**Document status: Preliminary** 

Copyright 2024 © Embedded Artists AB

# 2GF M.2 Module Datasheet (EAR00497 / EAR00502)

- Wi-Fi 5, 802.11 a/b/g/n/ac
- Bluetooth 5.4 BR/EDR/LE
- SDIO 3.0 interface, SDR50@80MHz
- Chipset: Infineon CYW43022





Get Up-and-Running Quickly and Start Developing Your Application on Day 1!



#### **Embedded Artists AB**

Rundelsgatan 14 211 36 Malmö Sweden

https://www.EmbeddedArtists.com

#### Copyright 2024 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Embedded Artists AB.

#### **Disclaimer**

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. The information has been carefully checked and is believed to be accurate, however, no responsibility is assumed for inaccuracies.

Information in this publication is subject to change without notice and does not represent a commitment on the part of Embedded Artists AB.

#### **Feedback**

We appreciate any feedback you may have for improvements to this document.

#### **Trademarks**

All brand and product names mentioned herein are trademarks, services marks, registered trademarks, or registered service marks of their respective owners and should be treated as such.

# **Table of Contents**

| 1   | Document Information                                         | 4  |
|-----|--------------------------------------------------------------|----|
| 1.1 | Revision History                                             | 4  |
| 2   | Introduction                                                 | 5  |
| 2.1 | Benefits of Using an M.2 Module to get Wireless Connectivity | 5  |
| 2.2 | More M.2 Related Information                                 | 5  |
| 2.3 | ESD Precaution and Handling                                  | 6  |
| 2.4 | Product Compliance                                           | 6  |
| 3   | Specification                                                | 7  |
| 3.1 | Power Up Sequence                                            | 8  |
| 3.2 | External Sleep Clock                                         | 8  |
| 3.3 | Mechanical Dimensions                                        | 9  |
| 3.4 | M.2 Pinning                                                  | 10 |
| 3.5 | SDIO Interface                                               | 14 |
| 3.6 | Test Points and Expansion Header                             | 14 |
| 3.7 | <b>Current Consumption Measurements</b>                      | 15 |
| 4   | Antenna                                                      | 16 |
| 4.1 | Antenna Connector                                            | 16 |
| 5   | Software and Support                                         | 17 |
| 5.1 | Software Driver                                              | 17 |
| 5.2 | Support                                                      | 17 |
| 6   | Regulatory                                                   | 18 |
| 6.1 | European Union Regulatory Compliance                         | 18 |
| 7   | Disclaimers                                                  | 19 |
| 7 1 | Definition of Document Status                                | 20 |

# 1 Document Information

This document applies to the following products.

| Product Name               | Type Number         | Murata Module | Chipset              | Product Status     |
|----------------------------|---------------------|---------------|----------------------|--------------------|
| 2GF M.2 Module,<br>rev PA4 | EAR00497 / EAR00502 | LBEE5WV2GF    | Infineon<br>CYW43022 | Initial Production |

This table below lists the product differences. All products are not stocked. Consult Embedded Artists for availability and lead time.

| Type Number | Product Name   | Antenna                             | Packaging                         |
|-------------|----------------|-------------------------------------|-----------------------------------|
| EAR00497    | 2GF M.2 Module | External antenna via u.fl.connector | Individual packing for evaluation |
| EAR00502    | 2GF M.2 Module | External antenna via u.fl.connector | Tray packing                      |

### 1.1 Revision History

| Revision | Date       | Description    |
|----------|------------|----------------|
| PA1      | 2024-08-23 | First version. |

## 2 Introduction

This document is a datasheet that specifies and describes the 2GF M.2 module mainly from a hardware point of view.

The main component in the design is Murata's 2GF module (full part number: LBEE5WV2GF), which in turn is based on the Infineon CYW43022 chipset, respectively. The 2GF module enables Wi-Fi, Bluetooth and Bluetooth Low Energy (LE).

There are multiple application areas for the 2GF M.2 Module:

- Industrial and Buildings automation
- Asset management
- IoT applications
- Smart home: Voice assist device, smart printer, smart speaker, home automation gateway, and IP camera
- Retail/POS
- Healthcare and medical devices
- Smart city
- and many more...

#### 2.1 Benefits of Using an M.2 Module to get Wireless Connectivity

There are several benefits to use an *M.2 module* to add connectivity to an embedded design:

- Drop-in, certified solution!
- Modular and flexible approach to evaluate different Wi-Fi / BT solutions with different tradeoffs around performance, cost, power consumption, longevity, etc.
- Access to maintained software drivers (Linux and SDK) with responsive support from Murata.
- Supported by Embedded Artists' Developer's Kits for i.MX 8/9 development, including advanced debugging support on carrier boards
- Future proofing the design easy to replace with a newer module in the future
- One component to buy, instead of 40+
- No RF expertise is required
- Developed in close collaboration with Murata

#### 2.2 More M.2 Related Information

For more information about the M.2 standard and Embedded Artists' adaptation, see: M.2 Primer For more general information about the M.2 standard, see: https://en.wikipedia.org/wiki/M.2

The official M.2 specification (PCI Express M.2 Specification) is available from: www.pcisig.com

#### 2.3 ESD Precaution and Handling

Please note that the M.2 module come without any case/box and all components are exposed for finger touches – and therefore extra attention must be paid to ESD (electrostatic discharge) precaution, for example use of static-free workstation and grounding strap. Only qualified personnel shall handle the product.

Make it a habit always to first touch the mounting hole (which is grounded) for a few seconds with both hands before touching any other parts of the boards. That way, you will have the same potential as the board and therefore minimize the risk for ESD.

In general, touch as little as possible on the boards to minimize the risk of ESD damage. The only reasons to touch the board are when mounting/unmounting it on a carrier board.

Note that Embedded Artists does not replace modules that have been damaged by ESD.

#### 2.4 Product Compliance

Visit Embedded Artists' website at http://www.embeddedartists.com/product\_compliance for up-to-date information about product compliances such as CE, UKCA, RoHS2/3, Conflict Minerals, REACH, etc.

# 3 Specification

This chapter lists some of the more important characteristics of the M.2 module, but it is not a full specification of performance and timing. The main component in the design is Murata's 2GF module (full part number: LBEE5WV2GF), which in turn is based around Infineon's CYW43022 chipset.

For a detailed specification, see the LBEE5WV2GF product page at Murata:

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type2gf For a full specification, see Murata's 2GF Module (LBEE5WV2GF) product page: https://www.murata.com/products/productdata/8824592302110/type2gf.pdf

| Module / Chipset |                   |
|------------------|-------------------|
| Murata module    | LBEE5WV2GF        |
| Chipset          | Infineon CYW43022 |

| Wi-Fi          |                                                 |
|----------------|-------------------------------------------------|
| Standards      | 802.11a/b/g/n/ac 1x1 SISO, Wi-Fi 5              |
| Network        | uAP and STA dual mode                           |
| Frequency      | 2.4GHz and 5 GHz band                           |
| Data rates     | 78 Mbps                                         |
| Host interface | SDIO 3.0, SDR12@25MHz, SDR25@50MHz, SDR50@80MHz |

| Bluetooth       |                          |
|-----------------|--------------------------|
| Standards       | 5.4 BR/EDR/LE, 3Mbps PHY |
| Power Class     | Class 1                  |
| Host interface  | 4-wire UART@4MBaud       |
| Audio interface | PCM for audio            |

| Powering                                                                                              |                   |                                                                                                                         |      |       |
|-------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|------|-------|
| Operating conditions on supply voltage to M.2 module                                                  |                   | Min                                                                                                                     | Тур  | Max   |
|                                                                                                       |                   | 0.0V minimum 3.15V operating and RF specification                                                                       | 3.3V | 3.46V |
| Absolute maximum rating on supply                                                                     | Min               |                                                                                                                         | Max  |       |
| Note: Do not exceed minimum or maximum voltage.  Module will be permanently damaged above this limit! |                   | 0.0V                                                                                                                    |      | 3.63V |
| Peak current                                                                                          | About 500 mA max  | The power supply must be designed for this peak current, which typically happen during the startup calibration process. |      |       |
| Receive mode current (WLAN)                                                                           | 30 mA typical max | Note that current consumption varies widely between different operational modes.                                        |      |       |

| Transmit mode current (WLAN) | 450 mA typical max | Note that current consumption varies widely between different operational modes. |
|------------------------------|--------------------|----------------------------------------------------------------------------------|
|------------------------------|--------------------|----------------------------------------------------------------------------------|

| Environmental Specification                   |                            |
|-----------------------------------------------|----------------------------|
| Operational Temperature                       | -20 to +70 degrees Celsius |
| Storage Temperature                           | -40 to +85 degrees Celsius |
| Relative Humidity (RH), operating and storage | 10 - 90% non-condensing    |

#### 3.1 Power Up Sequence

The supply voltage shall not rise (10 - 90%) faster than 40 microseconds and not slower than 100 milliseconds.

Chipset signals PD\_N (M.2 signal W\_DISABLE1#) must be held low for at least 2 milliseconds after supply voltage has reached specification level before pulled high.

#### 3.2 External Sleep Clock

The sleep clock signals can be applied to a powered and unpowered M.2 module.

| Clock Specification |                                                                |
|---------------------|----------------------------------------------------------------|
| Frequency           | 32.768 kHz                                                     |
| Frequency accuracy  | ±250 ppm including initial tolerance, aging, temperature, etc. |
| Duty cycle          | 30 - 70%                                                       |
| Voltage level       | 3.3V logic, according to M.2 standard                          |

#### 3.3 Mechanical Dimensions

The M.2 module is of type: 2230-D5-E according to the M.2 nomenclature. This means width 22 mm, length 30mm (without trace antenna), top and bottom side component height 1.5 mm and key-E connector. The table below lists the different dimensions and weight.

| M.2 Module Dimension                    | Value (±0.15 mm) | Unit |
|-----------------------------------------|------------------|------|
| Width                                   | 22               | mm   |
| Height, without pcb trace antenna       | 30               | mm   |
| PCB thickness                           | 0.8              | mm   |
| Maximum component height on top side    | 1.5              | mm   |
| Maximum component height on bottom side | 1.5              | mm   |
| Ground hole diameter                    | 3.5              | mm   |
| Plating around ground hole, diameter    | 5.5              | mm   |
| Module weight                           | 1.5 ±0.5 gram    | gram |

The picture below gives dimensions for the grounded center (half) hole and the u.fl. antenna connector.

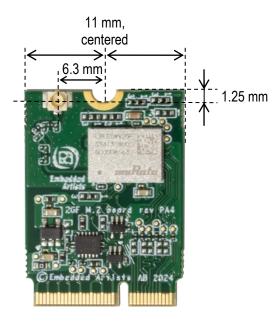



Figure 1 – M.2 Module Antenna Connector Measurements

#### 3.4 M.2 Pinning

This section presents the pinning used for the M.2 module. It is essentially M.2 Key-E compliant with enhancements to support additional debug signals. The pin assignment for specific control has been jointly defined by Embedded Artists, Murata, NXP and Infineon.

The picture below illustrates the edge pin numbering. It starts on the right edge and alternates between the top and bottom side. The removed pads in the keying notch count (but are obviously non-existing).

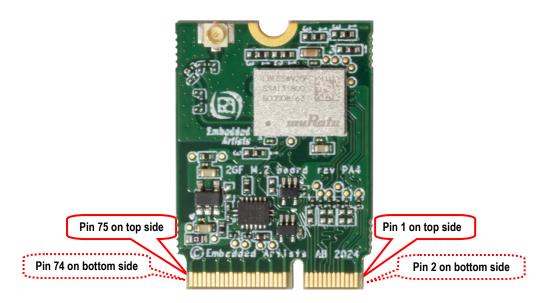



Figure 2 – M.2 Module Pin Numbering

The Wi-Fi interface uses the SDIO interface. The Bluetooth interface uses the UART interface for control and PCM interface for audio. The table below lists the pin usage for the 2GF M.2 modules. The column "When is signal needed" signals four different categories:

- Always: These signals shall always be connected.
- Wi-Fi SDIO: These signals shall always be connected when the Wi-Fi interface is used.
- Bluetooth: These signals shall always be connected when the Bluetooth interface is used.
- Optional: These signals are optional to connect.

| Pin # | Side<br>of pcb | M.2 Name | Voltage Level and<br>Signal Direction | When is signal needed | Note                                                          |
|-------|----------------|----------|---------------------------------------|-----------------------|---------------------------------------------------------------|
| 1     | Тор            | GND      | GND                                   | Always                | Connect to ground                                             |
| 2     | Bottom         | 3.3 V    |                                       | Always                | Power supply input. Connect to stable, low-noise 3.3V supply. |
| 3     | Тор            | USB_D+   |                                       |                       | Not connected.                                                |
| 4     | Bottom         | 3.3 V    |                                       | Always                | Power supply input. Connect to stable, low-noise 3.3V supply. |
| 5     | Тор            | USB_D-   |                                       |                       | Not connected.                                                |
| 6     | Bottom         | LED_1#   |                                       |                       | Not connected.                                                |
| 7     | Тор            | GND      | GND                                   | Always                | Connect to ground.                                            |
| 8     | Bottom         | PCM_CLK  | 1.8V I/O                              | Bluetooth audio       | For Bluetooth audio interface: PCM_CLK                        |
|       |                |          |                                       |                       | Connected to 2GF module, signal BT_PCM_CLK, pad 85            |

| 9  | Ton               | SDIO CLK          | 1.0\/ lanut to M.O      | Wi-Fi           | For Wil Fi CDIO interferen CDIO CLIV                                                                    |  |
|----|-------------------|-------------------|-------------------------|-----------------|---------------------------------------------------------------------------------------------------------|--|
| 9  | Тор               | SDIO CLK          | 1.8V Input to M.2       | VVI-FI          | For Wi-Fi SDIO interface: SDIO_CLK  Connected to 2GF module, signal SDIO_CLK, pad 24                    |  |
| 10 | Bottom            | PCM_SYNC          | 1.8V I/O                | Bluetooth audio | For Bluetooth audio interface: PCM_SYNC                                                                 |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal BT_PCM_SYNC, pad 83                                                     |  |
| 11 | Тор               | SDIO CMD          | 1.8V I/O                | Wi-Fi           | For Wi-Fi SDIO interface: SDIO_CMD                                                                      |  |
|    | ·                 |                   |                         |                 | Connected to 2GF module, signal SDIO_CMD, pad 26                                                        |  |
|    |                   |                   |                         |                 | Note: Require an external 10-100K ohm pullup                                                            |  |
| 12 | Bottom            | PCM_OUT           | 1.8V output from M.2    | Bluetooth audio | For Bluetooth audio interface: PCM_OUT                                                                  |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal BT_PCM_OUT, pad 82                                                      |  |
| 13 | Тор               | SDIO DATA0        | 1.8V I/O                | Wi-Fi           | For Wi-Fi SDIO interface: SDIO_D0                                                                       |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal SDIO_DATA_0, pad 23                                                     |  |
|    |                   |                   |                         |                 | Note: Require an external 10-100K ohm pullup                                                            |  |
| 14 | Bottom            | PCM_IN            | 1.8V input to M.2       | Bluetooth audio | For Bluetooth audio interface: PCM_IN                                                                   |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal BT_PCM_IN, pad 84                                                       |  |
| 15 | Тор               | SDIO DATA1        | 1.8V I/O                | Wi-Fi           | For Wi-Fi SDIO interface: SDIO_D1                                                                       |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal SDIO_DATA_1, pad 22                                                     |  |
|    |                   |                   |                         |                 | Note: Require an external 10-100K ohm pullup                                                            |  |
| 16 | Bottom            | LED_2#            |                         |                 | Not connected.                                                                                          |  |
| 17 | Тор               | SDIO DATA2        | 1.8V I/O                | Wi-Fi           | For Wi-Fi SDIO interface: SDIO_D2                                                                       |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal SDIO_DATA_2, pad 21                                                     |  |
|    |                   |                   |                         |                 | Note: Require an external 10-100K ohm pullup                                                            |  |
| 18 | Bottom            | GND               |                         | Always          | Connect to ground.                                                                                      |  |
| 19 | Тор               | SDIO DATA3        | 1.8V I/O                | Wi-Fi           | For Wi-Fi SDIO interface: SDIO_D3                                                                       |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal SDIO_DATA_3, pad 25                                                     |  |
|    |                   |                   |                         |                 | Note: Require an external 10-100K ohm pullup                                                            |  |
| 20 | Bottom            | UART WAKE#        | 3.3V OD output from M.2 | Bluetooth       | For Bluetooth UART interface: BT_HOST_WAKE                                                              |  |
|    |                   |                   | IVI.Z                   |                 | This is a wake signal for the Bluetooth interface from the device (Wi-Fi/BT chipset) to the host (CPU). |  |
|    |                   |                   |                         |                 | Connected to 2GF module, via buffer, signal BT_HOST_WAKE, pad 5                                         |  |
|    |                   |                   |                         |                 | Require an external 10K pullup resistor to 3.3V.                                                        |  |
| 21 | Тор               | SDIO WAKE#        | 1.8V OD output from     | Wi-Fi           | For Wi-Fi SDIO interface WL_HOST_WAKE                                                                   |  |
|    |                   |                   | M.2                     |                 | This is a wake signal for the Wi-Fi interface from the device (Wi-Fi/BT chipset) to the host (CPU).     |  |
|    |                   |                   |                         |                 | Connected to 2GF module, via buffer, signal WL_HOST_WAKE, pad 7                                         |  |
|    |                   |                   |                         |                 | Note: Require an external 10K pullup resistor to 1.8V                                                   |  |
| 22 | Bottom            | UART TXD          | 1.8V output from M.2    | Bluetooth       | For Bluetooth UART interface: UART_TXD                                                                  |  |
|    |                   |                   |                         |                 | Connected to 2GF module, signal BT_UART_TXD, pad 31                                                     |  |
| 23 | Тор               | SDIO RESET#       | 1.8V input to M.2       |                 | Not connected.                                                                                          |  |
| 24 | Key, non          | existing          |                         |                 |                                                                                                         |  |
| 25 | Key, non          | Key, non existing |                         |                 |                                                                                                         |  |
| 26 | Key, non          | Key, non existing |                         |                 |                                                                                                         |  |
| 27 | Key, non existing |                   |                         |                 |                                                                                                         |  |
| 28 | Key, non existing |                   |                         |                 |                                                                                                         |  |
|    |                   |                   |                         |                 |                                                                                                         |  |

| 29 | Key, non          | existing    |                      |           |                                                                                                                                                                        |  |
|----|-------------------|-------------|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 30 | Key, non existing |             |                      |           |                                                                                                                                                                        |  |
| 31 | Key, non existing |             |                      |           |                                                                                                                                                                        |  |
| 32 | Bottom            | UART_RXD    | 1.8V input to M.2    | Bluetooth | For Bluetooth UART interface: BT_UART_RXD                                                                                                                              |  |
|    |                   |             |                      |           | Connected to 2GF module, signal BT_UART_RXD pad 32                                                                                                                     |  |
| 33 | Тор               | GND         |                      | Always    | Connect to ground.                                                                                                                                                     |  |
| 34 | Bottom            | UART_RTS    | 1.8V output from M.2 | Bluetooth | For Bluetooth UART interface: BT_UART_RTS                                                                                                                              |  |
|    |                   |             |                      |           | Connected to 2GF module, signal BT_UART_RTS, pad 33                                                                                                                    |  |
| 35 | Тор               | PERp0       |                      |           | Not connected.                                                                                                                                                         |  |
| 36 | Bottom            | UART_CTS    | 1.8V input to M.2    | Bluetooth | For Bluetooth UART interface: BT_UART_CTS                                                                                                                              |  |
|    |                   |             |                      |           | Connected to 2GF module, signal BT_UART_CTS, pad34                                                                                                                     |  |
| 37 | Тор               | PERn0       |                      |           | Not connected.                                                                                                                                                         |  |
| 38 | Bottom            | VENDOR      | 1.8V input to M.2    | Optional  | Connected to 2GF module, signal WL_GPIO_5, pad 66.                                                                                                                     |  |
|    |                   | DEFINED     |                      |           | Note: Signal can be JTAG_TDO                                                                                                                                           |  |
| 39 | Тор               | GND         |                      | Always    | Connect to ground.                                                                                                                                                     |  |
| 40 | Bottom            | VENDOR      | 1.8V output from M.2 | Wi-Fi     | For Wi-Fi SDIO interface WL_DEV_WAKE                                                                                                                                   |  |
|    |                   | DEFINED     |                      |           | This is a wake signal for the Wi-Fi interface from the host (CPU) to the device (Wi-Fi/BT chipset).                                                                    |  |
|    |                   |             |                      |           | Connected to 2GF module, signal P5 (WL_DEV_WAKE), pad 43                                                                                                               |  |
| 41 | Тор               | PETp0       |                      |           | Not connected.                                                                                                                                                         |  |
| 42 | Bottom            | VENDOR      | 1.8V input to M.2    | Bluetooth | For Bluetooth UART interface: BT_DEV_WAKE                                                                                                                              |  |
|    |                   | DEFINED     |                      |           | This is a wake signal for the Bluetooth interface from the host (CPU) to the device (Wi-Fi/BT chipset).                                                                |  |
|    |                   |             |                      |           | Connected to 2GF module, signal P5 (BT_DEV_WAKE), pad 40                                                                                                               |  |
| 43 | Тор               | PETn0       |                      |           | Not connected.                                                                                                                                                         |  |
| 44 | Bottom            | COEX3       | 1.8V I/O             | Optional  | Connected to 2GF module, signal WL_GPIO_4, pad 67.                                                                                                                     |  |
|    |                   |             |                      |           | Note: Signal can be JTAG_TDI                                                                                                                                           |  |
| 45 | Тор               | GND         |                      | Always    | Connect to ground.                                                                                                                                                     |  |
| 46 | Bottom            | COEX_TXD    | 1.8V I/O             | Optional  | Connected to 2GF module, signal WL_GPIO_2, pad 69.                                                                                                                     |  |
|    |                   |             |                      |           | Note: Signal can be JTAG_TCK                                                                                                                                           |  |
| 47 | Тор               | REFCLKp0    |                      |           | Not connected.                                                                                                                                                         |  |
| 48 | Bottom            | COEX_RXD    | 1.8V I/O             | Optional  | Connected to 2GF module, signal WL_GPIO_3, pad 68.                                                                                                                     |  |
|    |                   |             |                      |           | Note: Signal can be JTAG_TMS                                                                                                                                           |  |
| 49 | Тор               | REFCLKn0    |                      |           | Not connected.                                                                                                                                                         |  |
| 50 | Bottom            | SUSCLK      | 3.3V input to M.2    | Always    | External sleep clock input (32.768kHz)                                                                                                                                 |  |
|    |                   |             |                      |           | Connected to 2GF module, via buffer, signal EXT_LPO, pad 80                                                                                                            |  |
| 51 | Тор               | GND         |                      | Always    | Connect to ground.                                                                                                                                                     |  |
| 52 | Bottom            | PERST0#     |                      |           | Not connected.                                                                                                                                                         |  |
| 53 | Тор               | CLKREQ0#    |                      |           | Not connected.                                                                                                                                                         |  |
| 54 | Bottom            | W_DISABLE2# | 3.3V input to M.2    | Always    | Independent reset signal for Bluetooth functionality.                                                                                                                  |  |
|    |                   |             |                      |           | Connected to 2GF module, via buffer, signal BT_REG_ON, pad 9 W_DISABLE#2: High = Bluetooth part of module enabled/internally powered, Low = Bluetooth disabled/powered |  |

|    |        |                          |                            |        | down                                                                                                                                                                   |
|----|--------|--------------------------|----------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55 | Тор    | PEWAKE0#                 |                            |        | Not connected.                                                                                                                                                         |
| 56 | Bottom | W_DISABLE1#              | 3.3V input to M.2          | Always | Independent reset signal for Wi-Fi functionality.                                                                                                                      |
|    |        |                          |                            |        | Connected to 2GF module, via buffer, signal WL_REG_ON, pad 10 W_DISABLE1#: High = The module is enabled/internally powered, Low = The modules is disabled/powered down |
| 57 | Тор    | GND                      |                            | Always | Connect to ground.                                                                                                                                                     |
| 58 | Bottom | I2C_SDA                  | 1.8V I/O                   |        | Not connected.                                                                                                                                                         |
| 59 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 60 | Bottom | I2C_CLK                  | 1.8V input to M.2          |        | Not connected.                                                                                                                                                         |
| 61 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 62 | Bottom | ALERT#                   | 1.8V OD output from<br>M.2 |        | Not connected.                                                                                                                                                         |
| 63 | Тор    | GND                      |                            | Always | Connect to ground.                                                                                                                                                     |
| 64 | Bottom | RESERVED                 |                            |        | Not connected.                                                                                                                                                         |
| 65 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 66 | Bottom | UIM_SWP                  |                            |        | Not connected.                                                                                                                                                         |
| 67 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 68 | Bottom | UIM_POWER_<br>SNK        |                            |        | Not connected.                                                                                                                                                         |
| 69 | Тор    | GND                      |                            | Always | Connect to ground.                                                                                                                                                     |
| 70 | Bottom | UIM_POWER_<br>SRC/GPIO_1 |                            |        | Not connected.                                                                                                                                                         |
| 71 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 72 | Bottom | 3.3 V                    |                            | Always | Power supply input. Connect to stable, low-noise 3.3V supply.                                                                                                          |
| 73 | Тор    | Reserved                 |                            |        | Not connected.                                                                                                                                                         |
| 74 | Bottom | 3.3 V                    |                            | Always | Power supply input. Connect to stable, low-noise 3.3V supply.                                                                                                          |
| 75 | Тор    | GND                      |                            | Always | Connect to ground.                                                                                                                                                     |

#### 3.5 SDIO Interface

The SDIO interface conforms to the SDIO v3.0 specification, including the UHS-I modes, and is backward compatible with SDIO v2.0.

| SDIO bus speed modes | Max SDIO clock frequency | Max bus speed | Signaling voltage according to M.2 specification |
|----------------------|--------------------------|---------------|--------------------------------------------------|
| DS (Default speed)   | 25 MHz                   | 12.5 MByte/s  | 1.8 V                                            |
| HS (High speed)      | 50 MHz                   | 25 MByte/s    | 1.8 V                                            |
| SDR12                | 25 MHz                   | 12.5 MByte/s  | 1.8 V                                            |
| SDR25                | 50 MHz                   | 25 MByte/s    | 1.8 V                                            |
| SDR50                | 80 MHz                   | 40 MByte/s    | 1.8 V                                            |

Note that SDR104 and DDR50 modes are not supported.

#### 3.6 Test Points and Expansion Header

There are SDIO test points that can be of interest to probe for debugging purposes, as illustrated in the picture below.



SDIO interface test points, from left to right:

SDIO\_DATA3 SDIO\_DATA2 SDIO\_DATA1 SDIO\_DATA0 SDIO\_CMD SDIO\_CLK

Figure 3 – 2GF M.2 Module Test Points

#### 3.7 Current Consumption Measurements

It is possible to measure the currents of the power supplies to the 2GF module, VBAT and VDDIO. VBAT is the 3.3V that is supplied directly from the M.2 interface and VDDIO is an on-board generated 1.8V. VDDIO is generated from the supplied 3.3V via a linear regulator. If the external supply voltage (3.3V) to the M.2 module is measured it will be both the VBAT and VDDIO power consumption that is measured. It is also possible to measure the VBAT+VDDIO and VDDIO currents at points illustrated in the picture below.

Note that zero-ohm resistors are mounted by default. Select a series resistor with as low resistance as possible to keep the voltage drop to a minimum. Keep the drop below 100mV. VBAT+VDDIO can be about 500 milli ampere in peak which means that maximum series resistance is 100 milliOhm for the VBAT resistor. The maximum VDDIO current is much lower, only about 5mA. A suitable range for a resistor for this current is 1-10 ohm.

Zero ohm, 0402-size resistor that feeds VDDIO of the 2GF module. This is a 1.8V supply. The yellow circles illustrate suitable measuring points.

Zero ohm, 0603-size resistor that feeds VBAT+VDDIO of the 2GF module. This is a 3.3V supply.

The yellow circles illustrate suitable measuring points.

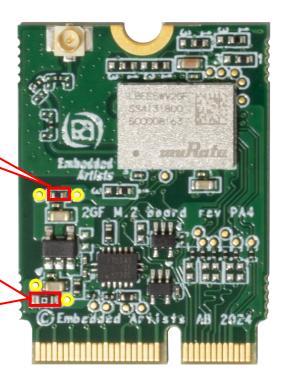



Figure 4 - Current Measurement

## 4 Antenna

The module does not have any on-board antenna. An external antenna is needed. For reference certification, the Unictron H2B1WD1A3B0200 Wi-Fi 6 & 6E antenna has been used. The antenna is also referenced to as WT32D1-KX 001.

Unictron H2B1WD1A3B0200 is a balanced, dipole-type, high efficiency antenna. It is ground plane independent, tripple band antenna that supports the 2400-2485MHz, 5150-5850MHz and 5925-7125 MHz frequency bands. The physical size is 32 x 13 x 1.5mm. The antenna cable is 119  $\pm$ 5 mm and the connector is MHF-I, which is a U.FL compatible connector.



Figure 5 – Reference Certified Antenna

#### 4.1 Antenna Connector

The M.2 standard specifies a 1.5 mm outer ring diameter male connector, which is compatible with the Murata MSC and IPEX MHF4 connector specifications. This connector is not used since our M.2 modules also target industrial users, where the Hirose U.FL. connector standard is more commonly used. U.FL. is compatible with the IPEX MHF1 connector specification.

## 5 Software and Support

This chapter contains information about software and support.

#### 5.1 Software Driver

The CYW43022 chipset does not contain any persistent software. A firmware image must be downloaded by the host at start-up. This is the responsibility of the operating system driver.

There are three different cases, depending on which host processor is used:

Embedded Artists' Computer-on-Modules, (u)COM, as host processor
 Embedded Artists' Linux BSPs and SDKs for the different (u)COM board contains all drivers available and pre-configured. Everything has been tested and works out-of-the-box on the different iMX Developer's Kits.

| iMX Developer's Kit    | 2GF M.2 support                    |
|------------------------|------------------------------------|
| iMX93 uCOM             | Support in Linux BSP v5.15.32 only |
| iMX8M Mini uCOM        | Support in Linux BSP v5.15.32 only |
| iMX8M Nano uCOM        | Support in Linux BSP v5.15.32 only |
| iMX8M COM              | No                                 |
| iMX7 Dual COM          | No                                 |
| iMX7 Dual uCOM         | No                                 |
| iMX7ULP uCOM           | No                                 |
| iMX6 Quad COM          | No                                 |
| iMX6 DualLite COM      | No                                 |
| iMX6 SoloX COM         | No                                 |
| iMX6 UltraLite/ULL COM | No                                 |
| iMX RT1176 uCOM        | No                                 |
| iMX RT1166 uCOM        | No                                 |
| iMX RT1064 uCOM        | No                                 |
| iMX RT1062 OEM         | No                                 |

#### 2. Other i.MX based, for example NXP's EVKs

Murata has created documentation how to compile the Linux kernel for the NXP EVKs https://wireless.murata.com/products/rf-modules-1/wi-fi-bluetooth-for-nxp-i-mx.html#Linux

#### 3. Non-i.MX host processor

There is no ready-to-go driver exist. Contact Murata to check driver availability on the hardware platform used.

#### 5.2 Support

Embedded Artists supports customers that use our M.2 module in combination with Embedded Artists' Computer-on-Modules, (u)COM, based on NXP's i.MX 8/9 families.

For other platforms, support is provided by Murata via their Community Support Forum: https://community.murata.com/s/topic/0TO5F0000002TLWWA2/connectivity-modules

# 6 Regulatory

The Murata 2GF module is reference certified. See the LBEE5WV2GF datasheets from Murata for details.

#### 6.1 European Union Regulatory Compliance

**EUROPEAN DECLARATION OF CONFORMITY** (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely 2GF M.2 module (pn EAR00497 / EAR00502) conforms to the Radio Equipment Directive (RED) 2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this location: https://www.embeddedartists.com/products/2gf-m-2-module/, see document 2GF M.2 module Declaration of Conformity.

The following information is provided per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

- (a) Frequency bands in which the equipment operates.
- (b) The maximum RF power transmitted.

| PN                     | RF Technology           | (a) Frequency Ranges (EU) | (b) Max Transmitted Power |
|------------------------|-------------------------|---------------------------|---------------------------|
| EAR00497 /<br>EAR00502 | Bluetooth BR/EDR/LE     | 2400 MHz – 2484 MHz       | 13 dBm                    |
| EAR00497 /<br>EAR00502 | Wi-Fi IEEE 802.11b/g/n  | 2400 MHz – 2484 MHz       | 19 dBm                    |
| EAR00497 /<br>EAR00502 | Wi-Fi IEEE 802.11a/n/ac | 5150 MHz – 5850 MHz       | 17.5 dBm                  |

The 2GF M.2 module complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

## 7 Disclaimers

Embedded Artists reserves the right to make changes to information published in this document, including, without limitation, specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Customer is responsible for the design and operation of their applications and products using Embedded Artists' products, and Embedded Artists accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Embedded Artists' product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Customer is required to have expertise in electrical engineering and computer engineering for the installation and use of Embedded Artists' products.

Embedded Artists does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Embedded Artists' products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Embedded Artists does not accept any liability in this respect.

Embedded Artists does not accept any liability for errata on individual components. Customer is responsible to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer's advice should be followed.

Embedded Artists does not accept any liability and no warranty is given for any unexpected software behavior due to deficient components.

Customer is required to take note of manufacturer's specification of used components. Such specifications, if applicable, contain additional information that must be taken note of for the safe and reliable operation.

All Embedded Artists' products are sold pursuant to Embedded Artists' terms and conditions of sale: http://www.embeddedartists.com/sites/default/files/docs/General Terms and Conditions.pdf

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by Embedded Artists for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN EMBEDDED ARTISTS' TERMS AND CONDITIONS OF SALE EMBEDDED ARTISTS DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF EMBEDDED ARTISTS PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY THE CEO OF EMBEDDED ARTISTS, PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, NUCLEAR, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of Embedded Artists' products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by Embedded Artists

for the Embedded Artists' product or service described herein and shall not create or extend in any manner whatsoever, any liability of Embedded Artists.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

#### 7.1 Definition of Document Status

**Preliminary** – The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Embedded Artists does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. The document is in this state until the product has passed Embedded Artists product qualification tests.

**Approved** – The information and data provided define the specification of the product as agreed between Embedded Artists and its customer, unless Embedded Artists and customer have explicitly agreed otherwise in writing.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiprotocol Modules category:

Click to view products by Embedded Artists manufacturer:

Other Similar products are found below:

102110419 1104559 1105025 1105026 113990975 113991054 113991114 114992865 114993082 5344 5671 9260.NGWG

9260.NGWGIE 9260.NGWGIE.NV 9260.NGWGII.NV 9260.NGWGII.NVK 9260.NGWG.NV 9560.NGWG 9560.NGWG.NV AIW-165BN

AIW-166K1 AIW-166K2 AIW-166K3 AIW-166K4 AIW-355 DQ-C01 AIW-355 DQ-N01 ATWILC3000-MR110CA ATWINC3400-MR210CA122 ATWINC3400-MR210CA122-T ATWINC3400-MR210CA131 ATWINC3400-MR210CA131-T ATWINC3400-MR210CA142 ATWINC3400-MR210CA143 ATWINC3400-MR210CA143-T ATWINC3400-MR210UA122 ATWINC3400-MR210UA131

ATWINC3400-MR210UA142 ATWINC3400-MR210UA143 ATWINC3400-MR210UA143-T AX101.NGWG.NV AX200.D2WG.LTNV

AX201.D2WG AX201.D2WG.LNVW AX201.D2WG.NV AX201.D2WG.NVW AX201.D2WG.NVW AX201.NGWG.NVW AX201.NGWG.NVW AX201.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG.WAX210.NGWG