EA DOGS104-A

4x10/2x10 incl. SSD1803A for SPI, I²C
available at I piece!
Switchable font height

Dimension $36,0 \times 27.5 \times 4.6 \mathrm{~mm}$

TECHNICAL DATA

* HIGH-CONTRAST LCD SUPERTWIST DISPLAY
* OPTIONAL LED BACKLIGHT UNITS IN DIFFERENT COLORS
* 4x10 CHARACTER WITH 2.6 mm SWITCHABLE TO 2X10 WITH 4.55 mm HEIGHT
* SSD1803A CONTROLLER FOR SPI (2-/3-/4-WIRE) AND I²C (2-WIRE) INTERFACE
* SINGLE POWER SUPPLY +3.3V (typically 440 AA)
* NO ADDITIONAL VOLTAGES REQUIRED
* OPERATING TEMPERATURE RANGE -20 THROUGH $+70^{\circ} \mathrm{C}$
* LED BACKLIGHT 3 ..45mA@3.3V
* NO MOUNTING REQUIRED, SIMPLY SOLDER INTO PCB
* 3 DIFFERENT CHARACTER SETS (CYRILLIC, ENGLISH-JAPANESE AND EUROPEAN) INCLUDED IN THE SAME CONTROLLER
* 2 VIEWING DIRECTION POSSIBLE (BOTTOM AND TOP VIEW)

ORDERING CODE

LCD MODULE 4x10-2.6 mm
EA DOGS104x-A
$\boldsymbol{x}: \boldsymbol{B}=$ blue background transmissive $\boldsymbol{W}=$ white background transfelctive
$N=$ white background reflective
LED-BACKLIGHT AMBER
EA LED36X28-A
LED-BACKLIGHT YELLOW-GREEN / RED
LED-BACKLIGHT GREEN/ RED/ WHITE
EA LED36X28-ERW

ACCESSORIES

USB-TESTBOARD FOR PC (WINDOWS)
EA 9780-4USB
SOCKET CONNECTOR 4,8mm HOCH (2 PCS REQUIRED)

EA DOG SERIES

With its EA DOG series, ELECTRONIC ASSEMBLY presents the world's first display series which will run on 3.3 V systems without auxiliary power.
Unlike normal LCD modules, you order the display and the corresponding backlight separately. This gives you a wealth of possible combinations.
Designed for compact hand-held devices, this modern LCD range provides a number of real benefits with or without backlight:

* extremely compact at $36,0 \times 27,5 \mathrm{~mm}$ at the standard font size of $2.6 \mathrm{~mm}(4 \times 10)$
* ultra-flat at 2.0 mm without backlight or 4.6 mm including LED backlight
* SPI interface (2-/3-/4-wire) and I²C (2-wire)
* typical power consumption of only $440 \mu \mathrm{~A}$ in full operation (LED white backlight as of 3 mA)
* easy installation by simply soldering into the board
* A whole range of design variants can be supplied as of single units
* Changing background color

LED BACKLIGHTS

3 different variants are available for individual backlighting: amber, yellowgreen/red, green/red/white.
For the amber backlight, 2 separate LED paths are available, which can be switched in parallel or in series to ideally match the system voltage. This means that all the backlights can be run either at 3.3 V and higher voltages.
Operation of the backlight requires an external series resistor for current limiting. This can be calculated by $\mathrm{R}=\mathrm{U} / \mathrm{I}$; you will find the values in the table. To improve life time it is recommanded to use a current source only.
The operating life of the yellow/green, red and amber backlights is 100,000 hours and that of the white backlight is a bit shorter. Important: Never operate the backlight

amber EA LED36x28-A	Forward voltage	Current max.	Limiting resistor	
			@ $3,3 \mathrm{~V}$	$@ 5 \mathrm{~V}$
Connected in parallel	$2,1 \mathrm{~V}$	60 mA	20 ohm	48 ohm
Connected in series	$4,2 \mathrm{~V}$	30 mA	-	27 ohm

green/red/white EA LED36X28-ERW	Forward voltage	Current max.	Limiting resistor	
			$03,3 \mathrm{~V}$	$@ 5 \mathrm{~V}$
green path	$3,0 \mathrm{~V}$	45 mA	7 ohm	45 ohm
red path	$2,1 \mathrm{~V}$	45 mA	27 ohm	65 ohm
white path	$3,0 \mathrm{~V}$	30 mA	10 ohm	67 ohm

yellowgreen/red EA LED36x28-GR	Forward voltage	Current max.	Limiting resistor	
			$@ 5 \mathrm{~V}$	
	$2,1 \mathrm{~V}$	45 mA	27 ohm	65 ohm
yellowgreen path (AGR/CG)	$2,1 \mathrm{~V}$	60 mA	20 ohm	48 ohm

INSTALLATION

First, the display and the corresponding backlight are clipped together. The complete unit is then inserted into a PCB and soldered. Note that the 4 pins for the backlight must also be soldered from the top with less tin.
Important: There are one or two protective films on the display (top and/or rear side) and one on each backlight. Those have to be removed during or after production.

3 DIFFERENT TECHNOLOGIES

As a standard we provide 3 different technologies as STN and FSTN:

3 DIFFERENT BACKLIGHTS

3 different backlight modules are available to match equipment's design as much as possible. The most effective and brightest one is the white part of EA LED36x28-ERW.

When you can see black and white pictures only here on this page then you're able to download a coloured version from our website http://www.lcd-module.de/eng/pdf/doma/dogs104e.pdf

USB-TEST BOARD EA 9780-4USB

For easy startup, a USB test board is available that can be connected to a PC. An USB cable and a Windows software is supplied with the product. This allows individual text and to be displayed directly on the connected display.

SIMULATION WITH WINDOWS

Without ordering a display, the simulator software may show all the displays and colors even without the hardware. You can download for free from our website. There's no need to install, it's a simple EXE file, also running from USB stick e.g. http://www.Icd-module.de/deu/disk/startdog V40.zip

APPLICATION EXAMPLES

Different wiring must be used depending on the interface.
Note that the COG technology means that the current capacity of the outputs is limited. Therefore, a large load on the bus may cause signal loops and unclean levels. If in doubt, additional pull-down resistors (8051) are required or additional waits/NOPs must be incorporated.

To guarantee an error-free functionality and initialization of display it is recommended to operate the reset input actively. This can be done via microcontroller port or external circuit. Here's an application example:

INITIALISATION EXAMPLE

Initialization Example SP\| and l2C												
Command	RS	R/w	DB7	DB6	DB5	DB4 DB3	DB2	DB1	DB0	Hex	Remark	
Function Set	0	0	0	0	1	1	1	0	1	0	$\$ 3 A$	8 bit data length extension Bit RE=1; REV=0
Extended function set	0	0	0	0	0	0	1	0	0	1	$\$ 09$	4 line display
Entry mode set	0	0	0	0	0	0	0	1	1	0	$\$ 06$	bottom view
Bias setting	0	0	0	0	0	1	1	1	1	0	$\$ 1 E$	BS1=1
Function Set	0	0	0	0	1	1	1	0	0	1	$\$ 39$	8 bit data length extension Bit RE=0; IS=1
Internal OSC	0	0	0	0	0	1	1	0	1	1	$\$ 1 B$	BS0=1 -> Bias=1/6
Follower control	0	0	0	1	1	0	1	1	1	0	$\$ 6 E$	Devider on and set value
Power control	0	0	0	1	0	1	0	1	1	0	$\$ 56$	Booster on and set contrast (DB1=C5, DB0=C4)
Contrast Set	0	0	0	1	1	1	1	0	1	0	$\$ 7 A$	Set contrast (DB3-DB0=C3-C0)
Function Set	0	0	0	0	1	1	1	0	0	0	$\$ 38$	8 bit data length extension Bit RE=0; IS=0
Display On	0	0	0	0	0	0	1	1	1	1	$\$ 0 F$	Display on, cursor on, blink on

12:00 VIEWING ANGLE, TOP VIEW OPTION

If the display is read mostly from above (on the front of a laboratory power supply unit, for example), the preferred angle of viewing can be set to 12 o'clock. This rotates the display by 180°. A slightly different initialization setup is required for this. The line address is incremented by 10.

Change view												
Command	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark
Function Set	0	0	0	0	1	1	1	0	1	0	$\$ 3 A$	8 -Bit data length extension Bit RE $=1$; IS $=0$
Entry Mode	0	0	0	0	0	0	0	1	BDC	BDS	$\$ 0 \times$	$\$ 06=$ bottom view; $\$ 05=$ top view
Function Set	0	0	0	0	1	1	1	0	0	0	$\$ 38$	8 -Bit data length extension Bit RE $=0$; IS $=0$

SETTING THE CONTRAST

The contrast for the EA DOGS104－A can be set by command．This is done using bits C0 through C5 in the commands＂Contrast Set＂and＂Power／Icon Control／Contrast Set＂．Generally，the contrast is set once only．Thanks to the integrated temperature compensation function，it＇s kept constant allover the entire operating temperature range $\left(-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ ．

Contrast set												
Command	RS	R／w	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark
Function Set	0	0	0	0	1	1	1	0	0	1	$\$ 39$	8 －Bit data length extension Bit RE＝0；IS＝1
Power control	0	0	0	1	0	1	0	1	1	0	$\$ 56$	Booster on and set contrast（DB1＝C5，DB0＝C4）
Contrast Set	0	0	0	1	1	1	1	0	1	0	$\$ 7 A$	Set contrast（DB3－DB0＝C3－C0）
Function Set	0	0	0	0	1	1	1	0	0	0	$\$ 38$	8 －Bit data length extension Bit RE＝0；IS＝0

DDRAM ADDRESS／LINE COUNT

The display controller SSD1803A affords the opportunity of double height fonts．The different line combinationes with its corresponding initialization commands are shown in the following table． The DDRAM address depends on line count and viewing direction．

Bottom view	DDRAM ADDRESS （0x80＋adr）	Top view	DDRAM ADDRESS （0x80＋adr）	Set line count $(R S=0, R / W=0)$
	$\begin{aligned} & \hline 0 \times 00 \\ & 0 \times 20 \\ & 0 \times 40 \\ & 0 \times 60 \end{aligned}$	変：Eine \square \square	$\begin{aligned} & \hline 0 \times 0 \mathrm{~A} \\ & 0 \times 2 \mathrm{~A} \\ & 0 \times 4 \mathrm{~A} \\ & 0 \times 6 \mathrm{~A} \end{aligned}$	0x38－＞Function set：DH＝0
ロロッロ｜ Line Line	$\begin{aligned} & \hline 0 \times 00 \\ & 0 \times 20 \\ & 0 \times 40 \end{aligned}$	$\frac{\text { 1：Line }}{\text { 芬：Eine }}$	$\begin{aligned} & 0 \times 0 \mathrm{~A} \\ & 0 \times 2 \mathrm{~A} \\ & 0 \times 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \times 3 \mathrm{~A} \text {->Function set: } \mathrm{RE}=1 \\ & 0 \times 1 \mathrm{~F}->3 \text { Lines top } \\ & 0 \times 3 \mathrm{C}->\text { Function set: } \mathrm{RE}=0, \mathrm{DH}=1 \end{aligned}$
	$\begin{aligned} & 0 \times 00 \\ & 0 \times 20 \\ & 0 \times 40 \end{aligned}$		$\begin{aligned} & 0 \times 0 \mathrm{~A} \\ & 0 \times 2 \mathrm{~A} \\ & 0 \times 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \times 3 \mathrm{~A} \text {->Function set: } \mathrm{RE}=1 \\ & 0 \times 17 \text {-> } 3 \text { Lines middle } \\ & 0 \times 3 \mathrm{C} \text {->Function set: } \text { RE }=0, \mathrm{DH}=1 \end{aligned}$
	$\begin{aligned} & 0 \times 00 \\ & 0 \times 20 \\ & 0 \times 40 \end{aligned}$	$\frac{1}{3:}$ Line Line \square	$\begin{aligned} & 0 \times 0 \mathrm{~A} \\ & 0 \times 2 \mathrm{~A} \\ & 0 \times 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \times 3 \mathrm{~A} \text {->Function set: } \mathrm{RE}=1 \\ & 0 \times 13 \text {-> } 3 \text { Lines bottom } \\ & 0 \times 3 \mathrm{C} ~->\text { Function set: } \mathrm{RE}=0, \mathrm{DH}=1 \end{aligned}$
L：Line Line	0×00 0×20	－Line 2．Line \square	$\begin{aligned} & 0 \times 0 A \\ & 0 \times 2 A \end{aligned}$	$\begin{aligned} & 0 \times 3 \mathrm{~A}->\text { Function set: } \mathrm{RE}=1 \\ & 0 \times 1 \mathrm{~B}->2 \text { Lines } \\ & 0 \times 3 \mathrm{C}->\text { Function set: } \mathrm{RE}=0, \mathrm{DH}=1 \end{aligned}$

Further information about the commands of the SSD1803A，please refer to the datasheet： http：／／www．lcd－module．de／fileadmin／eng／pdf／zubehoer／ssd1803a 2 0．pdf

CHARACTER SET

The controller has 3 built－in character sets．They can be selected with the command＂ROM－Selection＂ in the extended command set．

ROM A

 300123456789：；＜＝＞？ 40 IABCDEFGHIJKLHNO
 60 dabcdefghijklmno
 $800123456789 \mathrm{KX} \pm \geq \leq-1$

ROM B

（tary 0123456789 ABCDEF	
300123456789：：＜＝？	
40 EABCDEFEHIJKLHNO	
50PERSTUUUXYE［V］＊	

COAAARAARCEEEEXIII
 o asagabaxceeteiliil

ROM C

 300123456789：$<=>?$ 40 GABCDEFEHI JKLMNO 50PQRSTUUWRVZ［羊］＊ 60 vacdefghijk lmno 70parstuvwxyz $\langle 1\rangle$ ） 80GödsagectexiniAn

 Bo－アイウエオカキワケコリシスセン

 E0 SíbútefrafiagBEbd

CREATING YOUR OWN CHARACTERS
It＇s possible to create 8 own additional characters（ASCII Codes 0．．7）to the fixes ROM codes．Please be informed，that RE－and IS－Bit need to be 0 ．
1．）The command＂CG RAM Address Set＂defines the ASCII code（Bit $3,4,5$ ）and the dot line（Bit $0,1,2$ ）of the new character．Example demonstrates creating ASCII code $\$ 00$ ．
2．）Doing 8 times the write command＂Data Write＂defines line by line the new character．8th．byte stands for the cursor line．
3．）The new defined character can be used as a＂normal＂ASCII code（0．．7）；use with＂DD RAM Address Set＂and＂Data Write＂．

Character－data					
Bit					Hex
7 6 5	43	2	1	0	
X X X	$0 \quad 0$	1	0	0	\＄04
	00	1	0	0	\＄04
	00	1	0	0	\＄04
	00	1	0	0	\＄04
	10	1	0	1	\＄15
	0 ¢	1	1	0	\＄0E
	00	1	0	0	\＄04
	00	0	0	0	\＄00

Define own character												
Command	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark
CG－RAM address set	0	0	0	1	AC5	ACA	AC3	AC2	AC1	ACO	\＄40	Set address of character $\$ 40=0$ ；$\$ 48=1$ ； \＄54＝2．．．\＄78＝7
Character－data	1	0	x	x	x	0	0	1	0	0	\＄04	first line
						0	0	1	0	0	\＄04	second line
						0	0	1	0	0	\＄04	third line
						0	0	1	0	0	\＄04	fourth line
						1	0	1	0	1	\＄15	fifth line
						0	1	1	1	0	\＄0E	sixth line
						0	0	1	0	0	\＄04	seventh line
						0	0	0	0	0	\＄00	eighth line，cursor line

SERIAL INTERFACE (SPI, MODE3)

The serial interface always needs a synchronization byte. In write mode, the byte to send hast to be devided in two bytes, into the "lower data" and "upper data". Please refer to the chart below. The maximum clock frequency for SCLK is 1 MHz .

${ }^{2}{ }^{2} \mathrm{C}$ INTERFACE

The display can be assigned to the slave adress 0×78 ($0 \times 3 \mathrm{C}$) if pin SAO is connected to VSS or 0x7A ($0 \times 3 \mathrm{D}$) if SA0 is high. After transfering the start condition, the hardware adress, togehter with the Read(1)/Write(0) bit has to be transmitted. While writing to the display, after the slave adress, there always is a control byte holding the information Data(1) or Command(0) and the continuation bit. If the continuation bit is set to 0 , the following bytes are data bytes until the next stop condition occurs. The maximum clock rate for ${ }^{2} \mathrm{C}$ bus is 400 kHz .
Please be informed, that the pins SDA+SCK contain an internal resistance of 600 to 1000 Ohm, or even more (Important, because of the LO-level while reading data and the ACK-Bit).

[^0]http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/ssd1803a 2 0.pdf

Note:

- LC-displays are not suited for wave soldering or reflow soldering. Temperatures above $+80^{\circ} \mathrm{C}$ may damage LCD module.
- Surfaces of display and backlight are equipped with protection foils to be protected against scratching. Please remove before use.

PINOUT

Pin	Symbol	Level	Function	Pin	Symbol	Level	Function
1	NC		(A1: LED backlight)	20	RST	L	Reset
2	NC		(C1:LED backlight)	19	SAO	H/L	Slave Address
3				18	CS	L	Chip Select
4				17	SCLK	H/L	Serial Clock
5				16	SID	H/L	Serial Data In
6				15	SOD	H/L	Serial Data Out
7				14	VSS	L	GND
8				13	VDD	H	Power Supply +2.4.+3,6V
9	NC		(C2: LED backlight)	12	IM1	H/L	Mode H: SPI/L: RC
10	NC		(A2: LED backlight)	11	VOUT	-	Output Voltage Converter

Note: The LED-Pins A1, C1, A2 und C2 (bzw. AGR, AERW, CG, CE, CR, CW) must be soldered from the top to ensure a clean contact.

Fon: $\quad+49(0) 8105-778090$
Fax: $\quad+49$ (0)8105-778099
e-Mail: info@Icd-module.de
Web: www.Icd-module.de

DISPLAY
ELECTRONIC ASSEMBLY VISIONS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LCD Character Display Modules \& Accessories category:
Click to view products by ELECTRONIC ASSEMBLY manufacturer:
Other Similar products are found below :
HG9Z-AC501 HG9Z-SCI25B LCM-S01602DTRA-3 HDM16216L-S-L30S HG9Z-XC213 EA FL-10P MDLS-81809-LV-GLED4G MDLS-20265-LV-GLED4G NMTC-S16205DFYHSAY-22 NHD-0420AZ-FSW-GBW-33V33-0 CM1644-SGR1 162A BC BW LCM-S02002DSMY 162D BA BC HDM24216H-2-P9XS DEM 16207 FGH-PW DEM 16207 SBH-PW-N DEM 16207 SYH-PY RC0802A1-LLG-JWVE RC0802A1-LLR-JWVE RC0802A-TIW-ESV RC0802A-TIY-ESV RC1202A-BIY-CSX RC1202A-BIY-ESX RC1602A-BIW-CSV RC1602A-YHW-CSV RC1602B-GHY-CSXD RC1602B-TIW-CSV RC1602B-YHY-CSVD RC1602D-GHY-ESX RC2002A2-LLB-JSVE RC2002A-GHG-CSV RC2004A-BIW-ESX RC2004A-GHW-CSV RC2004A-LLB-JSVE RC2004A-LLH-JSV RC2004A-LLR-JSVE DEM 08171 SYH-LY DEM 08172 SYH-PY DEM16101SYH-LY DEM 16209 SBH-PW-N DEM 16210 SGH DEM 16214 FGH-PW DEM 16216 FDH-P(RGB)-N DEM16216SYH-LY DEM 16217 SYH-PY DEM 16221 SYH DEM 16221 SYH (FFCF/TR)/V DEM 16227 FGH-PW DEM 16227 SBH-PW-N

[^0]: Further information about the interfaces and the timing of the SSD1803A, please refer to the datasheet

