HIGH-LEVEL GRAPHICS CONTROLLER FOR HD61202 (KS0108B) - DISPLAYS

PLCC44J

FEATURES

- * FOR LC GRAPHICS DISPLAYS 128x64 WITH HD 61202 OR COMPATIBLE
- * NO TIMING PROBLEMS WITH FAST BUS SYSTEMS
- * EASY PROGRAMMING OF VARIOUS BUILT IN GRAPH FUNCTIONS:
- * STRAIGHT LINE, DOT, AREA, AND/OR/EXOR, BAR GRAPH, PATTERNS...
- * 3 DIFFERENT FONTS BUILT IN
- * ZOOM FUNCTION FOR ALL FONTS (2-, 3- AND 4-TIMES)
- * 4-16 FREE DEFINEABLE CHARACTERS (DEPENDING ON SIZE)
- * MIXING TEXT AND GRAPHICS
- * INPUT ON RS-232 WITH ±10V/ CMOS-LEVEL
- * DIRECT ACCESS TO MAX232 OR EQUIVALENT
- * PROGRAMMABLE BAUD RATES FROM 300 UP TO 115.200 BAUD
- * ONLY MAX. 4 EXTERNAL COMPONENTS REQUIRED
- * 8 DIGITAL I/O'S FREE AVAILABLE FOR CUSTOM DESIGNS
- * 5V / typ. 12mA RATED INPUT (AT 11,059 MHz)
- * POWER-SAVE FUNCTION: CONSUMPTION max. 100µA @ 5V
- * HARDWARE CODES UP TO 4 ADRESSES

OPTIONS (IN PROGRESS)

- * VERSION FOR VERTICAL DISPLAY MOUNTING (90° ROTATED)
- * 40-PIN DIL PACKAGE VERSION

ORDER DESIGNATION

HIGH-LEVEL GRAPH CONTROLLER 128x64 FOR HD61202 EA IC202-PGH SUITABLE GRAPHICS DISPLAY INCL. HD61202, 128x64 CERAMIC RESONATOR SMD 7,37MHz, 3 PINS INCL. CAPs EA KERS7M37-C GRAPHICS MODULE WITH IC202-PGH AND RS-232C

EA P128-6N3LED EA GE128-6N3V24

ASSEMBLY LOCHHAMER SCHLAG 17 · D · 82 166 GRÄFELFING
PHONE +49-89-8541991 · FAX +49-89-8541721

ELECTRONIC ASSEMBLY

GENERAL

The EA IC202 high-level Graphics Controller links your system processor to your graphic display. Inputs accepts a serial asynchronous RS-232 interface. The graphics controller includes complete graph routines and various character sizes.

Programming is made by high level language graph commands; time consuming programming of character sets and graph routines is not necessary anymore. Expenditure for developing of your product is reduced significant and several features are gained on top of it:

- no timing problems with fast processor bus
- enough memory space (operating memory and characterset memory especially for μC)
- no time consuming graphic calculations which would slow down processor speed

Connecting to hardware is very simple. Display and main processor are connected directly. Drivers, decoders or port modules are not required. A simple display input need 1 wire (RxD) only. 2 up to maximal 4 external components will complete the circuit: a quartz with 2 capacitors and a resetcapacitor. **No external components** are needed when you operate with 8051-compatible systems. Clock and reset signal can be taken from main processor.

HARDWARE

Supply voltage of system is +5 Volts. Data transfer is asynchronous serial in RS-232 format at CMOS level. Data format is set to 8 data bits, 1 stop bit and no parity. Baud rate can be selected on 3 pins from 150 Baud up to 115200 Baud. Handshake lines RTS and CTS on board too. There is no interpretation needed for small quantities of datas.

Additional 8 I/O-ports are available for free usage. This may be wired as inputs or outputs on individual desire. Possible application is switching of backpanel illumination or reading of several keys.

SOFTWARE

Programming of this High-Level graphics controller is performed by commands like i.e. "draw a rectangular box from (0,0) to (64,15) which origins in top left hand corner of display". Therefore the serial interface has to transmit this sequence of bytes: \$52 \$00 \$00 \$40 \$0F. Characters string can be placed <u>precisely to the pixel</u>. Mixing of graphic images with text elements is possible anytime. Three different character sets are available where each of them can be zoomed by factors 2-, 3- or 4-times. The biggest character set 16x8 allows when using 4-x zoom (=64x32) a totally filled display with letters and numbers.

TEST MODE

As long as pin 9 (RTS) is after Power-On or after Reset connected with GND, the graphics controller is in test mode. Display shows now a marked flashing box. When connection Pin 9 (RTS) to GND is removed, the graphics controller returns to normal operation mode but testbox still remains visible.

TECHNICAL DESCRIPTION

Symbol	Parameter	Valid for	Condition	Min	Max	Units
VDD	Power Supply	VDD	11,059 MHz	4	6	V
ICC	Power Supply Current	VDD, Controller is busy	11,059 MHz		25	mA
ICC	Power Supply Current	VDD, Controller is ready	11,059 MHz		6.5	mA
ICPS	Power Supply Current Power-Save-Mode	VDD	VDD=6V VDD=3V		100 40	μA μA
VIL	Input Low Voltage	RESET, I/O07, Baud02, Adr01, RxD, CTS		-0.5	0.2*VDD-0.1	V
VIH	Input High Voltage	I/O07, Baud02, Adr01, RxD, CTS		0.2*VDD+	VDD+0.5	٧
VIHR	Input High Voltage Reset	RESET		0.7*VDD	VDD+0.5	V
VOL	Output Low Voltage	I/O07	IOL=3.2mA		0.45V	V
IIL	Logical 0 Input Current	Baud02, Adr01, RxD, CTS	VIN=0.45V		-50	μA
ITL	Logical 1 to 0 Transition Current	Baud02, Adr01, RxD, CTS	VIN=2V		-650	μA
ILI	Input Leakage Current	I/O07	0.45 <vin<vd< td=""><td></td><td>±10</td><td>μA</td></vin<vd<>		±10	μA
CIO	Pin Capacitance	RESET, I/O07, Baud02, Adr01, RxD, CTS	1 MHz, 25°C		10	pF
IOL	Output Low Current	I/O07	per line		10	mA
IOP	Output Low Current	I/O	port		26	mA
TRSTH	RESET Pulse Width	RESET		10		ms
RRST	RESET Pull Down Resistor	RESET		50	300	kOhm
TOP	Operating Temperature			0	+70	°C
FOSC	Oscillator Frequency	XTAL1, XTAL2		0	20	MHz

POWER-SAVE FUNCTION

Power-Save function allows use in battery powered devices. Command "Q \$01" puts the High-Level-Graphics-Controller from normal operation into mode. Current power save consumption (without display) is reduced to about 100µA. Because display is connected to supply voltage, still some mA current are drawn depending on type of display. Total content of display, i.e. all by your own created characters and bargraphdefinitions remain preserved. In Power-

Default settings											
Register	Comman	after Power-On	after Power-Save-Mo								
Display Control	С	Display on	Display off								
Text-Mode	Т	right, set, black	right, set, black								
Graphics Mode	V	set	set								
Font	F	6x8	6x8								
Font Faktor width/height	F	1/1	1/1								
Last xy	W	(0;0)	(0;0)								
Self-defined character	Е	undefined	as defined								
Bar Graph 18	В	undefined	as defined								
High-Level Graphics controller	K	selected	selected								
Inputs/Outputs I/O07	Υ	H-Level	H-Level								

Save-mode no commands will be accepted and executed (RTS at H-level).

Command "Q \$02" sets controller and a transistor driven display (see application example on page 5) to Power-Save Mode. Note that content of display gets lost but all by your own created characters and bargraph-definitions remain preserved. Also this mode will not accept and execute commands (RTS at H-level).

An at least 10ms wide reset puls (H-level) turns the graph controller back to normal operation. The internal registers are resetted as listed in above table.

ELECTRONIC ASSEMBLY

PINNING

Pin Description												
Pin	Symbol	In / Out	Level	Description								
1	NC			do not connect								
2,3,4	BAUD02	In	lo	Baud Rates								
5,6	ADR0, ADR1	In	lo	Adressing								
7	LCDON	Out	hi	lo: Power-Save-Mode, hi: Controller/LCD on								
8	QTYP	In	lo	Crystal type, see Baud Rates								
9	RTS	Out	lo	lo: RS-232 Data receive enable; hi: RS-232 Data receive disable								
10	RESET	In	hi	Default controller settings								
11	RxD	ln	lo	RS-232 Receive								
12	NC			do not connect								
13	TxD	Out	lo	RS-232 Transmit								
14	CTS	ln	lo	lo: RS-232 Data transmit enable; hi: RS-232 Data transmit disable								
15,16	CS2, CS1	Out	hi	Display: left (CS1) or right (CS2) half of display								
17	D/I	Out		Display: hi: Data; lo: Command								
18	R/W	Out		Display: hi: Data/Command read; lo: Data/Command write								
19	E	Out	hi	Display: Enable								
20	XTAL2	Out		System clock								
21	XTAL1	In		System clock (external input)								
22	GND	GND	lo	Power supply 0V								
23	NC			do not connect								
24,25,26,27, 28,29,30,31	D07	I/O		Display: Data lines								
32,33,34	NC			do not connect								
35	VDD	VDD	hi	Power supply +5V								
36,37,38,39, 40,41,42,43	IO70	I/O		8 Inputs/Outputs								
44	VDD	VDD	hi	Power supply +5V								

DIGITAL IN-/ OUTPUTS IO 0..7

8 pins of this High-Level Graphics Controller may be used as free available programmable In- and Outputs. Also mixed operation of i.e. 3 Outputs and 5 Inputs is possible.

Output circuit

Command "Y n1 n2"1) sets any selected pin IO 0..7 to H- or L-level; it can be compared with an Open-Drain output without pull-up resistor. Current

flows only when L-level is applied. A single pin may be loaded with max. 10mA, all pins together may be loaded with 26mA in all, i.e. 2 pins @ 10mA plus 1pin @ 6mA. Its possible i.e. to connect and switch a LED

directly. Higher current can be provided by an external transistor circuit. Note that after Power-On resp. in Power-Save-mode all outputs will be at H-level.

Input circuit

Input pins accept voltage levels between -0,5V and +0,2V*VDD-0,1V. Leakage current is max. $\pm 10\mu A$. Trigger levels are listed in table of technical description on page 3. Command "X n1"¹⁾ allows read in of datas on each individual pin IO 0..7. Voltage level must be stable all over read in procedure. There is no built in debounce function.

APPLICATION EXAMPLES

APPLICATION HINTS

In order to ensure trouble free operation, you should be aware of basic construction rules in digital electronic applications already during development of circuit routing:

- Watch for straight ground routing in your layout (no ground loops)
- Supply voltage distribution is best performed star shaped by widend conductor tracks, preferably by multilayer boards with seperate power supply layers.
- Components resp. cuircits with high or variable current consumption need seperate supply cables. Remaining cuircuits must be decoupled and filtered on demand. Also LED-illumination of display should be supplied seperate.
- Use blocking capacitors at all active components.
- Keep tracks carrying high frequency signals resp. high rising slopes as short as possible (XTAL1 and XTAL2!)

ELECTRONIC ASSEMBLY

OVERVIEW OF ALL GRAPHIC FUNCTIONS

Our High-Level Graphics Controller can be programmend by a number of built in commands. Each command starts with a command letter followed by a number of parameters.

				С	omi	mar	nd table	EA	IC2	202		
Command							Remarks	3				
	-1				Fund	ction	s for outp		g tex	xt		
Text mode	Т	R L O U	n1	ptn			R/L/O/U: W (down); n1:	rite cl overl	narac ay co	ter string (R)ight, (L)eft, (O)ben (up), (U)nten mbination mode for text output 1=set; 2=delete; 5=inverse replace; ptn: use pattern no. 07;		
Set font	F	n1	n2	n3						4x6 font; n1=2:6x8 font; n2=3:8x16 font 4); n2=X factor; n3=Y factor;		
Set ASCII characters	Α	x1	y1	n1			The charac	ter n1	will b	pe set at coordinate x1,y1. (Reference top left)		
Set character string	Z	x1	y1		NUL		Output cha	racter	string	g () to x1,y1; character 'NUL' (\$00)=end		
Define character	Ε	n1		dat	а		n1=charact	er no.	; data	a =number of bytes dep. on current font		
			(Grap	hics	com	mands wi	th ov	erlay	y mode		
Graphics mode	٧	n1					n1: 1=set; 2	2=dele	ete; 3:	=inverse; 4=replace; 5=inverse replace;		
Set point	Р	x1	y1				Set one pix	el at o	coord	inates x1, y1		
Draw straight line	G	x1	y1	x2	y2		Draw straig	ht line	from	x1,y1 to x2,y2		
Continue straight line	W	x1	y1				Draw a stra	ight li	ne fro	om last end point to x1, y1		
Draw rectangle	R	x1	у1	x2	y2		Draw a rec	tangle	; x1,y	11,x2,y2 = opposite corner points		
Draw round corner	N	x1	у1	x2	у2		Draw a rec	tangle	with	round corners; x1,y1,x2,y2 = corner points		
Area with fill pattern	М	x1	у1	x2	у2	ptn	Draw area	with p	atterr	n ptn (07); x1,y1,x2,y2 = corner points		
·		•		•	Oth	ner g	raphics co	omm	ands	3		
Delete display	D	L								of display (set to white);		
Invert display	D	ı					Invert entire contents of display;					
Fill display	D	S					Fill entire contents of display; (set to black);					
Delete area	L	x1	y1	x2	y2					x2,y2 = opposite corner points		
Invert area	1	x1	y1	x2	y2					2,y2 = opposite corner points		
Fill area	s	x1	y1	x2	y2					/2 = opposite corner points		
Draw box	0	x1	y1	x2	y2	ptn				fill pattern ptn (07); (always replace)		
Draw round box	J	x1	y1	x2	y2	ptn				vith fill pattern ptn (07); (always replace)		
Draw bar graph	В	nr	valu		,,_	P				the 'nr' (18) to the new user 'value'		
Upload picture area	U	x1	y1	<u> </u>	data			<u> </u>		x1,y1; see picture structure for picture data		
opioad picture area	U	Λ1	у				definition					
		R						00111	III	Define bar graph to L(eft), R(ight), O(up), U(down)		
Define bar graph	В	0	nr	x1	у1	x2	y2 aw	ew	ptn	with the 'nr' (18). x1,y1,x2,y2 form the rectangle enclosing the bar graph. aw, ew are the values for 0% and 100%. ptn=pattern (07).		
Display control	С	n1					n1=0: displ	ay off	(entir	e contents unchanged) n1=1: display on		
Select / Deselect		S					Activate dis	splay v	vith a	iddress n1 (n1=03; n1=255: all)		
graphics lcd	K	D	n1				Deactivate	displa	v witl	h address n1 (n1=03; n1=255: all)		
Power Save Mode	Q	n1					n1=1: Pow	er Sav	e for	controller; RTS->high controller and display; RTS->high, LCDON->low		
Write I/O port	Υ	n1	n2							n1 (n2=0); set (n2=1); invert (n2=2) n1=8: Set all 8 e with n2 (=8 bit binary value)		
						Se	nd comma					
Hard copy	Н	x1	у1	x2	у2		first of all, f	ollowe	d by	as a picture. The width and height are sent in pixels the actual picture data, via RS232.		
Read I/O port	Х	n1					I/O ports I/O	OI/C)7 as	<n1> (1=H level=5V, 0=L level=0V) n1=8: load all 8 8-bit binary value</n1>		
Query display type	?									d to query the display type. 3 bytes are sent back: s, vertical picture)		

PARAMETERS

All commands with parameters, coordinates and other hand over datas are expected as of Bytes. No seperating characters are allowed, i.e. no space bars, no commas. End of command **does not need a final Byte** i.e. no Carrige Return.

A..Z, L/R/O/U All commands are transmitted as ASCII code.

Example: G = 71 (dec.) = \$47 initiates the straight line

drawing command.

x1, x2, y1, y2 Coordinates are transmitted with one Byte; applicable

values are 0..127 for x- resp. 0..63 for y- coordinates.

Example: x1 = 10 (dec.) = \$0A

n1,n2,nr,aw,ew,value,ptn,data Parameters with numbers are transmitted with one Byte.

<u>Example:</u> n1 = 15 (dec.) = \$0F

EXAMPLE OF PROGRAMMING

The following table shows an example in wich the character string "Test" is output at coordinates 7,3.

Example	Codes											
ASCII	Z	BEL	ETX	Т	Ф	S	t	NUL				
Hex	\$5A	\$07	\$03	\$54	\$65	\$73	\$74	\$00				
Decimal	90	7	3	84	101	115	116	0				
Turbo-Pascal	write(a	ux, 'Z', c	hr(7), cl	hr(3), 'Te	est', chr((0));						
C,	fprintf(s	stdaux, '	"%c%c%	%c%s%c	:", 'Z', 7,	3, "Test	t", 0);					
Q-Basic				8,2,BIN')+CHR\$								

PATTERN

Several commands allow pattern type parameters (ptn = 0..7). They are used e.g. for rectangular areas, bargraphs or text lines with various pattern.

The following fill patterns are available:

DESCRIPTION OF VARIOUS GRAPHICS FUNCTIONS

The following pages show detailed descriptions in alphabetical order for each individual function. Examples are shown as hardcopy in an enlarged window of 50 x 32 pixel once the command has been executed. Examples show all transfered bytes in Hex code.

x1 y1 n1

Set ASCII-Characters

A character **n1** will be displayed on coordinates **x1**, **y1** with preset font 'F' and text mode 'T' (setzen / löschen / invertieren / replace / invers replace / pattern). Origin is (0,0) at top left hand corner of display. Datas for coordinates apply also to top left hand corner of a given character. Note: Font No.1 shows capital letters only.

Example: \$41 \$13 \$02 \$45

Character 'E' is displayed at coordinates 19,2

Preset font: 6x8, width 2x and height 2x

Text mode: Replace and black pattern

L/R/O/U nr x1 y1 x2 y2 aw ew ptn В

Define Bargraph

Up to 8 bargraphs (nr=1..8) can be defined, which may oscillate to L=left, R=right, O=up or U=down direction. Bargraph full level range coordinates are described from x1,y1 to x2,y2. Scaling of bargraph is performed by starting zero position aw (=0..254) and max. ending position (full size) ew (=0..254). Bargraph always is displayed in inverse-mode using the ptn-pattern type: the background remains preserved in any case. (Note: executing this command only the bargraph range is defined but nothing is visible on display).

Example: \$42 \$4F \$01 \$04 \$02 \$09 \$1E \$04 \$14 \$01

Defines bargraph no. 1 which oscillates vertical up to top. At full level its coordinates ranges from 4,2 to 9,30. Displayed start- and end values represent current values of 4..20 mA. (Hardcopy shows bargraph at its full level operating at \$42 \$01 \$14)

В nr value

Draw Bargraph

Bargraph number **n1** (1..8) will be adjusted to a new value (aw <= value <= ew).

If value > ew, than final value will be displayed. Bargraph must be defined before, see above example.

Example: \$42 \$01 \$0A

Above defined bargraph no. 1 is set now to value 10.

C **n**1

Switches display On (n1=1) or Off (n1=0); all display datas remains preserved and commands can be executed furthermore.

Example: \$43 \$00

Content of display becomes invisible, but remains preserved.

Display Control

D L/I/S Display Command

Total content of display will be: L=deleted (white), I=inverted or S=filled (black)

Example: \$44 \$49

inverts total content of display

E n1 daten Define Character

Up to 16 characters can be defined by yourself (depending on font size). This characters have ASCII codes from 1 to max.16 and remain stored in an internal 64 Byte RAM-area until the supply voltage is switched off. Up to 16 characters can be defined with font no.1, up to 10 characters with font no.2 and up to 4 characters with the biggest font, no.3. Attention! If several characters out of different fonts should be defined, than you have to consider that i.e. one character from 8x16 font, code 1 needs the same RAM-space as a character from 4x6 font, code 1 to 4 (see table nearby)!

Example 1:

\$45 \$03

\$04 \$02 \$7F \$02 \$04 \$00

defines a up pointing arrow with ASCII-No. 3 and with a preset 6x8 character set.

Example 2:

\$45 \$02

\$00 \$00 \$00 \$FF \$00 \$00 \$00 \$00

\$04 \$08 \$10 \$3F \$10 \$08 \$04 \$00

defines a down pointing arrow with ASCII-No. 2 and with a preset 8x16 character set.

	BYTE	NR I
	1 2 3	4 5 6
Bit 0		
Bit 1		
Bit 3		
Bit 4		
Bit 6		
Bit 7		

		BYTE NR.										
	1	2	3	4	5	6	7	8				
Dir o	_											
Bit 0	L											
Bit 1	\vdash				-	-		-				
Bit 3	\vdash					_		_				
Bit 4	\vdash											
Bit 5	-				-	-		-				
Bit 6	-											
Bit 7	T											
Bit 0												
Bit 1												
Bit 2												
Bit 3	<u> </u>											
Bit 4	\vdash					_		_				
Bit 6	-					-		-				
Bit 7	\vdash											
DIL /	Щ.					_		_				
	9	10	11	12	13	14	15	16				
	Ė	BYTE NR.										

(ASCII)											
4x6	6x8	8x16									
1	1										
2		4									
3	2	1									
4	3										
5											
6	4	2									
7	5	2									
8											
9	6										
10	7	3									
11		3									
12	8										
13	9										
14											
15	10	4									
16											

Define characters

F n1 n2 n3

Font No. **n1** (1=4x6 capital letters only; 2=6x8; 3=8x16) is choosed. Different zoom factors (1..4x) for width **n2** and for height **n3** are selected.

Example: \$46 \$02 \$03 \$04

6x8- font is now set to 3-times width and to 4-times height.

Beside hardcopy shows letter 'E' from font 6x8 in different sizes.

....

Set Font

G x1 y1 x2 y2

Straight line is drawn from coordinates **x1,y1** to **x2,y2** taking into account the preset graph mode 'V' (set / clear / invert).

Example: \$47 \$03 \$14 \$28 \$06

Draws a straight line from 3,20 to 50,6.

Draw straight line

H x1 y1 x2 y2

Get Hardcopy from Display contents

Range from top left hand corner **x1,y1** to right hand bottom corner **x2,y2** is requested. Graphic chip transmits first width and height of requested display-section and afterwards the datas of display-content. See command Uplouad picture 'U' for building up display datas.

Example: \$48 \$00 \$00 \$1F \$0F

top left hand section of display-content (size 32 x 16 pixel) will be sent via RS-232 immediately.

I x1 y1 x2 y2

Invert area

The area from top left hand corner **x1,y1** to right hand bottom corner **x2,y2** will be inverted (black pixel turns to white and reversed).

Example: \$49 \$00 \$00 \$17 \$1B

inverts display-content of example "Set Font" in area from 0,0 to 23,27.

J x1 y1 x2 y2 ptn

Draw a round box

A rectangular box with rounded corners is drawn from top left hand corner **x1,y1** to right hand bottom corner **x2,y2** and filled with pattern **ptn** and delete background. See also Draw 'N' rounded corner boxes on next page.

Example: \$4A \$07 \$03 \$23 \$16 \$03

draws a rounded corner box from 7,3 to 35,22 filled with pattern 3=50% black.

K S/D n1

Select / Deselect Graphics Controller

S=select or **D**=deselect Graphics Controller with its hardware adress **n1** (0..3); adress 255=\$FF is the master-adress for access all Graphics Controller. Adress setting is done by hardware (pin ADR0/1 see page 16).

Example: \$4B \$44 \$00

all commands for Graphics Controller with adress \$00 will be ignored from now on.

Delete area

L x1 y1 x2 y2

Area from top left hand corner **x1,y1** up to bottom right hand corner **x2,y2** will be cleared.

Example:

\$44 \$53

\$4C \$06 \$04 \$28 \$19

Display is filled first with 'D', 'S' followed by clearing the area from 6,4 to 40,25.

M x1 y1 x2 y2 ptn

Area with fill pattern

A rectangular area starting from top left hand corner **x1,y1** up to bottom right hand corner **x2,y2** is filled with pattern **ptn** honoring the preset graphics mode 'V' (set / delete / inverse / replace / inverse replace).

Example: \$4D \$05 \$01 \$2D \$1A \$07

draws a cross hatch pattern 7=45° from 5,1 to 45,26.

x1 y1 x2 y2

Draw a rectangle with rounded corners from top left hand corner x1,y1 up to bottom right hand corner x2,y2 honoring preset graphic mode 'V' (set / delete / inverse). Content of box remains unchanged. Compare drawing rectangle with rounded corners 'J' .

Example: \$4E \$06 \$02 \$26 \$13

draws a box with rounded corners from coordinates 6,2 up to coordinates 38,19.

Draw round corner

0 x1 y1 x2 y2 ptn

A rectangular box is drawn from top left hand corner x1,y1 up to bottom right hand corner **x2,y2** filled with pattern **ptn.** Background of box will be cleared. Consult also 'R' = draw rectangular box.

Example: \$4F \$02 \$05 \$12 \$1E \$02

draws a box from coordinates 2,5 up to coordinates 18,30 with pattern 2= 25% black.

Set Point

P x1 y1

A single Pixel will be placed at coordinates x1, y1 honoring preset graphic mode 'V' (set / delete / inverse).

\$50 \$0D \$11places a single Pixel at coordinates 17,13. Example:

Q n1

Example: \$51 \$01

switches our High-Level Graphic Controller into Power-Save-Mode. Handshake line RTS shows H-level which means that no more commands will be accepted. Supply voltage may be reduced now down to 2 Volts. Applying a wide pulse of >10 msec onto reset pin will awake the controller. Contents of registers remains unchanged, see table on page 3.

n1: 1, High-Level Graphic Controller in Power-Save-Mode (Pin LCDON remains on VDD-level: Display is ON) n1: 2, High-Level Graphic Controller with Display are in Power-Save-Mode (Pin LCDON at GND-level: Display is OFF).

Power Save Mode

R x1 y1 x2 y2

A rectangle box is drawn from top left hand corner x1,y1 up to right hand bottom corner x2,y2 honoring the preset graphic mode 'V' (set / delete / inverse). Contents of rectangular box remains unchanged.

Compare 'O' = draw rectangular box with rounded corners.

\$52 \$15 \$08 \$30 \$25

draws a rectangle from coordinates 21,8 up to coordinates 48,37.

x1 y1 x2 y2

An area from top left hand corner x1,y1 up to right hand bottom corner x2,y2 will be filled with black pixels.

Example: \$53 \$09 \$05 \$16 \$16

fills an area from coordinates 9,5 to coordinates 22,22 with black pixels.

Fill area

ELECTRONIC ASSEMBLY

T L/R/O/U n1 ptn

Overlay combinaton mode **n1** and pattern **ptn** sets ASCII-characters 'A' in text mode and displays a character string when setting to 'Z'. For display a character string (command 'Z') the typing-direction must be set by: **L**=left, **R**=right, **O**=up and **U**=down.

Example: \$54 \$52 \$03 \$03

Initiates the overlay mode for text functions with gray characters (pattern 3 = 50% black), inverts the background and writes character string from left to right.

SETZEN LOESCHEN HT +T= T REPLACE INV.REPLACE HT +T= T

Overlay combinaton mode n1:

- 1 = set: black Pixel without regarding previous value (OR)
- 2 = delete: white Pixel without regarding previous parameter
- 3 = invert: black Pixel turns to white Pixel and vice versa (EXOR)
- 4 = replace: clear background and set black colored Pixel
- 5 = invers replace: fill background and place white colored Pixel

Upload picture

Set Text Mode

U x1 y1 data

An image will be loaded at coordinates x1,y1

daten: - 1 Byte for width of image Pixels

- 1 Byte for width of image Fixels
 - Image datas: Qty = ((height+7) / 8) * width Bytes.

1 Byte equals 8 vertical Pixel on screen; 0=white, 1=black; LSB: top, MSB: bottom;

Image builts up from left hand to right hand.

The program BMP2BLV.EXE on disk EA DISKIC-1, wich is available as an accesory, generates from a monochrome Windows-Bitmap- Graphic the datas for our Image inclusive width- and height information.

BYTE NR.

1 2 3 4 5 6 7 8 9 10 11 12

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 0
Bit 1
Bit 2
Bit 3
Bit 1
Bit 2
Bit 3
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 0
Bit 7
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 0
Bit 7
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 6
Bit 7

Example: \$55 \$09 \$04 \$0C \$0C

\$F0 \$FC \$FE \$FE \$F7 \$BF \$BF \$F7 \$FE \$FE \$FC \$F0 \$00 \$03 \$07 \$06 \$0D \$0D \$0D \$06 \$07 \$03 \$00

loads beside shown image at coordinates 9,4.

V n1

Set overlay combinaton mode **n1** i.e. for following graph-functions: set dot 'P', draw straight line 'G', continue drawing straight line 'W', draw rectangular box 'R', draw box with rounded corners 'N', fill area with pattern 'M'.

Example: \$56 \$03

sets overlay mode to inverse.

Beside example illustrates drawing of a rectangular box in overlay modes set, clear and invert.

Overlay combinaton mode n1:

- 1 = set: black Pixel without considering previous parameter (ODER)
- 2 = delete: white Pixel without regarding previous parameter
- 3 = invert: black Pixel turns to white Pixel and reversed (EXOR)
- 4 = replace: clear background and set Pixels; area with filling pattern ptn only
- 5 = invers replace: fill background, delete Pixels; area with fill pattern ptn only

Set Graphics Mode

W x1 y1

Draws a straight line from last drawn line end resp. (see page 3: Last xy) to **x1,y1** under considering the Graphic Mode 'V' (set / delete / inverse).

Example:

\$47 \$00 \$00 \$10 \$04

\$57 \$16 \$1B

\$57 \$30 \$0F

Draws first a straight line from 0,0 to 16,4; then continuing from 22,27 to 48,15.

Continue straight line

X n1 I/O Read Port

Reads in Port (n1: 0..7 = I/O: 0..7).

When **n1** = 8, all I/O 0..7 are read in binary; I/O 0: LSB, I/O 7: MSB

See application on page 4.

Example: \$58 \$02

reads in signal at I/O 2 and transmits L-level a \$00 resp. H-level a \$01 via RS-232

Y n1 n2 I/O Set Port

Changes port value (**n1**: 0..7 = I/O: 0..7) into value **n2** (0=L-level; 1=H-level; 2=invert port level). When **n1** becomes 8, all I/O 0..7 will be transferred as binary value **n2**; I/O 0: LSB, I/O 7: MSB See application on page 4.

Example: \$59 \$02 \$01 sets port I/O 2 to H-level

Z x1 y1 ASCII... NUL

Write character string

Writes a character string **ASCII....** beginning from coordinate **x1,y1** honoring preset mode 'T' (set / delete / inverse / replace / inverse replace / pattern / direction). Character strings must be finished with **NUL** (\$00). Origin (0,0) starts in top left hand corner of display. Datas of coordinates refer to top left hand corner of character. Note: Font Nr. 1 has capital letters only.

Example: \$5A \$06 \$0B \$54 \$65 \$73 \$74 \$00

writes character string "Test" starting at coordinate 6,11.

Font: 8x16 with normal height and width.

Text mode: Writing direction is from right hand, Overlay mode is Replace with Pattern Black.

Test

? Query display type

Resolution of display and way of building up an image will be displayed. High-Level-Graphics Controller IC202-PGH features a permanent resolution of 128 x 64 Pixel and organizes image building up in vertical direction. This command is available for communication of external programmes with our High-Level-Graphics Controller. IC6963-PGH is designed for displays with i.e. Toshiba controller managing variabel resolutions up to 240x128 Pixel with horizontal image building up organisation.

Example: \$3F

This command transmits first the resolution X- (128) and Y- (64) and then the way of image building up ('V') in vertical organization via RS-232 interface.

ELECTRONIC ASSEMBLY

INTEGRATED FONTS

High-Level Graphic Controller EA IC202 incorporates 3 integrated character sets (Font1: 4x6 Pixel; Font2: 6x8 Pixel and Font 3 8x16 Pixel). Each character set can be used in 1-, 2-, 3- or 4-times height. Independant of height the width may be doubled, tripled or quadrupled. 4-16 self defined characters will be stored as long as the supply voltage is switched on, (see command 'E').

+ Lower Upper	\$0 (0)	\$1 (1)	\$2 (2)	\$3 (3)	\$4 (4)	\$5 (5)	\$6 (6)	\$7 (7)	\$8 (8)	\$9 (9)	\$A (10)	\$B (11)	\$C (12)	\$D (13)	\$E (14)	\$F (15)
\$20 (dez: 32)		:		*	5	×	8	,)	¥			-		7
\$30 (dez: 48)	ū	i	2	3	4	5	6	7	ii	9	:	:	<	=	>	7
\$40 (dez: 64)	e	Н	B	Ε	D	E	F	15	H	I	Ŀ	Н	L.	H	п	0
\$50 (dez: 80)	F	ü	E	5	T	IJ	U	H	×	Y	2	[ì	3		

Font 1

+ Lower Upper	\$0 (0)	\$1 (1)	\$2 (2)	\$3 (3)	\$4 (4)	\$5 (5)	\$6 (6)	\$7 (7)	\$8 (8)	\$9 (9)	\$A (10)	\$B (11)	\$C (12)	\$D (13)	\$E (14)	\$F (15)
\$20 (dez: 32)		ŀ	ii	#	\$	%	8.	,	()	*	+		-		
\$30 (dez: 48)	8	1	2	3	4	5	6	7	8	9	·	j	<	=	>	?
\$40 (dez: 64)	œ	Ĥ	В	C	D	E	F	Œ	Н	I	J	K	L	M	Н	0
\$50 (dez: 80)	P	G!	R	S	Т	U	IJ	W	X	Υ	Z	Е	۸,	רו		
\$60 (dez: 96)	٠.	a	ь	c	d	e	f	O.	h	i	j	k	1	M	m	o
\$70 (dez: 112)	lo.	애	r.	55	t	ч	Ų	W	×	y	Z	{		-	**	đ
\$80 (dez: 128)	Ç	ü	ë	ä	:: :::	ä	á	ij	ē	ë	è	ï	1	; <u>,</u>	Ä	Á
\$90 (dez: 144)	Ë	æ	Æ	ö	ö	ö	G	ü	ij	ö	ij	#	£	#	B	f
\$A0 (dez: 160)	ā	ï	ij.	ų.	ñ	Ñ	2	OI	٤	<u></u>	,	增	柯		×	35
\$B0 (dez: 176)	:::		3333	ı	4	Ħ	#	Ti	7	#	II	71	빏	Ш	TI.	7
\$C0 (dez: 192)	i.	_L	77"	Ļ		+	þ	1111	Ŀ	IF	<u>#</u>	77	l‡	==	##	:=±:
\$D0 (dez: 208)	.11.	Ŧ	771	Ш.	Ŀ	F	īī	#	#	1	r		111	#	#	::::
\$E0 (dez: 224)	α	β	l.	TT	Σ	ø	μ.	Ŧ	ğ	θ	Ω	క	0	Ø	E	Π
\$F0 (dez: 240)	≡	±	2	<u> </u>	Γ	J	÷	22	43:	ı.		ij	n	72	#	

Each individual character can be placed exactly by pixel. You may mix text with graphics in any way at your desire. Also characters with different sizes can be used in common.

Font 2

+ Lower Upper	\$0 (0)	\$1 (1)	\$2 (2)	\$3 (3)	\$4 (4)	\$5 (5)	\$6 (6)	\$7 (7)	\$8 (8)	\$9 (9)	\$A (10)	\$B (11)	\$C (12)	\$D (13)	\$E (14)	\$F (15)
\$20 (dez: 32)		i	1111	#	47	7.		i	(7	#	+	ji			الإ
\$30 (dez: 48)	Ø	1	7	7	4	ij	ő	7	Ø	9		;	4	::::	1,44	7
\$40 (dez: 64)	Ø	A	U	C	D	II.		G		1		K.	į.	M	H	O
\$50 (dez: 80)	P	Q	R	S		Ų	Ų	H	X		17-11	Ľ	=,,,=	Beendi	٨	
\$60 (dez: 96)	*4,	a	b	C.	ű	0	#	9	ħ	######################################	·	Ľ,	#===#	m	П	0
\$70 (dez: 112)	p	q	F	5	#1.4	U	V	M	X		74	1			riej	۵
\$80 (dez: 128)	Ç	ij	Ć	â	::G		8	Ç	å	::: C:	, III	1	#: ####	Bredt of	Ħ	Ä
\$90 (dez: 144)	É	æ	Æ	ô	Ö	Ò	Û	ù	ij	Ü	ij	¢	Ë	#	ß	

Font 3

EA GE120-5NV24 GRAPHIC UNIT 120x32, 2 FONTS, RS-232

Dimensions 68 x 39 x 11mm

120x32, Supertwist, LED-Backlight **Display**

Supply Voltage +5V / 100mA

Terminals 10 Pins, 2,54mm Grid

Operating Temperature 0 ... +70°C Storage Temperature -20 ... +70°C

- * 120x32 Pixel Supertwist-LCD with green color LED-Backlight
- * 2 FONTS from 3,2mm (5x30 Characters) to 4,6mm (4x20) up to 18,2 mm (1x5)
- * DRAW STRAIGHT LINES, INVERT OR DELTE AREAS
- * SUPPLY VOLTAGE: +5V / typ. 100mA
- * BAUDRATES1200,2400,4800,9600,19200BD

Ordering Information

Graphicunit 120x64withLED-Backlight **EA GE120-5NV24 EAKV24-9B**

1212122222122222

Cable with 9-pin D-SUB plug (female)

EA GE128-6N3V24 GRAPHIC UNIT 128x64, 3 FONTS, RS-232C

Graphic Device EA GE128-6N3V24 is based on High-Level-Graphic Controller EA IC202-PGH. This Graphic Device operates either on real RS-232C levels (±10Volts) or with CMOS- levels.

Dimensions 84 x 60 x 25mm

Display 128x64, Supertwist, LED-Backlight

Supply Voltage +5V / 150mA

10 Pins, 2,54mm Grid **Terminals**

Operating Temperature 0 ... +70°C Storage Temperature -20 ... +70°C

- * 128x64 Pixel Supertwist-LCD with green color LED-Backlight
- * 3 FONTS: 2,6mm (10x32 Characters); 6,2mm (4x16) and 25 mm (1x5)
- * DRAW STRAIGHT LINES, INVERT OR DELETE AREAS
- * AUTOMATIC BARGRAPH SCALING FUNCTION
- * SUPPLY VOLTAGE: +5V / typ. 150mA
- * BAUDRATES 1200, 2400, 4800, 9600, 19200BD

Ordering Information

Graphicunit 128x64 with LED-Backlight Cable with 9-pin D-SUB plug (female)

EA GE128-6N3V24 **EA KV24-9B**

EA GE128-7KV24 GRAPHIC UNIT 128x128, 3 FONTS, RS-232

Dimensions 85 x 100 x 25mm

Display 128x128, Supertwist, LED-Backlight

Supply Voltage +5V / 500mA

Terminals 10 Pins, 2,54mm Grid

Operating Temperature 0 ... +50°C Storage Temperature -20 ... +70°C

- * 128x128 Pixel Supertwist-LCD with green color LED-Backlight
- * 3 FONTS from 2,2mm (21x32 Characters) to 5,2mm (8x16) up to 21 mm (2x5)
- * DRAW STRAIGHT LINES, INVERT OR DELETE AREAS
- * AUTOMATIC BARGRAPH SCALING FUNCTION
- * SUPPLY VOLTAGE: +5V / typ. 500mA
- * BAUD RATES 1200,2400,4800,9600,19200BD

Ordering Information

Graphicunit 128x128 with LED-Backlight **EA GE128-7KV24** Cable with 9-pin D-SUB plug (female) **EA KV24-9B**

More Display Sizes are available: i.e. 240x64 and 240x128 (as of Dec `97).

BAUD RATES

Various baud rates can be selected depending on System Clock (Quartz, Ceramic Resonator) for RS-232 data transfer. Its done by connecting pins BAUD0..2 and QTYP to VDD or to GND-Pegel. Programmable baud rates are shown in this table (0: GND, 1: VDD).

	Baud Rates													
Baud	Baud	Baud	QTYP = 1		QTYP = 0									
2	1	0	11,0592 MHz	3,6864 MHz	7,3728 MHz	14,7456 MHz								
0	0	0	1200	300	600	1200								
0	0	1	2400	600	1200	2400								
0	1	0	4800	1200	2400	4800								
0	1	1	9600	2400	4800	9600								
1	0	0	19200	4800	9600	19200								
1	0	1	38400	9600	19200	38400								
1	1	0	57600	14400	28800	57600								
1	1	1	115200	28800	57600	115200								

ADRESSING

Up to 4 High-Level Graphics Controller are adressable on a single serial port. The individual adress is set on pin ADR0 and on pin ADR1.

<u>Caution!</u> Simple parallel connection of handshake lines RTS respectively transmitter lines TxD results in interfering output signals, therefore you have to use an additional logic circuit to prevent data crash. We recommand an OR-logic for RTS resp. AND-logic for TxD.

Adressing		
A D R 1	A D R O	Adress
0	0	0
0	1	1
1	0	2
1	1	3

DIMENSIONS

Housing: PLCC44J; all sizes in Inches (mm)

LOCHHAMER SCHLAG 17 · D-82166 GRÄFELFING PHONE +49-89-8541991 · FAX +49-89-8541721

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Drivers & Controllers category:

Click to view products by Electronic Assembly manufacturer:

Other Similar products are found below:

ICB2FL01G HV5812PJ-G-M904 TW8813-LB2-GR TW8811-PC2-GR MAX1839EEP+ TW9907-TA1-GR LX27901IDW SSD2828QN4
ICB2FL01GXUMA2 DLP2000FQC PAD1000YFFR S1D13746F01A600 FIN324CMLX AD8387JSVZ DLPC6421ZPC HV852K7-G
HV859K7-G HV857K7-G DIO2133CT14 S1D13506F00A200 S1D13L03F00A100-40 TW2836-BA1-GR SSD2829QL9 MAX749CSA+T
MAX4820EUP+T ICL7135CAI+ ICL7135CMH+D ICL7137CMH+D MAX25221BATJ/V+ S1D13748B00B100 S1D13A05B00B200
MAX3738ETG+T MAX8722CEEG+ MAX749CPA+ MAX8785AETI+ ICL7135CQI+ HV518PJ-G-M903 HV5812P-G HV5812PJ-G
HV5812WG-G HV7224PG-G HV853K7-G HV860K7-G HV6810WG-G HV823LG-G HV857MG-G HV833MG-G HV857LMG-G
HV850MG-G HV859MG-G