

Possibility to connect load onto controlling input

It is possible to connect the load (e.g.: contactor) between terminals S-A2, without any interruption of correct relay function.

Indication of operating states

Examples of signaling

Function

ON DELAY
When the input voltage U is applied, timing delay t begins. Relay contacts R change state after time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.

C

INTERVAL ON
When input voltage U is applied, relay contacts R change state immediately and timing cycle begins. When time delay is complete, contacts return to shelf state. When input voltage U is removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

FLASHER - OFF first

When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t . This cycle will repeat until input voltage U is removed Trigger switch is not used in this function.

FLASHER - ON first

When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed Trigger switch is not used in this function.
d
f

S

SINGLE SHOT

Upon application of input voltage U , the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. During time-out, the trigger signal S is ignored. The relay resets by applying the trigger switch S when the relay is not energized.

SINGLE SHOT falling edge

Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the relay contacts R transfer and the preset time t begins. At the end of the preset time t, the relay contacts R return to their normal condition unless the trigger switch S is opened and closed prior to time out t (before preset time elapses). Continuous cycling of the trigger switch S at a rate faster than the prese time will cause the relay contacts R to remain closed. If input voltage U is removed, relay contacts R return to their shelf state

ON/OFF DELAY

Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay t is complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state

OFF DELAY

nput voltage U must be applied continuously When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed relay contacts R return to their shelf state.

MEMORY LATCH

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

PULSE GENERATOR 0.5 s
Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t . Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by ELKO EP manufacturer:
Other Similar products are found below :
H5S-WFB2D 304E-007-A-00-PX 305E-015-A-1-0-PX THR2U-110A 81506944 H7AN-RT6M AC100-240 711-0131 1SVR508130R0000 1SVR730100R3100 H3RN-2 24VDC H3Y-2 AC24 10S 81503028 722-0001 732-0023 80.01.0.240.0000T 81.01.0.230.0000T 88.92.0.240.0000 12.A4.8.230.0010 85.03.0.024.0000 80.61.0.240.0000T LTR10 SL555D SA555DR-HXY NE555P-HXY LM555DGKRG ICM7555DRG LMC555DRG LMC555DGKRG TLC555DGKRG NE556DRG TLC555DRG LM555DRG TEMS TESD415 SHT-3/230V 12.61.8.230.0000 OR-PRE-446(GS) $\underline{12 . A 2.8 .230 .0000 ~ P C M-33 ~ S H T-1 / 230 V ~ 88.92 .0 .240 .0001 ~ P C M-34 ~ 80.41 .0 .240 .0000 T ~}$ $\underline{12.62 .8 .230 .0000} \underline{85.03 .8 .240 .0000}$ CRM-93H/230V PCS-516AC PCM-32 12.61.0.024.0000 PCS-516DC

