

EM-LPC1700 Evaluation Board User Manual V1.2

EMBEST CO., LIMITED

Address: Room 509, Luohu Science & Technology Building, #85 Taining Road, Shenzhen, Guangdong, China 518020
Telephone: 0086-755-25621715 or 25635626 ext. 1715
Fax: 0086-755-25616057
E-mail: sales.en@embedinfo.com || support.en@embedinfo.com
Website: http://www.embedinfo.com/en

Content

Chapter 1 Overview
1.1 Product List includes4
1.2 Getting Start4
1.3 Jumpers5
CHAPTER 2 M-LPC1700 HARDWARE SPECIFICATION
2.1 Board Overview6
2.2 Jumpers Setting7
2.3 EM-LPC1700 Block Diagram7
2.4 Power Supply8
2.5 Clock Source8
2.6 Audio8
2.7 UART8
2.8 SD Card Interface9
2.9 CAN Connector10
2.10 Human-Computer Interface (LCD)
2.11 Hardware Testing11
CHAPTER 3 SOFTWARE DEVELOPMENT AND EXAMPLES
3.1 MDK Introduction14
3.2 Example Operation14
APPENDIX A: IO ASSIGNMENT ON EM-LPC1700 EVALUATION BOARD17

Chapter 1 Overview

EM-LPC1700 is the latest generation of full function evaluation board produced by Embest for NXP ARM Cortex-M3 core-based processors. The board features comprehensive interfaces, which not only provides a good platform for application development, but also is the first choice for learners. Combining with our company's debugging tools ULINK2, it will offer you a better development environment for saving time and improving efficiency.

The features of EM-LPC1700:

- Processors: NXP LPC17xx^{*}, the frequency up to 100MHz
- Internal Memory: up to 512KB flash memory, 64KB SRAM
- 2 RS232 Interfaces
- 2 CAN Interfaces
- 1 Ethernet Interface
- 1 JTAG Interface
- 1 ETM Interface
- 2 Cortex Debug Interfaces
- 1 LCD Display
- 1 USB Device/Host/OTG Interface
- 1 Analog Output (connected to speaker by default)
- 1 Analog Input (connected to potentiometer by default)
- RTC (with back-up battery)
- 1 Mini SD Card Interface

*Note: EM-LPC1700 Evaluation Board is available in three variants: the LPC1758, LPC1766 and LPC1768.

- The LPC1758 board (Order# P758): Processor is populated with the NXP LPC1758 microcontroller, 512KB Flash memory, 80 pins, 100MHz.
- The LPC1766 (Order# P766): Processor is populated with the NXP LPC1766 microcontroller, 256KB Flash memory, 100 pins, 100MHz.
- The LPC1768 (Order# P768): Processor is populated with the NXP LPC1768 microcontroller, 512KB Flash memory, 100 pins, 100MHz.

The supplied microcontroller is the only difference between these three boards.

1.1 Product List includes

- One EM-LPC1700 board
- 2.4 inches TFT LCD (240*320)
- One Cross-serial line
- One USB A-B cable
- One Crossover network cable
- One EM-LPC1700 CD

1.2 Getting Start

Power

EM-LPC1700 is supplied power by using a standard USB connector.

• The power is supplied through a USB Device port on board; the supplied current is less than 500mA.

Connection

Connect the relevant devices together:

- The recommended configuration for a PC: CPU 2.0Ghz, 512MB memory, two USB interfaces, one COM interface, Windows XP OS(recommend to install Keil IDE, such as uvision 3)
- Connecting COM1 interface of the board to the COM interface of a PC by using a serial port cable for the information display and input; if you have a JTAG Emulator (optional), you are able to debug and develop the application by connecting to the JTAG interface of the board.
- Connecting PC's USB to the USB on board by using a USB cable for USB communication and power supply; the power LED indicates when power is applied to the board.

Hardware Theories

Please refer to EM-LPC1700schematics.pdf located in the "Document" folder of CD.

Mirror Files

Please refer to the "image" folder of CD.

Caution

- 1) Please insure the serial port configuration is correct.
- 2) Please insure the SD card is inserted tightly.
- 3) Playing and plugging devices is not allowed when the power is still applied to the board

1.3 Jumpers

Table1. Jumpers Setting

jumpe	r	state	description
E/C	(JP6)	(2 3) ENET	Connect P2.8, make CAN2 or Ethernet available
D-	(JP9)	HOST	Set USB Line D- to HOST mode
D+	(JP8)	HOST	Set USB Line D+ to HOST mode
SPK	(JP16)	ON	Through LF loudspeaker connect AOUT (P0.26) to
VBAT	(JP1)	ON	Connect the on-board battery to VBAT pin
VDDI	0 (JP15) ON	Provide VDDIO pin for 3.3 V DC
VDDR	EG(JP14)	ON	Provide VDDREG pin for 3.3 V DC
VBUS	(JP12)	ON	Provide USB-B connector VBUS pin for 5V DC
UMOD	DE (JP11)	(2 3)ON	Restart a software through P2.9, allows USB devices to
AD0.2	2 (JP7)	ON	Connect POT1 to AD0.2, this operation for analog input
ΙΝΤΟ	(JP5)	ON	make INTO button available
RST	(JP4)	ON	Through the COM0. Make Reset available
ISP	(JP3)	ON	Through the COM0. Prohibited In-System Programming
LED	(JP2)	ON	make P1.28, P1.29, P1.31, P2.2 - P2.6 LEDs available
E/U	(JP10)	(2 3)ON	connect P2.9 to UMODE jumper pin 1

Chapter 2 EM-LPC1700 Hardware Specification

2.1 Board Overview

Table 2. A List of Hardware Interfaces

J1	USART DB9 male connector COM1
J2	USART DB9 male connector COM0
J3	RJ45 network interface
]4	Cortex Debug
J5	CAN1 DB9 male connector
J6	CAN2 DB9 male connector
J7	Cortex Debug ETM interface
J8	JTAG 20 interface
J9	Mini SD card interface
J14	USB OTG interface
J15	USB HOST interface
J16	USB Device interface
U1	LPC175x (optional)
U2	LPC176x (optional)
U3	MAX3232
U4	74LV244

mbest EMBEST CO., LIMITED

U5	DM83848
U6/7	TJA1040
U9	ISP1301

2.2 Jumpers Setting

Designation	Description	Setting Option	Setting Description
106	CAN	1-2	Select CAN Controller
510		2-3	Select Ethernet Controller
	USB	Above	USB OTG Mode
JP8/9		Middle	USB HOST Mode
		Below	USB Device Mode
JP10	USB	1-2	USB Mode
		2-3	Ethernet Controller
JP11	USB/Network		LPC1755 Chip Relevant
			LPC1755 Chip Relevant

2.3 EM-LPC1700 Block Diagram

Base Board EM-LPC1700₽

2.4 Power Supply

EM-LPC1700 evaluation board supports two power supply modes; you can select one of the two power supply modes below through JP12 configuration.

1) Supply 5V DC through power jack (JP11) on the board.

2) Supply power through USB connecter (CON1) on the board, the current should be less than 500mA

2.5 Clock Source

EM-LPC1700 evaluation board has two clock sources:

• 32K Hz crystal as RTC clock source.

• 8M Hz crystal as MCU clock source which can be removed when internal RC clock is used as clock source.

2.6 Audio

EM-LPC1700 evaluation board has recording and playing functions, the audio file can be played through the external speaker, and the jumper JP6 controls the DAC output and speaker connection.

2.7 UART

EM-LPC1700 evaluation board exports two UARTs, UART0 (COM1) and UART1 (COM2). These two UARTs are both connected to male DB9 connectors. UART2 supports RTS/CTS handshake signals.

UARTO the signal definition of RS232 DB9 male connector:

Pin No. Function Description		Pin No.	Function Description
1 NC		6	NC
2	UART0_RXD	7	NC
3	UART0_TXD	8	NC
4	NC	9	NC
5	GND		

UART1 RS232 DB9 connecter signal definition:

Pin No.	Function Description	Pin No.	Function Description
1	NC	6	NC
2	UART1_RXD	7	JP3
3	UART1_TXD	8	NC
4		9	NC
5	GND		

2.8 SD Card Interface

STM32 evaluation board has SD card connector and supports SD card read/write operation. SD card and EM-LPC1700 interface connection signal as follows:

Pin	SD card	Signal Description	LPC1700
1	DAT2		NC
2	DAT3		P0 16
3	CMD	SD_CMD	P0.18
4	VCC		VCC3.3
5	CLK	SD_CLK	P0.15
6	VSS		GND
7	DAT0	SD_DAT0	P0.17
8	DAT1		NC
9	SW2		NC
10	SW1		P4.29
11	Sh1		GND
12	Sh2		GND
13	Sh3		GND
14	Sh4		GND

2.9 CAN Connector

EM-LPC1700 evaluation board use SN65HVD230 (U10) as CAN driver chip, CAN connecter adopts DB9 to connect wires, here pin2 provides CANL signal and pin7 provides CANH signal. These pins are connected to CAN driver chip SN65HVD230. CAN DB9 connecter pin definition:

Pin NO.	Function Description	Pin NO.	Function Description
1 ,4,8,9	NC	7	CANH
2	CANL	3,5,6	GND

2.10 Human-Computer Interface (LCD)

Pin NO.	Signal Description	Corresponding IO
1	CS	P0.6
2	RS	GND
3	WR/SCL	P0.7
4	RD	GND
5	RESET	RSTOUT
22	BL_GND	GND
23	BL_Control	P4.28
24	VDD	+3V3
25	VC1	+3V3
26	GND	GND
27	GND	GND
28	BL_VDD	+3V3
29	SDO	P0.8
30	SDI	P0.9

mbest EMBEST CO., LIMITED

TCS

31

P0.5

2.11 Hardware Testing

(1) I/O Testing

Image file: Blinky.hex Location of source code: Blinky Corresponding chip manual: Datasheet\[processor].pdf Steps: Download Blinky.hex to the FLASH of MCU Testing phenomenon: D2-D9 blink in turn

(2) LCD Testing

Image file: LCD_Blinky.hex Location of source code: LCD Corresponding chip manual: Datasheet\LCD corresponding\ MR024-9325-51P-B.pdf Steps: Download LCD_Blinky.hex to the FLASH of MCU Testing phenomenon: D2-D9 blink, and LCD displays the LOGO and related words of Embest Co.

(3) UART Testing

Image file: UART.hex Location of source code: UART Corresponding chip manual: Datasheet\[processor].pdf Steps: 1) Download UART.hex to the FLASH of MCU, connect UART0 to PC through Cross-serial line. 2) Run "Begin" -> "Program" -> "Accessory" -> "Communication" -> " Super terminal" in PC. 3) Set the attribute of COM1: Bits Per Second: 115200 Data Bits: 8 Parity Check: NO Stop Bits: 1 Data Flow Control: NO

Testing phenomenon: The hype terminal displays the characters that input by the keyboard.

(4) RTC Testing

Image file: rtc.hex Location of source code: RTC Corresponding chip manual: Datasheet\[processor].pdf

mbest EMBEST CO., LIMITED

Steps: Download rtc.hex to the FLASH of MCU Testing phenomenon: Examine the corresponding changes which the RTC related register bring about

(5) DAC SPK Testing

Image file: DAC_Test.hex Location of source code: DAC Corresponding chip manual: Datasheet\[processor].pdf Steps: Download DAC_Test.hex to the FLASH of MCU Testing phenomenon: The buzzer in LCD emits sound signals

(6) CAN&ADC Testing

Image file: CAN.hex Location of source code: CAN Corresponding chip manual: Documents\Datasheet\Peripherals corresponding\ lpc17xx.can.arm.pdf Steps: Link CAN1 and CAN2 through direct serial cable, and download CAN.hex to the FLASH of MCU Testing phenomenon: The color LCD displays the AD conversed value of CAN receive

(7) SD card Testing

Image file: SD_test.hex Location of source code: SD_test Corresponding chip manual: Datasheet\[processor].pdf Steps: According to (3) UART Testing configures hype terminal, link com1 to PC, plug in SD card, and download SD_test.hex to the FLASH of MCU Testing phenomenon: Hype terminal displays the related information of SD card

(8) Network Testing (RL-ARM holder)

Image file: HTTPDEMO.hex Location of source code: HTTPDEMO Corresponding chip manual: Datasheet\[processor].pdf Steps: 1) Download HTTPDEMO.hex to the FLASH of MCU 2) The evaluation board IP: 192.168.0.100 3) PC's configuration as follows: IP: 192.168.0.101 Subnet Mask: 255.255.255.0

Default Gateway: 192.168.0.254

Testing phenomenon: Input 192.168.0.100 in the IE address bar, click on AD and

BUTTON, and then it appears the following forms which show the change of AD value and Joystick's button value

Turn potentiometer on an evaluation board clockwise or counterclockwise and observe the change of AD value on the screen.

Item	Value	Volts	Bargraph
▶ POT1:	0x037A	0.717 ₹	
		Refre	esh Periodic: 🗆

Press a button on an evaluation board and observe the change on the screen.

Item	Status
▶ Buttons [70]:	
C	Refresh Periodic: 🗆

(9) SD card Testing (RL-ARM holder)

Image file: SD_file.hex

Location of source code: SD_file

Corresponding chip manual:

Steps: Download SD_file.hex to the FLASH of MCU, link UART0 to PC through the Cross-serial line, and open the super terminal

Testing phenomenon: Hype terminal displays as follows:

```
"| CAP \"fname\" [/A]
                                                                                                                        | captures serial data to a file
11
                                                                                                                  [/A option appends data to a file]
                                                                                                                                                                                                                                                                                               Т
"|
"| FILL \"fname\" [nnnn] | create a file filled with dent
"|
"| [nnnn - number of lines, default=1000]
"| [nnnn - number of a text file
"Intro ("Iname)" | displays the content of a text file
"| REN \"fname1\" \"fname2\" | renames a file (from the second secon
                                                                                                                                                                                                                                                                                               Т
                                                                                                                                 | renames a file 'fname1' to 'fname2'
                                                                                 _________ interest a file 'fin' to 'fout' file
| ['fin2' option merges 'fin' and 'fin2']
| deletes a file
| 200
"| COPY \"fin\" [\"fin2\"] \"fout\"| copies a file 'fin' to 'fout' file
71
                                                                                                                                                                                                                                                                                               Т
"| DEL \"fname\"
"| DIR \"[mask]\"
                                                                                                                         | displays a list of files in the directory
"| FORMAT [label [/FAT32]] | formats Flash Memory Card
77.1
                                                                                                                        [/FAT32 option selects FAT32 file system]
                                                                                                                  1
"| HELP or ?
                                                                                                                  | displays this help
"+
```


Chapter 3 Software development and examples

3.1 MDK Introduction

RealView MDK Development Suite is the latest software development tool released by ARM Corporation for ARM MCU embedded processors. It integrates the most advanced technology in this industry, including μ Vision3 IDE and RealView Compiler. RealView MDK supports ARM7, ARM9 and the latest Cortex-M3 Core Processor. It has a configuration wizard for startup code and integrates flash program module, powerful device simulation, performance analyzer and so on.

You can obtain MDK software from the CD released with EM-STM3210E Evaluation Board, or you can download the latest version from Keil website www.keil.com. Double click the installation file setup.exe; finish Keil uVision3 installation under the guidance of the installation wizard. The installation interface as follows:

Setup RealView Microcontroller Development	t Kit V3.10 (PRC-1) 🛛 🔀
Welcome to Keil µ Vision3 Release 5/2007	KEIL An ARM® Company
This SETUP program installs:	
RealView Microcontroller Development Kit V3	3.10 (PRC-1)
This SETUP program may be used to update a previous product in However, you should make a backup copy before proceeding.	nstallation.
It is recommended that you exit all Windows programs before con	tinuing with SETUP.
Follow the instructions to complete the product installation.	
— Keil ⊯Vision3 Setup	
<u>. 55</u>	Back Next>> Cancel

3.2 Example Operation

Example operation sequence (take ADC character display for example)

- 1) Open ADC folder, Enter ADC folder, double-click adc.Uv2 project file, then will open this project file.
- 2) Project file include StartUp Code (storage area of startup codes), Source Code (storage area of main source program codes), System Code (program library source files) and Documentation (program document description) folders.
- 3) Connecting the power line and emulator wire to the board (between ULINK2 and JTAG).

4) Click Flash/Download to download the image as follows:

Or click the shortcut icon: to download the image.

V		adc - 🗮ision3 - [C:\Keil\
Eile Edit Yiew Project Del Clic	k to download procedur ^{egindow} Help	
1 🖆 🚅 🖬 🎒 👗 🖻 🕞		- #
🔌 🗈 🕮 🥌 👗 🕎 📉 FL	ASH 🔄 🔒 開	
Project Workspace 🚽 🗙 📘 1	14	
E 🔁 FLASH	15 #pragma anon_unions	
🗄 📄 Startup Code 🛛 🚺 1	16	
😟 📄 System Code 🛛 🚺 1	17 / * System Control	1 (SC)
😟 🧰 Source Code 🛛 🚺 1	18 typedef struct	
🗄 📄 Documentation 🛛 🚺 1	19 (
1	20IO uint32_t FLASHCFG;	/* Flas
	21 uint32 t RESERVEDO[31];	;

5) After download, execute Debug/Start/Stop Debug Session(Ctrl+F5) to debug as follows:

or click shortcut con: is to start debug. After that, assembly code will show in the main workspace, if you want to see source code, you can right click mouse before Step, choose "Show Source Code for current Address" As follows:

www.embedinfo.com/en

V2		adc - 🐫ision3 - [Disassembly]
🙀 Eile Edit Yiew	Project Debug Flash Per	ipherals <u>I</u> ools <u>S</u> VCS <u>W</u> indow <u>H</u> elp	
12 🚅 🖬 🎒	1 B B 2 2		# ← → (<u>@</u> (
RST 🗉 🚳 🕅	(가 11) 수 분축	03 💽 🐺 😻 🔽 Mixed Mode	
Project Workspace	▲ X	23: (Assembly Mode	
Register	Value 🔺	24:	
Core		⇔0x00000194 B51C	
RO	0x2007c088	25:	-
R1	0x2007c088	26: /* In Address Range	- F
R2	0x2007c088	Ox00000196 FOOD	000300)
R3	0x10000000	27: Load Hex or Object file	
R4	0x0000000	0x00000193 4803	1200000104
	0x2007c028	0x0000019X 100X	5201
R6	0x0000000	Show Source Code for current Address	_ 220)
R7	0x0000000	28:	
	0x0000000	29: Set Program Counter	in sectors and
R9	0x0000000	30: #if ADC	pt driven *,
R10	0x00000278	Ox000001A0 EOOF	
R11	0x0000000	31: Show next statement	JM: i++)
R12	0x2007c068	32.	
R13 (SP)	0x10000200	*{} Run to Cursor line Ctrl+F10	
R14 (LR)	0x00000153	Dwoodoot x2 2400	
R15 (PC)	0x00000194		
± xPSR	0x21000000	33: Insert/Remove Breakpoint	

source code will appear in the workspace.

6) You can make use of the debug shortcut icon in the window to execute debug process, the icon as follows:

V	adc - 🇮ision3 -
Rile Edit View Project Debug Flag	h Pe <u>r</u> ipherals <u>T</u> ools <u>S</u> VCS <u>W</u> indow <u>H</u> elp
🎦 🗃 🖬 🌒 🕹 🛍 🗠	2 🖴 専 ゆ % % % 🐂 📃 🗛
(* f) f) f) (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§	🗄 😥 🕼 💯 🌿 🖆 📰 📰 🔛 🚾 强 🏷
Project Workspace	• × 23: {
Register Value	24: uint32_t i;
- Core	→Ox00000194 B510 PUSH {r4
R0 0x2007c088	25: SystemInit();
R1 0x2007c088	26: /* Initialize ADC */
R2 0x2007c088	Ox00000196 F000F8B3 BL.W Sys
R3 0x10000000	27: ADCInit(ADC CLK
R4 0x0000000	0x00000193 4803 LDR r0
R5 0x2007c028	

Appendix A: IO Assignment on EM-LPC1700

Evaluation Board

	Dia	Turne	Level		IO Assignment
TQFP100	PIN	Туре	Input	Output	IO Assignment
1	TD0/SW0	JTAG			JTAG
2	TDI	JTAG			JTAG
3	TMS/SWDIO	JTAG			JTAG
4	TRST	JTAG			JTAG
5	TCK/SWDCLK	JTAG			JTAG
6	P0.26	I/O			JP16(DAC_SPK)
7	P0.25	I/O			ADC
8	P0.24	I/O			I/O
9	P0.22	I/O			USB
10	VDDA		3.3V		3.3V
11	VSSA		GND		GND
12	VREFP		3.3V		3.3V
13	NC	NC			NC
14	RSTOUT	0			LCD
15	VREFN				GND
16	RTCX1				RTCXIN
17	RESET				RESET
18	RTCX2				RTCXOUT
19	VBAT	I/O			VBAT
20	P1.31	I/O			LED

mbest	EMBEST CO., LIMITED

www.embedinfo.com/en

21	P1.30	I/O		USB
22	XTAL1			XTALIN
23	XTAL2			XTALOUT
24	P0.28			USB
25	P0.27			USB
26	P3.26	I/O		I/O
27	P3.25	I/O		I/O
28	VDD(3V3)_3			3.3V
29	P0.29	I/O		USB
30	P0.30			USB
31	VSS_0			GND
32	P1.18			USB
33	P1.19			USB
34	P1.20	I/O		Joystick
35	P1.21	I/O		I/O
36	P1.22	I/O		USB
37	P1.23	I/O		Joystick
38	P1.24			Joystick
39	P1.25			Joystick
40	P1.26	I/O		Joystick
41	VSS_1			GND
42	VDD(REG)(3V3) 1			3.3V
43	P1.27	I/O		USB
44	P1.28	I/O		LED

11110-0-0-0	mbest	EMBEST CO.,	LIMITED
-------------	-------	-------------	---------

www.embedinfo.com/en

45	P1.29	I/O		LED
46	P0.0	I/O		CAN
47	P0.1	I/O		CAN
48	P0.10	I/O		USB
49	P0.11	I/O		USB
50	P2.13	I/O		I/O
51	P2.12			I/O
52	P2.11			I/O
53	P2.10	I/O		EINTO
54	VDD(3V3)_2			3.3V
55	VSS_2			GND
56	P0.22	I/O		USB
57	P0.21	I/O		I/O
58	P0.20	I/O		I/O
59	P0.19	I/O		I/O
60	P0.18	I/O		MINI SD
61	P0.17			MINI SD
62	P0.15			MINI SD
63	P0.16	I/O		MINI SD
64	P2.9	I/O		USB
65	P2.8	I/O		CAN
66	P2.7	I/O		CAN
67	P2.6	I/O		LED
68	P2.5	I/O		LED

mbest EMBEST CO., LIMITED

www.embedinfo.com/en

69	P2.4	I/O		LED
70	P2.3	I/O		LED
71	VDD(3V3)_1		3.3V	3.3V
72	VSS_3		GND	GND
73	P2.2	I/O		LED
74	P2.1	I/O		RXD1
75	P2.0	I/O		TXD1
76	P0.9	I/O		LCD
77	P0.8	I/O		LCD
78	P0.7	I/O		LCD
79	P0.6	I/O		LCD
80	P0.5	I/O		LCD
81	P0.4	I/O		I/O
82	P4.28	I/O		LCD
83	VSS_4			GND
84	VDD(REG)(3V3) 0			3.3V
85	P4.29	I/O		MINI SD
86	P1.17	I/O		Ethernet
87	P1.16	I/O		Ethernet
88	P1.15	I/O		Ethernet
89	P1.14	I/O		Ethernet
90	P1.10	I/O		Ethernet
91	P1.9	I/O		Ethernet
92	P1.8	I/O		Ethernet

1	mbest EM	BEST CO., LIM	www	v.embedinfo.com/en		
	93	P1.4	I/O			Ethernet
	94	P1.1				Ethernet
	95	P1.0				Ethernet
	96	VDD(3V3)_0				3.3V
	97	VSS_5				GND
	98	P0.2	I/O			UART0
	99	P0.3	I/O			UARTO
	100	RTCK	JTAG			JTAG_RTCK

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Embest manufacturer:

Other Similar products are found below :

CAM8000-D MODULE SBC8118 WITH 4.3"LCD VGA8000 MODULE DEVKIT8500D WITHOUT LCD MARS BOARD WITH 9.7"LCD COLINKEX MINI6245 PROCESSOR CARD EMBEDDED PI EVK-PH8800 AMG8832EK MBC-SAM9G25 SBC8600B WITH 7"LCD CAM8200-U MODULE SBC-EC8800 1401148