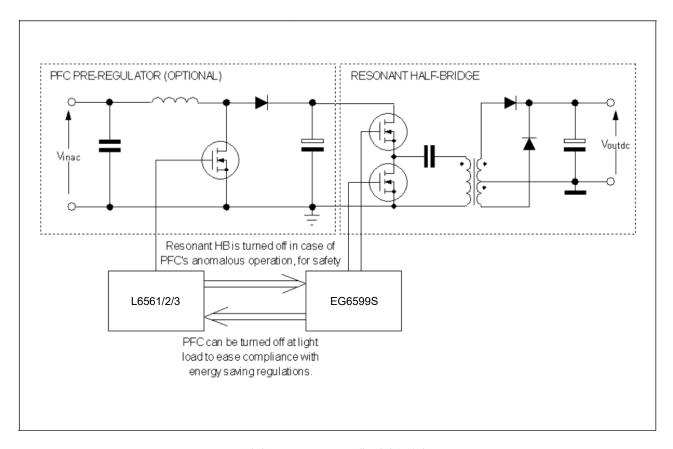


图 6-1. EG6599S 典型应用图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称 测试条件 最小		最小	最大	单位
VBOOT	自举高端电源	_	-0.3	650	V
VOUT	高端悬浮地端	_	Vвтоот-25	VB00T+0.3	V
HVG	高端输出	- Vour-0.		VB00T+0.3	V
LVG	低端输出	_	-0.3	VCC+0.3	V
VCC	电源	_	-0.3	19	V
VPFC_STOP	最高电压	_	-0.3	VCC	V
Irfmin	最大电流	_	_	2	mA
TA	环境温度	_	-40	125	$^{\circ}$

Tstr	储存温度	_	-55	150	${\mathbb C}$
TL	焊接温度	T=10S	_	300	$^{\circ}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, VCC=15V, VBOOT=15V, 负载电容 CL=1nF, CF=470pF, RRFMIN=12K

参数名称	符号	测试条件	最小	典型	最大	单位	
电源	Vcc		8.8	15	17	V	
VCC 开启电压	Vcc (on)		9.5	10.5	11.5	V	
VCC 关断电压	Vcc (off)		7.0	7.9	8.8	V	
启动电流	Istart-up	VCC=VCC-0.2V	-	200	300	uA	
静态电流	IQ	VSTBY=1V	-	1.4	2	mA	
工作电流	IOP	VSTBY=VRFMIN	-	2	5	mA	
关闭电流	IQ	VDIS>1.85V or VDELAY>3.5V or VLINE<1.25V or VLINE=Vclamp	-	270	400	uA	
高侧浮动栅极驱动	J电源						
VBOOT 漏电流	Іьквоот	VB00T=580V	_	_	5	uA	
VOUT 漏电流	Ilkout	Vout=562V	-	-	5	uA	
过流比较器							
输入偏置电流	IISEN	Visen=0	-	-	-1	uA	
前沿消隐	TLEB	HVG 和 LVG 低到高	-	250	-	nS	
频移开启电压	Visen		0.76	0.8	0.84	V	
迟滞电压				50		mV	
锁存关闭电压	Visendis		1.44	1.5	1.56	V	
输出延时	TD (H-L)		_	300	400	nS	
母线检测							
检测开启	V _{TH}		1.2	1.25	1.3	V	
迟滞电流	Інуѕт	VCC>5V, VLINE=0.3V	12	15	18	uA	
钳位电压	Vclamp	ILINE=1 mA	6	-	8	V	
DIS 功能							
输入偏置电流	Idis	V _{DIS} =0	_	_	-1	uA	

					јајда 💴	7 旧》以江
关闭电压门限	VTH		1.71	1.85	1.93	V
振荡器						
占空比	D	HVG 和 LVG	48	50	52	%
			56	60	64	KHZ
频率	Fosc	Rrfmin=2.7K	240	250	260	KHZ
		推荐最大			500	KHZ
死区	TD		0.2	0.3	0.4	Us
峰值	Vcfp			3.9	_	V
谷值	Vcfv		-	0.9	-	V
基准	Vref		1.93	2	2.07	V
电流镜像比例	Км		_	1	_	A/A
电阻范围	RFMIN		1	-	100	KΩ
PFC_STOP 功能	1	,		l	l	1
漏电流	Ileak	VPFC_STOP=VCC	_	_	1	uA
低电平电压	VL	IPFC_STOP=1mA DIS=2V	_	-	0.2	V
软启动				•	•	
漏电流	I1eak	Vcss=2V	_	_	0.5	uA
电阻	R		-	120	-	Ω
猝发模式				•	•	
偏置电流	Idis	V _{DIS} =0	_	_	-1	uA
门限电压	V _{TH}		1.2	1.25	1.3	V
迟滞电压	Hys		-	50	-	mV
过流延时				•	•	
漏电流	Ileak			_	0.5	uA
电流源	ICHARGE	VDELAY=1V, VISEN=0.85V	100	150	200	uA
门限 1	V _{TH1}		1.93	2	2.07	V
门限 2	V _{TH2}		3. 3	3. 5	3. 7	V
门限 3	V _{TH3}		0. 25	0.3	0.35	V
低端驱动				•	•	
输出低电平	VLVGL	Isink=200mA	_	_	1.5	V
输出高电平	VLGH	Isource=5mA	12.8	13.3	-	V

峰值拉电流	Isorucepk		-0.3	_	_	A
峰值灌电流	Isinkpk		0.8	-	-	A
下降沿	Tf		-	30	-	nS
上升沿	Tr		_	60	_	nS
高端驱动						
输出低电平	VHVGL	Isink=200mA	-	-	1.5	V
输出高电平	VHGH	Isource=5mA	12.8	13.3	_	V
峰值拉电流	Isorucepk		-0.3	-	-	A
峰值灌电流	Isinkpk		0.8	_	_	A
下降沿	Tf		_	30	_	nS
上升沿	Tr		_	60	_	nS

8. 应用说明

EG6599S 是一个双端输出专用于谐振半桥拓扑的控制器,在此变换器中,半桥的高边,低边两开关交替地导通和关断(相位差 180°),工作在 50%占空比,虽然实际占空比即导通时间与开关周期之比略小于 50%,其内部有一固定的死区时间 T_D,将其插在一个 MOSFET 的关断与另一 MOSFET 的导通之间。在此死区时间内,两只 MOSFET 都关断。这个死区时间可确保变换器正确工作,要确保实现软开关以及高频工作下的低 EMI 。为了保证变换器的输出电压调整率,器件要能工作在不同的模式下,各种工作模式取决于负载条件,见图 8-1。

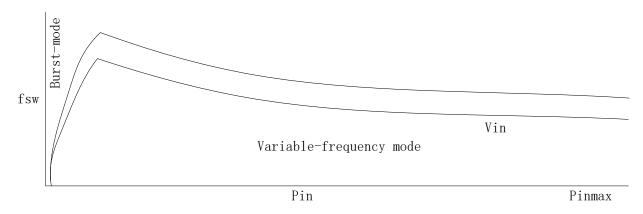


图 8-1 多模式操作

EG6599S 的多个工作模式:

- 1. 在重载,中载或轻载时,振荡器产生一个对称的三角波,此时 MOSFET 的开关锁住,波形的频率与电流相关。它去调制反馈电路,最终由半桥驱动反馈环路的频率保持输出稳定,于是它的工作频率取决于传输特性。
- 2. 在猝发模式下,此时为空载或极轻负载,当负载降到此值以下时,变换器进入间歇式工作,一些开 关周期是在近似固定频率下工作,且由一些无效的周期间隔开,两个 MOSFET 都处在关闭状态,随着负载进 一步减小,会进入更长的无效周期,以减小平均开关频率。当变换器完全空载时,平均开关频率会降到几 百赫兹,于是最小的磁化电流损耗随频率减下来,容易完成节能要求。

8.1 振荡器

EG6599S 振荡器在外部用一个电容 C_F调节,从 3PIN 接到 GND,用接到 4PIN 的网络交替地充放电来定出,此端提供 2V 基准,有 2mA 电流能力,当拉出更大电流时,会有更高频率,其方框电路见图 8-2:

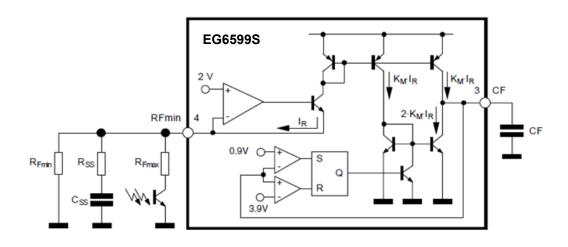


图8-2. 振荡器框图

EG6599S 振荡器内外电路,在 RFmin 端的网络通常包含三个内容:

- 1. 一个电阻 RFmin 接到此端与 GND 之间,它决定最低工作频率。
- 2. 电阻 RFmax,接于此端和光耦集电极之间(其发射极接 GND),光耦从二次侧传输反馈信息,光电三极管将调制通过分支的电流,从而调制振荡器的频率,执行输出电压的调制,RFmax的值决定了半桥最高工作频率,此时光电三极管处在饱合状态。
- 3. 一个 R-C 串联电路(Css+Rss)接于此端到 GND, 用来设置启动时的频率移动, 注意稳定工作状态时, 其贡献为零。下面是最低及最高工作频率之间的数学关系表达式。

$$f_{min} = \frac{1}{3*CF*RFmin}$$

$$f_{max} = \frac{1}{3*CF*(RFmin||RFmax)}$$

在 CF 定在几百 pf 或几 nf 区间后, RFmin 和 RFmax 的值将按所选振荡器频率来决定, 从最低频到最高频, 在此频率范围内要能稳压。

$$f_{min} = \frac{1}{3*CF*fmin}$$

$$f_{max} = \frac{RFmin}{\frac{f_{max}}{f_{min}} - 1}$$

在空载突发模式操作的情况下,将给出 RFmax 的不同选择标准。

在图 8-3 中,振荡器波形与栅极驱动之间的时序关系示出了信号,以及半桥支路(HB)的摆动节点。注意,当振荡器的三角波向上倾斜时,低边栅极驱动器打开,而当三角波向下倾斜时,高侧栅极驱动器打开。 这样,在启动时,或者当 IC 在突发模式操作期间恢复切换时,低侧 MOSFET 将首先接通,并对自举电容器充电。 因此,自举电容将始终充电并准备为高端浮动驱动器供电。

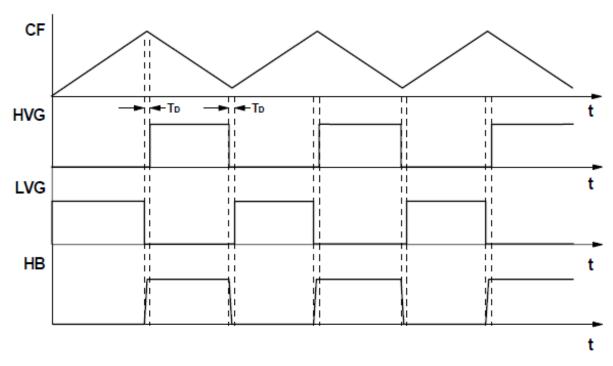


图 8-3 振荡器波形与栅驱动信号的关系

8.2 无负载或极轻载运行

当谐振半桥在轻载或空载时,它的开关频率将达到最大值,为保持输出电压在此条件下仍受控,并防止丢失软开关,必须让有效的剩余电流流过变压器的励磁电感,当然,这种电流产生了一些导致转换器空载功耗降低的相关损耗值。

为克服此问题,EG6599S 的设计使变换器间歇工作(猝发式工作),用插入几个开关周期中给出空闲的输出,令两功率 MOSFET 关断,这样平均开关频率就减下来了。结果,实际磁化电流的平均值及相关损耗也减下来了,使变换器成为节省能源的产品。

通过用 5PIN 可使其工作在猝发模式下,如果加到此端的电压降到 1.25V 以下,IC 将进入空闲状态,此时两个栅驱动输出都为低电平,振荡器停止工作,软起动电容 Css 保持在充电状态,仅有 RFmin 端的 2V 基准留住以使 IC 有最低的消耗。Vcc 电容也放了电,IC 将在此端电压超过 1.25V 的 50mV 以上时恢复工作。为了实现猝发模式工作,需要将施加到 STBY 引脚的电压相关联到反馈环路。图 8-4 给出最简单的关系,适于窄输入电压范围工作。

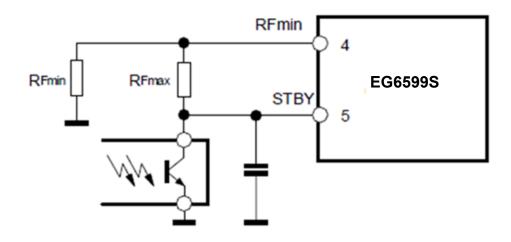


图 8-4 窄输入电压时的猝发工作模式

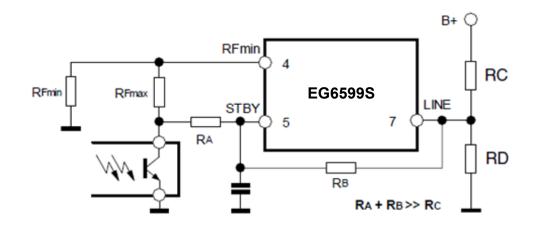


图 8-5 宽输入电压时的猝发工作模式

实际上, RFmax 由开关频率 fmax 定出, 超出后 EG6599S 进入猝发模式工作, 一旦 fmax 固定, RFmax 即可求出:

$$RF_{max} = \frac{3}{8} * \frac{RFmin}{\frac{fmax}{fmin} - 1}$$

请注意,与前一节("第 8.1 节:振荡器")中考虑的 fmax 不同,此处 fmax 与某个大于最小值的负载 PoutB 相关联。在最小值时的状态,PoutB 由变压器峰值磁化电流足够低,不能产生音频噪声为决定。

谐振变换器的开关频率,还取决于输入电压。因此对图 8-4 有较大输入电压范围的电路,Pours 的值将变化,要予以考虑。在此情况,推荐如图 8-5,变换器的输入电压接到 STBY 端,由于开关频率与输入电压的非线性关系,要更实际地找出校正 RA/(RA+RB) 的合适数值,这需要少量改变 Pours 的值,小心地选择 RA+RB 总值必须大于 Rc,以尽量减小对 LINE 端电压的影响。

无论如何,用此电路时,它的工作可如下描述。由于负载降到 Porrs值以下,频率会试图超过调整值 fmax,

STBY 端上的电压也将低于 1.25V,然后 IC 停止栅极输出低电平,使半桥的两功率 MOSFET 处在关断状态, V_{STBY} 电压会随反馈结果而增加,在其电压升到 1.30V 时,IC 重新开始切换。过一会,V_{STBY} 将再变低,重复猝发,使 IC 停止工作。通过这种方法,变换器工作在猝发模式,且接近一个恒定低频。随负载的进一步减小, 会使频率再减小,甚至达几百赫的水平,图 8-6 示出时序图,表示出其工作种类,示出最有用的信号,用 一支小电容从 STBY 接到 GND,仅靠 IC 放置,减小开关噪声,实现稳定工作。

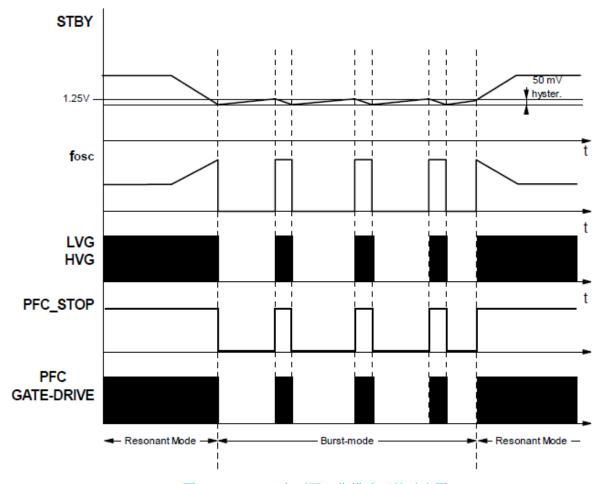


图 8-6 EG6599S 在不同工作模式下的时序图

为了满足节能要求,在 PFC 的功率因数校正部分,因为 PFC 预调整器领先于 DC/DC 变换器工作,器件允许 PFC 预调整器在猝发模式工作时被关断,从而消除 PFC 部分的功耗约 0.5÷1W,也因低频时 EMC 的调节要参照正常负载,所以变换器在空载及轻载时没有限制。

为做到这一点,器件提供 9PIN 作(PFC_STOP)开集电极输出,通常为开路,在 IC 工作于猝发模式的空闲周期时,令其为低,此信号用于关断 PFC 控制器如图 8-7 所示。EG6559 处于 UVLO 状态时,保持打开状态,以启动 PFC 控制器。

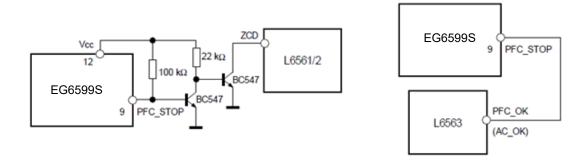


图 8-7 PFC STOP 外部接口

8.3 软启动

通常讲,软启动的目的是为启动时逐渐增加变换器的功率能力,为防止过冲电流,在谐振变换器中,给出的功率取决于频率高低,所以软启动是采用让开关频率从高到达控制环路的限定值来做的,所以 EG6559 变换器的软起动简单地加个 RC 串联电路从 4PIN 接到 GND。

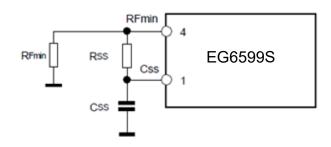


图 8-8 EG6599S 的软起动内外电路

开始时,电容Css 完全放电,所以串联电阻Rss与RFmin有效地并联,结果初始频率取决于Rss和RFmin,由于光耦的光电三极管此时关断,(要等到输出电压建起反馈后)。

$$fstart = \frac{1}{3*CF*(RFmin||Rss)}$$

Css 电容逐渐充电直到电压达到 2V 基准电压。随之,通过 Rss 的电流降到 0,典型为 5 倍的常数 Rss*Css 值。此前,输出电压将紧靠稳定值,直到反馈环工作,光耦的光电三极管将决定此时负载下的工作频率。在此频率摆动期间,工作频率将随 Css 电容的充电而衰减,开始时充电速率较快,随后充电速率逐渐慢下来。这种频率非线性的变化,使变换器的功率能力随频率变化。结果,随着频率线性涌动,平均输入电流是平滑增加,没有峰值出现,输出电压几乎没有过冲地达到稳定值。将根据以下关系选择 RSS 和 CSS,其中fstart 建议至少为 fmin 的 4 倍。典型 Rss 和 Css 的选择基于下面的关系式:

$$Rss = \frac{RFmin}{\frac{fstart}{fmin} - 1}$$

$$C_{SS} = \frac{3*10^{-3}}{Rss}$$

8.4 电流检测、过流保护、过载保护

谐振半桥基本上是电压型控制,因此电流检测输入仅作 OCP 保护用。不像 PWM 控制的变换器,能量流是由初级开关的占空比控制的,在谐振半桥中,占空比是固定的,能量流是由开关频率控制的,这会影响限流的实现。此时,PWM 控制的变换能量流可以用终止开关导通来限制,在检测出电流超出现有阈值即可限制。而在谐振半桥中,开关频率必须增加才能迅速关闭开关,这至少要在下一个振荡周期才能看到频率的变化,这就是说必须有效地增加频率才能改变能量有效流动,频率改变速率必须比频率自身要慢。这样,运行中意味着逐个周期限流行不通,因此,初级电流的信息送到电流检测输入的信号必须是平均值的。当然,平均的时间不能太长,以防止初级电流达到或超过最大值。

图 8-9 和图 8-10 用一对电流检测表示出此特点。电路图 8-9 是一个简单仅用一个检测电阻 Rs 即可以,但损伤了效率。图 8-10 可更有效,在效率指标要求很高时才推荐使用。

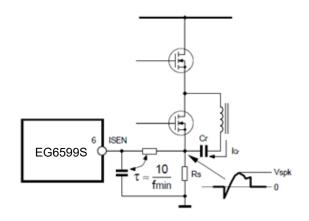


图 8-9 用电流检测电阻的检测电路

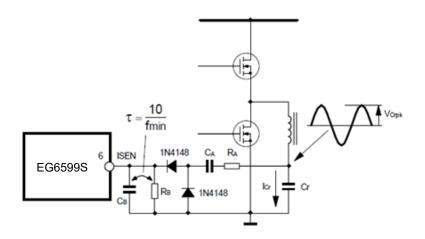


图 8-10 用并联电容检测过流的检测电路

器件提供电流检测电流输入端(6PIN ISEN)并提供过流保护系统, ISEN 端内部接到第一比较器的输入, 比较参考电平为 0.8V, 第二比较器参考电平为 1.5V, 如果加到此端的外部电压超过 0.8V, 则第一比较器触发, 使内部开关开启, 并放掉 Css 电容的电荷, 这会迅速增加振荡器的频率, 从而限制了能量的传输, 放电直到 ISEN 端电压降下 50mV, 这样此平均时间为 10 / f min 的范围, 保证了有效频率的上升, 在输出短路时, 这个工作的结果接近恒定峰值的初级电流。

通常, ISEN 端的电压可过冲到 0.8V, 当然如果 ISEN 端电压达到 1.5V 时, 第二比较器将被触发, EG6599S 将关断, 并锁住两个输出驱动及令 PFC_STOP 端变低电平, 因此关断了整个系统, IC 的电源电压必须拉到 UVLO 以下, 等再次升到启动电平以上时, 才能重新启动。如果软起动电容 Css 较大就可能出现, 所以它的放电不能太快, 或在变压器磁化电感饱合时或在二次侧整流短路时才出现。

在图 8-9 的电路中,检测电阻 Rs 串在低边 MOSFET 的源极到 GND。注意实际连接的谐振电容处,Rs 上的电压与高边 MOSFET 中流过的电流相关,在多数开关周期中都是正的,除非谐振电流在低边 MOSFET 反转时,此时低边 MOSFET 已关断。假设 RC 滤波时间常数至少 10 倍于最小的开关频率 fmin 时段,则 Rs 的近似值可用下式表示:

$$Rs = \frac{Vspkx}{Icrpkx} \approx \frac{5*0.8}{Icrpkx} \approx \frac{4}{Icrpkx}$$

此处,Icrpkx 是最大的流过谐振电容和变压器初级绕组的峰值电流,相应也是最低输入电压及最大负载下的电流。图 8-10 的电路可以工作在两个不同的方法,如果电阻 R_A 与 C_A 相串联,且数值较小,则电路工作像一个电容性电流分压器, C_A 典型选在 RR/100 或少一些,要用低损耗型,检测电阻 R_B 用下式计算:

$$R_{\rm B} = \frac{0.8\pi}{Icrnkx} \left(1 + \frac{cr}{cA}\right)$$

 C_B 将按 R_B*C_B 为 10 / f min 来选择。如果电阻 R_A 与 C_A 相串时不是很小,电路的工作像一个跨过谐振电容 C_B 的纹波电压分压器,在运行中与通过 C_B 作用的电流相关,再有 C_A 也将选择等于 C_B /100 或更少一些,这个时段不必是低损耗型的,这时的 R_B 为:

$$R_{\rm B} = \frac{0.8\pi}{Icrpkx} * \frac{\sqrt{R^2A + X^2CA}}{XCr}$$

此处, $C_A(X_{CA})$ 和 $C_R(X_{CT})$ 在这个频率条件下计算,即 $I_{CTPK}=I_{CTPKX}$ C_B 将成为 R_B*C_B ,其范围为 $10/f_{min}$ 。 无论如何,电路进入实际情况, R_S 或 R_B 的值在经验的基础上加以调整。在过载或输出短路时,OCP 能够有效限制初级到次级能量传递,但通过二次绕组及整流元件的输出电流在此条件下可能比较高。如果连续出现此现象的话,会危及变换器的安全。为防止其在任何此条件下产生的危险,通常强制变换器间歇式工作。 用 EG6599S 可调节外部最大时间 T_{SH} ,即变换器允许过载运行或在短路下运行的时间,过载或短路时间必须小于 T_{SH} ,这段时间内不会有任何动作,因此提供给系统保护功能。如果 T_{SH} 超出过载保护 (OLP) 的过程被激

活,将关闭器件。在连续过载/短路的情况下,导致用户定义的连续间歇操作占空比。

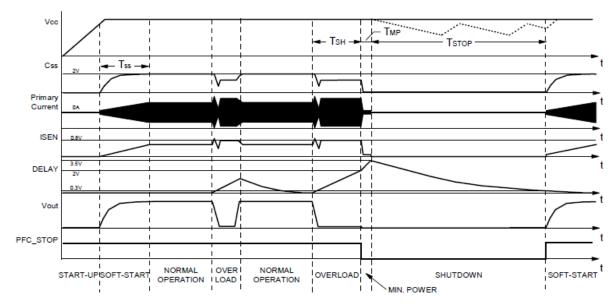


图 8-11 软起动和过流时的波形和时序图

这个功能与 2PIN (DELAY) 有关,借助电容 Cdelay,及并联电阻 Rdelay 接到 GND,由于 ISEN 端电压超过 0.8V,第一级 0CP 比较器动作,Css 放电,接通内部电流发生器。它输出 150uA 电流(从 DELAY 端)并给 Cdelay 充电,在过载/短路期间,0CP 比较器及内部电流源迅速地激活,且 Cdelay 将用平均电流充电。它取决于电流检测滤波器电路的时间常数。

此操作继续,直到 Cdelay 上的电压达到 2V,它定义了时间 T_{SH} , T_{SH} 到 Cdelay 没有直接的关系,它实际上由 Cdelay 经验决定。作为运行指示,在 Cdelay =1uf 时, T_{SH} 将是 100ms。一旦 Cdelay 充电到 2V,内部 开关将 Css 放电,强制连续为低电平,不去管 0CP 比较器的输出,150uA 电流源连续导通,直到 Cdelay 上的电压达到 3.5V,此时段为 T_{MP} 。

对 TwP 以 ms 表示, Cdelay 以 uf 表示, 在此期间 EG6599S 工作在接近 fstart 的频率上,以便减小谐振电路内部的能量,随着 Cdelay 上电压达到 3.5V,器件停止开关,PFC_STOP 端拉到低电平,还有内部电流源也关断,所以 Cdelay 慢慢地由 Rdelay 放电,IC 在 Cdelay 电压低于 0.3V 时再次重新启动,Tstop 为:

Tstop=Rdelay*Cdelay $1n\frac{3.5}{0.3}\approx 2.5$ Rdelay*Cdelay

图 8-11 给出工作的时序图,注意,如果在 Tstop 期间,EG6599S Vcc 上的电压降到 UVLO 阈值以下,IC 会保持记忆,而在 Vcc 超过启动阈值后,不再立即重新起动。如果 V(delay) 仍高于 0.3V,还有 PFC_STOP 端停在低电平的时间会如 V(delay) 一样长地大于 0.3V。注意,在过载时间小于 T_{SH} 的情况下, T_{SH} 的值在下一次过载时会变得较低。

8.5 锁死关断

器件配备一个比较器,其有一同相端引出,接于 8PIN (DIS),内部的反相输入端接于 1.85V 的基准,随着此端电压超过内部阈值,IC 会立即关断,其功率消耗减到一个低值,锁死信息必须让 Vcc 端电压降到 UVLO 阈值以下,这样才能复位,并重新启动 IC。

这个功能用于执行过热保护,从外部基准电压用一分压器接在此端作偏置,上部电阻为NTC,令其靠近发热元件,如 MOSFET,或者二次侧的二极管或变压器。OVP 也可以用它来执行,用检测输出电压或经光耦传输一个过压条件即可。

8.6 母线检测功能

此功能基本上会停止 IC。随着输入电压降低到变换器规定范围,让它在电压返回时重新启动,检测电压可是整流滤波的主电压。可以用 PFC 预调节器的输出电压保护,此功能服从于 POWER-ON 及 POWER-OFF 功能。

EG6599S 在输入欠压时关断。此是用内部比较器完成,如图 8-12 所示,其同相输入端为 7PIN(LINE) ,比较器反相端内部接于 1.25V。如果 LINE 端电压低于内部基准,在此条件下,软起动即被禁止,PFC_STOP端开路,IC 功率消耗减下来,PWM 工作重新使能状态要在此端电压高于 1.25V。比较器用一个电流迟滞形成比较器的电压窗口。在 LINE 端上电压低于基准时,内部 15uA 电流源被激活,若电压高于基准即关断。这提供一个附加的自由度,通过使设置 ON 和 OFF 的阈值,选择合适的外部电阻分压网络即可以实现。

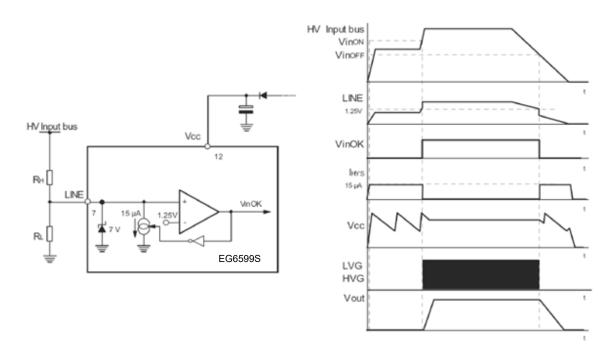


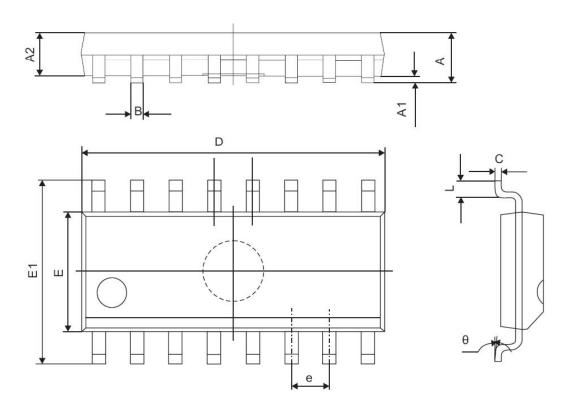
图 8-12 线路电压检测功能电路及工作波形

参考图 8-12, 下面的关系式可以估出 ON(Vinon) 及 OFF(Vinoff) 的输入电压值。

$$\frac{Vinon-1.25}{RH} = 15 \times 10^{-6} + \frac{1.25}{RH}$$

$$\frac{Vinoff-1.25}{RH} = \frac{1.25}{RH}$$

求解 R_H和 R_L给出:


$$RH = \frac{Vinon - vinoff}{15*10^{-6}}$$

$$RL = RH = \frac{1.25}{Vinoff - 1.25}$$

当线路欠压时被激活,无 PWM。Vcc 电压在起动及 UVLO 阈值之间振荡,见图 8-12。作为安全性的加入附加措施,如果此端电压超过 7V,则器件关断。如果其供电电压始终高于在 UVLO 阈值时,IC 将在电压降至 7V 以下时重新启动。器件工作时,LINE 引脚是高阻抗输入,连接到高电平值电阻器,因此它容易收集噪声,这可能会改变 0FF 阈值,或在 ESD 测试期间,IC 会发生不希望的关断。可以通过引脚一个小薄膜电容(1-10 nF)接地,防止这种故障。如果没有使用该功能,引脚必须连接到大于 1.25V 电压低于 6V 电压(7V 阈值的最坏情况值)。

9. 封装尺寸

9.1 SOP16 封装尺寸

佐 旦	尺寸 (mm)			
符号	Min	Max		
А	1. 350	1.750		
A1	0.100	0.250		
A2	1.350	1. 550		
В	0.330	0.510		
С	0.190	0.250		
D	9.800	10.000		
E	3.800	4.000		
E1	5.800	6.300		
е	1.270 (TYP)			
L	0.400	1.270		
Θ	o°	8°		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Voltage Regulators category:

Click to view products by EG manufacturer:

Other Similar products are found below:

FAN53610AUC33X FAN53611AUC123X EN6310QA 160215 R3 KE177614 FAN53611AUC12X MAX809TTR AST1S31PUR

NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG PCA9412AUKZ NCP81109GMNTXG NCP81109JMNTXG MP2161AGJ-Z

NCP81241MNTXG MPQ4481GU-AEC1-P MP8756GD-P MPQ2171GJ-P MPQ2171GJ-AEC1-P MP2171GJ-P NCV1077CSTBT3G

MP28160GC-Z MPM3509GQVE-AEC1-P XDPE132G5CG000XUMA1 MP5461GC-P IR3888AMTRPBFAUMA1 MPQ4409GQBE-AEC1-P S-19903DA-A8T1U7 S-19903CA-A6T8U7 S-19903CA-S8T1U7 S-19902BA-A6T8U7 S-19902CA-A6T8U7 AP7361EA-SPR-13

AP7361EA-33DR-13 S-19902AA-A6T8U7 S-19903AA-A6T8U7 S-19902AA-S8T1U7 S-19902BA-A8T1U7 AU8310 LMR36503R5RPER

LMR36503RFRPER LMR54406DBVR XC9110C301MR-G XC9141A50CMR-G XCL206F083CR-G XCL210A111GR-G

LTM4663EV#PBF LD5537B1GL