

# **Film Capacitors**

# Metallized Polypropylene Film Capacitors (MKP)

Series/Type:B32671L ... B32672LDate:September 2016

© EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.



#### Metallized polypropylene film capacitors (MKP)

# High V AC, high temperature (wound)

#### B32671L ... B32672L

## **Typical applications**

- Electronic ballasts (resonant circuits)
- SMPS
- High-frequency AC loads
- Pulse circuits

#### Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1): 55/110/56

#### Construction

- Dielectric: metallized polypropylene (PP)
- Wound capacitor technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

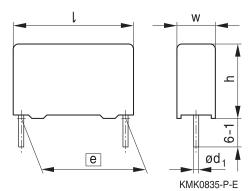
#### Features

- Very high AC voltages for all frequency ranges
- Very small dimensions
- High peak voltage for short time periods
- High peak current
- High pulse withstand capability
- RoHS-compatible
- Halogen-free capacitors available on request

#### Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request

#### Marking


- Manufacturer's logo
- Iot number, series number
- Rated capacitance (coded)
- Capacitance tolerance (code letter)
- Rated voltage
- Date of manufacture (coded)

#### **Delivery mode**

- Bulk (untaped)
- Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".

# Dimensional drawing



Dimensions in mm

| Lead spacing  | Lead diameter        | Туре    |
|---------------|----------------------|---------|
| <i>e</i> ±0.4 | d <sub>1</sub> ±0.05 |         |
| 10            | 0.6                  | B32671L |
| 15            | 0.8                  | B32672L |



MKP

B32671L ... B32672L

# High V AC, high temperature (wound)

# Overview of available types

| Lead spacing            | 10 m | m   |      |      |      |      | 15 m    | m   |     |      |      |      |      |      |
|-------------------------|------|-----|------|------|------|------|---------|-----|-----|------|------|------|------|------|
| Туре                    | B326 |     |      |      |      |      | B32672L |     |     |      |      |      |      |      |
| Page                    | 4    |     |      |      |      |      | 6       |     |     |      |      |      |      |      |
| V <sub>RMS</sub> (V AC) | 200  | 250 | 250  | 500  | 600  | 700  | 160     | 200 | 250 | 250  | 500  | 600  | 700  | 900  |
| V <sub>R</sub> (V DC)   | 400  | 630 | 1000 | 1000 | 1600 | 2000 | 250     | 450 | 630 | 1000 | 1300 | 1600 | 2000 | 2000 |
| C <sub>R</sub> (nF)     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 1.0                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 1.2                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 1.5                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 2.2                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 2.7                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 3.3                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 3.9                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 4.7                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 5.6                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 6.2                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 6.8                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 8.2                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 10                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 12                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 15                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 22                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 33                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 47                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 56                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 68                      |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 100                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 150                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 220                     |      |     |      |      |      |      |         |     |     |      |      |      |      | L    |
| 330                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 390                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 470                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 680                     |      |     |      |      |      |      |         |     |     |      |      |      |      |      |
| 1000                    |      |     |      |      |      |      |         |     |     |      |      |      |      |      |





B32671L

High V AC, high temperature (wound)

#### Ordering codes and packing units (lead spacing 10 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions            | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|----------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times I$      | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                            | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                            |                  | pack       |            |            |
| V AC             | V DC           | nF             | mm                         |                  | pcs./MOQ   | pcs./MOQ   | pcs./MOQ   |
| 200              | 400            | 22             | $4.0\times 9.0\times 13.0$ | B32671L4223+***  | 4000       | 6800       | 4000       |
|                  |                | 33             | $4.0\times 9.0\times 13.0$ | B32671L4333+***  | 4000       | 6800       | 4000       |
|                  |                | 47             | 5.0 	imes 11.0 	imes 13.0  | B32671L4473+***  | 3320       | 5200       | 4000       |
|                  |                | 68             | 5.0 	imes 11.0 	imes 13.0  | B32671L4683+***  | 3320       | 5200       | 4000       |
|                  |                | 100            | $6.0\times12.0\times13.0$  | B32671L4104+***  | 2720       | 4400       | 4000       |
| 250              | 630            | 15             | $4.0\times 9.0\times 13.0$ | B32671L6153+***  | 4000       | 6800       | 4000       |
|                  |                | 22             | 5.0 	imes 11.0 	imes 13.0  | B32671L6223+***  | 3320       | 5200       | 4000       |
|                  |                | 33             | 5.0 	imes 11.0 	imes 13.0  | B32671L6333+***  | 3320       | 5200       | 4000       |
|                  |                | 47             | $6.0\times12.0\times13.0$  | B32671L6473+***  | 2720       | 4400       | 4000       |
|                  |                | 56             | $6.0\times12.0\times13.0$  | B32671L6563+***  | 2720       | 4400       | 4000       |
| 250              | 1000           | 4.7            | $4.0\times 9.0\times 13.0$ | B32671L9472+***  | 4000       | 6800       | 4000       |
|                  |                | 6.8            | $4.0\times 9.0\times 13.0$ | B32671L9682+***  | 4000       | 6800       | 4000       |
|                  |                | 10             | 5.0 	imes 11.0 	imes 13.0  | B32671L9103+***  | 3320       | 5200       | 4000       |
|                  |                | 15             | 5.0 	imes 11.0 	imes 13.0  | B32671L9153+***  | 3320       | 5200       | 4000       |
|                  |                | 22             | $6.0\times12.0\times13.0$  | B32671L9223+***  | 2720       | 4400       | 4000       |
| 500              | 1000           | 3.3            | $4.0\times 9.0\times 13.0$ | B32671L0332+***  | 4000       | 6800       | 4000       |
|                  |                | 3.9            | $4.0\times 9.0\times 13.0$ | B32671L0392+***  | 4000       | 6800       | 4000       |
|                  |                | 4.7            | $4.0\times 9.0\times 13.0$ | B32671L0472+***  | 4000       | 6800       | 4000       |
|                  |                | 5.6            | 5.0 	imes 11.0 	imes 13.0  | B32671L0562+***  | 3320       | 5200       | 4000       |
|                  |                | 6.2            | 5.0 	imes 11.0 	imes 13.0  | B32671L0622+***  | 3320       | 5200       | 4000       |
|                  |                | 6.8            | 5.0 	imes 11.0 	imes 13.0  | B32671L0682+***  | 3320       | 5200       | 4000       |
|                  |                | 8.2            | $6.0\times12.0\times13.0$  | B32671L0822+***  | 2720       | 4400       | 4000       |
|                  |                | 10             | $6.0\times12.0\times13.0$  | B32671L0103+***  | 2720       | 4400       | 4000       |
|                  |                | 12             | $6.0\times12.0\times13.0$  | B32671L0123+***  | 2720       | 4400       | 4000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ 

 $J = \pm 5\%$ 

#### \*\*\* = Packaging code:

289 = Straight terminals, Ammo pack

- 189 = Straight terminals, Reel
- 240 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 140 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3 \text{ mm}$ )
- 000 = Straight terminals, untaped (lead length 6-1 mm)



B32671L

High V AC, high temperature (wound)



# Ordering codes and packing units (lead spacing 10 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions            | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|----------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times I$      | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                            | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                            |                  | pack       |            |            |
| V AC             | V DC           | nF             | mm                         |                  | pcs./MOQ   | pcs./MOQ   | pcs./MOQ   |
| 600              | 1600           | 1.2            | $4.0\times 9.0\times 13.0$ | B32671L1122+***  | 4000       | 6800       | 4000       |
|                  |                | 1.5            | $4.0\times 9.0\times 13.0$ | B32671L1152+***  | 4000       | 6800       | 4000       |
|                  |                | 2.2            | 5.0 	imes 11.0 	imes 13.0  | B32671L1222+***  | 3320       | 5200       | 4000       |
|                  |                | 2.7            | 5.0 	imes 11.0 	imes 13.0  | B32671L1272+***  | 3320       | 5200       | 4000       |
|                  |                | 3.3            | $6.0\times12.0\times13.0$  | B32671L1332+***  | 2720       | 4400       | 4000       |
|                  |                | 3.9            | $6.0\times12.0\times13.0$  | B32671L1392+***  | 2720       | 4400       | 4000       |
|                  |                | 4.7            | $6.0\times12.0\times13.0$  | B32671L1472+***  | 2720       | 4400       | 4000       |
| 700              | 2000           | 1.0            | $4.0\times 9.0\times 13.0$ | B32671L8102+***  | 4000       | 6800       | 4000       |
|                  |                | 1.2            | $4.0\times 9.0\times 13.0$ | B32671L8122+***  | 4000       | 6800       | 4000       |
|                  |                | 1.5            | $4.0\times 9.0\times 13.0$ | B32671L8152+***  | 4000       | 6800       | 4000       |
|                  |                | 2.2            | 5.0 	imes 11.0 	imes 13.0  | B32671L8222+***  | 3320       | 5200       | 4000       |
|                  |                | 2.7            | 5.0 	imes 11.0 	imes 13.0  | B32671L8272+***  | 3320       | 5200       | 4000       |
|                  |                | 3.3            | 5.0 	imes 11.0 	imes 13.0  | B32671L8332+***  | 3320       | 5200       | 4000       |
|                  |                | 3.9            | $6.0\times12.0\times13.0$  | B32671L8392+***  | 2720       | 4400       | 4000       |
|                  |                | 4.7            | $6.0\times12.0\times13.0$  | B32671L8472+***  | 2720       | 4400       | 4000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

- + = Capacitance tolerance code:
  - $K = \pm 10\%$
  - $J = \pm 5\%$

\*\*\* = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 240 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 140 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3$  mm)
- 000 = Straight terminals, untaped (lead length 6-1 mm)





High V AC, high temperature (wound)

#### Ordering codes and packing units (lead spacing 15 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions               | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|-------------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times l$         | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                               | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                               |                  | pack       | pcs./      | pcs./      |
| V AC             | V DC           | nF             | mm                            |                  | pcs./MOQ   | MOQ        | MOQ        |
| 160              | 250            | 150            | $5.0\times10.5\times18.0$     | B32672L2154+***  | 4680       | 5200       | 4000       |
|                  |                | 220            | $6.0\times11.0\times18.0$     | B32672L2224+***  | 3840       | 4400       | 4000       |
|                  |                | 330            | $7.0\times12.5\times18.0$     | B32672L2334+***  | 3320       | 3600       | 4000       |
|                  |                | 470            | $8.5\times14.5\times18.0$     | B32672L2474+***  | 2720       | 2800       | 2000       |
|                  |                | 680            | 9.0 	imes 17.5 	imes 18.0     | B32672L2684+***  | 2560       | 2800       | 2000       |
|                  |                | 1000           | $11.0\times18.5\times18.0$    | B32672L2105+***  | _          | 2200       | 1000       |
| 200              | 450            | 68             | $5.0\times10.5\times18.0$     | B32672L4683+***  | 4680       | 5200       | 4000       |
|                  |                | 100            | $5.0\times10.5\times18.0$     | B32672L4104+***  | 4680       | 5200       | 4000       |
|                  |                | 150            | $6.0\times11.0\times18.0$     | B32672L4154+***  | 3840       | 4400       | 4000       |
|                  |                | 220            | $7.0\times12.5\times18.0$     | B32672L4224+***  | 3320       | 3600       | 4000       |
|                  |                | 330            | $8.0 \times 14.0 \times 18.0$ | B32672L4334+***  | 2920       | 3000       | 2000       |
|                  |                | 470            | 9.0 	imes 17.5 	imes 18.0     | B32672L4474+***  | 2560       | 2800       | 2000       |
|                  |                | 680            | $11.0\times18.5\times18.0$    | B32672L4684+***  | _          | 2200       | 1000       |
| 250              | 630            | 33             | $5.0\times10.5\times18.0$     | B32672L6333+***  | 4680       | 5200       | 4000       |
|                  |                | 47             | $5.0\times10.5\times18.0$     | B32672L6473+***  | 4680       | 5200       | 4000       |
|                  |                | 68             | $6.0\times11.0\times18.0$     | B32672L6683+***  | 3840       | 4400       | 4000       |
|                  |                | 100            | $7.0\times12.5\times18.0$     | B32672L6104+***  | 3320       | 3600       | 4000       |
|                  |                | 150            | $8.5\times14.5\times18.0$     | B32672L6154+***  | 2720       | 2800       | 2000       |
|                  |                | 220            | $9.0\times17.5\times18.0$     | B32672L6224+***  | 2560       | 2800       | 2000       |
|                  |                | 390            | $11.0\times18.5\times18.0$    | B32672L6394+***  | _          | 2200       | 1000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ 

 $J = \pm 5\%$ 

- \*\*\* = Packaging code:
  - 289 = Straight terminals, Ammo pack
  - 189 = Straight terminals, Reel
  - 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
  - 155 = Crimped down to lead spacing 7.5 mm, Reel
  - 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3 \text{ mm}$ )
  - 000 = Straight terminals, untaped (lead length 6-1 mm)





High V AC, high temperature (wound)

#### Ordering codes and packing units (lead spacing 15 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions            | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|----------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times I$      | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                            | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                            |                  | pack       | pcs./      | pcs./      |
| V AC             | V DC           | nF             | mm                         |                  | pcs./MOQ   | MOQ        | MOQ        |
| 250              | 1000           | 10             | $5.0\times10.5\times18.0$  | B32672L0103+***  | 4680       | 5200       | 4000       |
|                  |                | 15             | 5.0 	imes 10.5 	imes 18.0  | B32672L0153+***  | 4680       | 5200       | 4000       |
|                  |                | 22             | 5.0 	imes 10.5 	imes 18.0  | B32672L0223+***  | 4680       | 5200       | 4000       |
|                  |                | 33             | $6.0\times11.0\times18.0$  | B32672L0333+***  | 3840       | 4400       | 4000       |
|                  |                | 47             | $7.0\times12.5\times18.0$  | B32672L0473+***  | 3320       | 3600       | 4000       |
|                  |                | 68             | 8.5 	imes 14.5 	imes 18.0  | B32672L0683+***  | 2720       | 2800       | 2000       |
|                  |                | 100            | 9.0	imes17.5	imes18.0      | B32672L0104+***  | 2560       | 2800       | 2000       |
|                  |                | 150            | $11.0\times18.5\times18.0$ | B32672L0154+***  | —          | 2200       | 1000       |
| 500              | 1300           | 6.8            | $5.0\times10.5\times18.0$  | B32672L7682+***  | 4680       | 5200       | 4000       |
|                  |                | 10             | 5.0 	imes 10.5 	imes 18.0  | B32672L7103+***  | 4680       | 5200       | 4000       |
|                  |                | 22             | $7.0\times12.5\times18.0$  | B32672L7223+***  | 3320       | 3600       | 4000       |
|                  |                | 33             | $8.5\times14.5\times18.0$  | B32672L7333+***  | 2720       | 2800       | 2000       |
|                  |                | 47             | 9.0 	imes 17.5 	imes 18.0  | B32672L7473+***  | 2560       | 2800       | 2000       |
|                  |                | 68             | $11.0\times18.5\times18.0$ | B32672L7683+***  | _          | 2200       | 1000       |
| 600              | 1600           | 6.2            | $5.0\times10.5\times18.0$  | B32672L1622+***  | 4680       | 5200       | 4000       |
|                  |                | 6.8            | $5.0\times10.5\times18.0$  | B32672L1682+***  | 4680       | 5200       | 4000       |
|                  |                | 8.2            | $6.0\times11.0\times18.0$  | B32672L1822+***  | 3840       | 4400       | 4000       |
|                  |                | 10             | $6.0\times11.0\times18.0$  | B32672L1103+***  | 3840       | 4400       | 4000       |
|                  |                | 12             | $6.0\times12.0\times18.0$  | B32672L1123+***  | 3840       | 4400       | 4000       |
|                  |                | 15             | $7.0\times12.5\times18.0$  | B32672L1153+***  | 3320       | 3600       | 4000       |
|                  |                | 22             | $8.5\times14.5\times18.0$  | B32672L1223+***  | 2720       | 2800       | 2000       |
|                  |                | 33             | 9.0 	imes 17.5 	imes 18.0  | B32672L1333+***  | 2560       | 2800       | 2000       |
|                  |                | 47             | $11.0\times18.5\times18.0$ | B32672L1473+***  |            | 2200       | 1000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

+ = Capacitance tolerance code:

K = ±10%

 $J = \pm 5\%$ 

#### \*\*\* = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 155 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3 \text{ mm}$ )
- 000 = Straight terminals, untaped (lead length 6-1 mm)





High V AC, high temperature (wound)

#### Ordering codes and packing units (lead spacing 15 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions            | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|----------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times I$      | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                            | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                            |                  | pack       | pcs./      | pcs./      |
| V AC             | V DC           | nF             | mm                         |                  | pcs./MOQ   | MOQ        | MOQ        |
| 700              | 2000           | 1.0            | $5.0\times10.5\times18.0$  | B32672L8102+***  | 4680       | 5200       | 4000       |
|                  |                | 1.2            | 5.0 	imes 10.5 	imes 18.0  | B32672L8122+***  | 4680       | 5200       | 4000       |
|                  |                | 1.5            | 5.0 	imes 10.5 	imes 18.0  | B32672L8152+***  | 4680       | 5200       | 4000       |
|                  |                | 2.2            | 5.0 	imes 10.5 	imes 18.0  | B32672L8222+***  | 4680       | 5200       | 4000       |
|                  |                | 2.7            | 5.0 	imes 10.5 	imes 18.0  | B32672L8272+***  | 4680       | 5200       | 4000       |
|                  |                | 3.3            | 5.0 	imes 10.5 	imes 18.0  | B32672L8332+***  | 4680       | 5200       | 4000       |
|                  |                | 3.9            | 5.0 	imes 10.5 	imes 18.0  | B32672L8392+***  | 4680       | 5200       | 4000       |
|                  |                | 4.7            | 5.0 	imes 10.5 	imes 18.0  | B32672L8472+***  | 4680       | 5200       | 4000       |
|                  |                | 5.6            | $6.0\times11.0\times18.0$  | B32672L8562+***  | 3840       | 4400       | 4000       |
|                  |                | 6.2            | $6.0\times11.0\times18.0$  | B32672L8622+***  | 3840       | 4400       | 4000       |
|                  |                | 6.8            | $6.0\times11.0\times18.0$  | B32672L8682+***  | 3840       | 4400       | 4000       |
|                  |                | 8.2            | $6.0\times12.0\times18.0$  | B32672L8822+***  | 3840       | 4400       | 4000       |
|                  |                | 10             | $7.0\times12.5\times18.0$  | B32672L8103+***  | 3320       | 3600       | 4000       |
|                  |                | 12             | $8.5\times14.5\times18.0$  | B32672L8123+***  | 2720       | 2800       | 2000       |
|                  |                | 15             | $8.5\times14.5\times18.0$  | B32672L8153+***  | 2720       | 2800       | 2000       |
|                  |                | 22             | 9.0 	imes 17.5 	imes 18.0  | B32672L8223+***  | 2560       | 2800       | 2000       |
|                  |                | 33             | $11.0\times18.5\times18.0$ | B32672L8333+***  | _          | 2200       | 1000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ 

 $J = \pm 5\%$ 

\*\*\* = Packaging code:

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 155 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3 \text{ mm}$ )
- 000 = Straight terminals, untaped (lead length 6-1 mm)





#### Ordering codes and packing units (lead spacing 15 mm)

| V <sub>RMS</sub> | V <sub>R</sub> | C <sub>R</sub> | Max. dimensions                | Ordering code    | Straight   | Straight   | Straight   |
|------------------|----------------|----------------|--------------------------------|------------------|------------|------------|------------|
| f ≤1 kHz         |                |                | $w \times h \times l$          | (composition see | terminals, | terminals, | terminals, |
|                  |                |                |                                | below)           | Ammo       | Reel       | Untaped    |
|                  |                |                |                                |                  | pack       | pcs./      | pcs./      |
| V AC             | V DC           | nF             | mm                             |                  | pcs./MOQ   | MOQ        | MOQ        |
| 900              | 2000           | 1.0            | $5.0\times10.5\times18.0$      | B32672L9102+***  | 4680       | 5200       | 4000       |
|                  |                | 1.2            | $6.0\times11.0\times18.0$      | B32672L9122+***  | 3840       | 4400       | 4000       |
|                  |                | 1.5            | $6.0\times11.0\times18.0$      | B32672L9152+***  | 3840       | 4400       | 4000       |
|                  |                | 2.2            | 7.0 	imes 12.5 	imes 18.0      | B32672L9222+***  | 3320       | 3600       | 4000       |
|                  |                | 2.7            | 8.0 	imes 14.0 	imes 18.0      | B32672L9272+***  | 2920       | 3000       | 2000       |
|                  |                | 3.3            | 8.5 	imes 14.5 	imes 18.0      | B32672L9332+***  | 2720       | 2800       | 2000       |
|                  |                | 3.9            | $9.0 \times 17.5 \times 18.0$  | B32672L9392+***  | 2560       | 2800       | 2000       |
|                  |                | 4.7            | $9.0 \times 17.5 \times 18.0$  | B32672L9472+***  | 2560       | 2800       | 2000       |
|                  |                | 5.6            | $11.0 \times 18.5 \times 18.0$ | B32672L9562+***  | _          | 2200       | 1000       |
|                  |                | 6.2            | $11.0 \times 18.5 \times 18.0$ | B32672L9622+***  | _          | 2200       | 1000       |
|                  |                | 6.8            | $11.0\times18.5\times18.0$     | B32672L9682K***  | _          | 2200       | 1000       |

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

#### Composition of ordering code

- + = Capacitance tolerance code:
  - $K = \pm 10\%$
  - $J = \pm 5\%$

\*\*\* = Packaging code:

High V AC, high temperature (wound)

- 289 = Straight terminals, Ammo pack
- 189 = Straight terminals, Reel
- 255 = Crimped down to lead spacing 7.5 mm, Ammo pack
- 155 = Crimped down to lead spacing 7.5 mm, Reel
- 003 = Straight terminals, untaped (lead length  $3.2 \pm 0.3 \text{ mm}$ )
- 000 = Straight terminals, untaped (lead length 6-1 mm)



МКР

B32671L ... B32672L

High V AC, high temperature (wound)

# **Technical data**

Reference standard: IEC 60384-16. All data given at T = 20  $^{\circ}$ C, otherwise is specified.

| Max operation                           | na tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erature T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +125 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| •                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| -                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >1 µF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |  |
|                                         | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| $30000 \text{ s} (C_R >$                | > 0.33 µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| 16.V-28                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tago dorating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC voltage derating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         | U 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| · r                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| T <sub>op</sub> (°C)                    | DC vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tage (max. hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC voltage (max. hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |  |
| $T_{op} \leq 100$                       | $V_{op} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .25 · V <sub>c</sub> (2000 h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{op} = 1.0 \cdot V_{C,RMS} (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000 h)                                                |  |
| 100 <t<sub>op≤125</t<sub>               | $V_{op} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .25 · V <sub>c</sub> (1000 h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{op} = 1.0 \cdot V_{C,RMS} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000 h)                                                |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| 1 fit (≤ 1 · 10 <sup>-</sup>            | <sup>9</sup> /h) at 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5 · V <sub>R</sub> , 40 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| 200 000 h at                            | 1.0 · V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , 85 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| For conversion                          | n to oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er operating condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ons and temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, refer                                              |  |
| to chapter "Q                           | uality, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reliability".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| Short circuit or open circuit           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
| Capacitance change $ \Delta C/C $ > 10% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 4 $\cdot$ upper limit values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |  |
| In a station was                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1500 M $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |
|                                         | Upper catego<br>Lower catego<br>Rated temper<br>at<br>1 kHz<br>10 kHz<br>100 kHz<br>100 G $\Omega$ (C <sub>R</sub> ≤<br>30000 s (C <sub>R</sub> ><br>1.6 · V <sub>R</sub> , 2 s<br>T <sub>op</sub> (°C)<br>T <sub>op</sub> ≤ 85<br>85 <t<sub>op≤110<br/>T<sub>op</sub> (°C)<br/>T<sub>op</sub> ≤ 100<br/>100<t<sub>op≤125<br/>1 fit (≤ 1 · 10<sup>-</sup><br/>200 000 h at<br/>For conversion<br/>to chapter "Q<br/>Short circuit of<br/>Capacitance of<br/>Dissipation fat</t<sub></t<sub> | Upper category temp<br>Lower category temp<br>Rated temperature T<br>at $\leq 27 \text{ nF}$<br>1 kHz 0.8<br>10 kHz 1.0<br>100 kHz 2.0<br>100 G $\Omega$ (C <sub>R</sub> $\leq$ 0.33 µl<br>30000 s (C <sub>R</sub> $>$ 0.33 µl<br>30000 s (C <sub>R</sub> $>$ 0.33 µl<br>30000 s (C <sub>R</sub> $>$ 0.33 µl<br>30000  s (C <sub>R</sub> $>$ 0.33 µl<br>30000  s (C <sub>R</sub> $>$ 0.33 µl<br>30000  s (C <sub>R</sub> $>$ 0.33 µl<br>30000  s (C <sub>R</sub> $>$ 0.37 µl<br>$100 \text{ G}\Omega$ (°C) DC vol<br>$T_{op} \leq 85 \text{ V}_{C} = \text{ V}_{D}$<br>$85 \text{ c}T_{op} \leq 110 \text{ V}_{C} = \text{ V}_{D}$<br>$100 \text{ c}T_{op} \leq 125 \text{ V}_{op} = 1$<br>1 fit ( $\leq 1 \cdot 10^{-9}$ /h) at 0<br>200 000 h at 1.0 $\cdot \text{ V}_{R}$<br>For conversion to oth<br>to chapter "Quality, 2<br>Short circuit or open for the comparison of the to chapter the change<br>Dissipation factor tan | 1 kHz       0.8       0.8         10 kHz       1.0       1.0         100 kHz       2.0       3.0         100 GΩ ( $C_R \le 0.33 \mu F$ )       30000 s ( $C_R > 0.33 \mu F$ )         30000 s ( $C_R > 0.33 \mu F$ )         1.6 · V <sub>R</sub> , 2 s $T_{op}$ (°C)       DC voltage derating $T_{op} \le 85$ $V_C = V_R$ $85 < T_{op} \le 110$ $V_C = V_R \cdot (165 - T_{op})/80$ $T_{op}$ (°C)       DC voltage (max. hours) $T_{op} \le 100$ $V_{op} = 1.25 \cdot V_C$ (2000 h) $100 < T_{op} \le 125$ $V_{op} = 1.25 \cdot V_C$ (1000 h)         1 fit ( $\le 1 \cdot 10^{-9}$ /h) at $0.5 \cdot V_R$ , 40 °C         200 000 h at $1.0 \cdot V_R$ , 85 °C         For conversion to other operating condition to chapter "Quality, 2 Reliability".         Short circuit or open circuit | $\begin{array}{l lllllllllllllllllllllllllllllllllll$ |  |



MKP

B32671L ... B32672L

High V AC, high temperature (wound)

#### Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in  $V/\mu s$ .

" $k_0$ " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V<sup>2</sup>/µs.

#### Note:

The values of dV/dt and  $k_0$  provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

| Lead spacing            | 10 mm         |     |      |      |      |       |
|-------------------------|---------------|-----|------|------|------|-------|
| Туре                    | B32671L       |     |      |      |      |       |
| V <sub>RMS</sub> (V AC) | 200           | 250 |      | 500  | 600  | 700   |
| V <sub>R</sub> (V DC)   | 400           | 630 | 1000 | 1000 | 1600 | 2000  |
| C <sub>R</sub> (nF)     | dV/dt in V/µs |     |      |      |      |       |
| 1.0                     | —             | -   | _    | _    | _    | 11000 |
| 1.2                     | —             | -   | _    | _    | 6000 | 10000 |
| 1.5                     | _             | _   | _    | _    | 5600 | 9500  |
| 2.2                     | _             | _   | _    | _    | 5200 | 9000  |
| 2.7                     | _             | —   | —    | -    | 5000 | 8600  |
| 3.3                     | _             | —   | —    | 4700 | 4700 | 8500  |
| 3.9                     | _             | —   | —    | 4300 | 4500 | 8200  |
| 4.7                     | _             | —   | 810  | 3800 | 4000 | 8000  |
| 5.6                     | _             | —   | _    | 3400 | _    | _     |
| 6.2                     | _             | —   | —    | 3200 | _    | —     |
| 6.8                     | _             | —   | 810  | 3100 | _    | —     |
| 8.2                     | _             | —   | —    | 2700 | _    | —     |
| 10                      | _             | _   | 810  | 2500 | -    | -     |
| 12                      | _             | —   | —    | 2300 | _    | —     |
| 15                      | _             | 540 | 810  | -    | _    | _     |
| 22                      | 400           | 540 | 810  | -    | _    | —     |
| 33                      | 400           | 540 | _    | _    | _    |       |
| 47                      | 400           | 540 | _    | -    | _    | -     |
| 56                      | -             | 540 | -    | -    | _    | -     |
| 68                      | 400           | _   | _    | _    |      | _     |
| 100                     | 400           | -   | _    | _    | _    |       |

#### dV/dt values





High V AC, high temperature (wound)

# dV/dt values

| Lead spacing            | 15 mm    |      |     |      |      |      |       |       |
|-------------------------|----------|------|-----|------|------|------|-------|-------|
| Туре                    | B32672   | L    |     |      |      |      |       |       |
| V <sub>RMS</sub> (V AC) | 160      | 200  |     | 250  | 500  | 600  | 700   | 900   |
| V <sub>R</sub> (V DC)   | 250      | 450  | 630 | 1000 | 1300 | 1600 | 2000  | 2000  |
| C <sub>R</sub> (nF)     | dV/dt in | V/µs |     |      |      |      |       |       |
| 1.0                     | —        | _    | _   | _    | _    | _    | 10000 | 15000 |
| 1.2                     | —        | _    | —   | _    | _    | _    | 9400  | 14100 |
| 1.5                     | —        | _    | _   | _    | _    | _    | 9000  | 13500 |
| 2.2                     | —        | _    | —   | _    | -    | -    | 7500  | 11000 |
| 2.7                     | —        | _    | —   | _    | _    | _    | 7100  | 10600 |
| 3.3                     | -        | _    | —   | _    | _    | -    | 6800  | 10000 |
| 3.9                     | -        | _    | —   | _    | _    | -    | 6000  | 9000  |
| 4.7                     | —        | _    | —   | _    | _    | _    | 5500  | 8200  |
| 5.6                     | -        | _    | —   | _    | _    | -    | 5000  | 7500  |
| 6.2                     | —        | —    | —   | —    | _    | 3600 | 4700  | 7000  |
| 6.8                     | -        | _    | —   | _    | 1000 | 3500 | 4500  | 6700  |
| 8.2                     | —        | _    | —   | _    | _    | 3100 | 4200  | _     |
| 10                      | —        | _    | —   | 445  | 1000 | 2800 | 3900  | _     |
| 12                      | —        | —    | —   | —    | _    | 2600 | 3600  | _     |
| 15                      | —        | —    | —   | 445  | _    | 2300 | 3300  | _     |
| 22                      | —        | —    | —   | 445  | 1000 | 2000 | 2900  | _     |
| 33                      | —        | —    | 300 | 445  | 1000 | 1700 | 2300  | _     |
| 47                      | —        | —    | 300 | 445  | 1000 | 1400 | —     | _     |
| 56                      | —        | —    | —   | —    | _    | —    | —     | _     |
| 68                      | —        | 200  | 300 | 445  | 1000 | —    | -     | _     |
| 100                     | —        | 200  | 300 | 445  | _    | _    | -     | _     |
| 150                     | 170      | 200  | 300 | 445  | _    | —    | —     | _     |
| 220                     | 170      | 200  | 300 | —    | _    | —    | —     | _     |
| 330                     | 170      | 200  |     | —    | _    | _    | -     | _     |
| 390                     |          | _    | 300 |      | _    | _    | -     |       |
| 470                     | 170      | 200  | —   |      | _    | _    | -     | _     |
| 680                     | 170      | 200  | —   | _    | _    | _    | _     |       |
| 1000                    | 170      | _    | —   | _    | _    | _    | _     | _     |



MKP

B32671L ... B32672L

High V AC, high temperature (wound)

# k<sub>0</sub> values

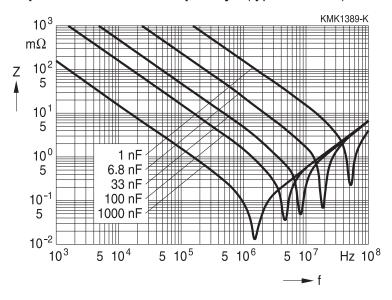
| Lead spacing            | 10 mm                       |        |        |         |          |          |
|-------------------------|-----------------------------|--------|--------|---------|----------|----------|
| Туре                    | B32671L                     |        |        |         |          |          |
| V <sub>RMS</sub> (V AC) | 200                         | 250    |        | 500     | 600      | 700      |
| V <sub>R</sub> (V DC)   | 400                         | 630    | 1000   | 1000    | 1600     | 2000     |
| C <sub>R</sub> (nF)     | $k_0$ in V <sup>2</sup> /µs |        |        |         |          |          |
| 1.0                     | _                           | _      | _      | _       | _        | 25000000 |
| 1.2                     | _                           | _      | _      | _       | 14400000 | 23000000 |
| 1.5                     | _                           | —      | —      | _       | 14000000 | 22500000 |
| 2.2                     | _                           | _      | _      | _       | 13800000 | 22000000 |
| 2.7                     | _                           | _      | _      | _       | 13600000 | 21500000 |
| 3.3                     | _                           | _      | _      | 9400000 | 13300000 | 21000000 |
| 3.9                     | _                           | _      | _      | 8600000 | 13100000 | 20900000 |
| 4.7                     | -                           | —      | 400000 | 8200000 | 12000000 | 20800000 |
| 5.6                     | -                           | —      | _      | 7600000 | _        |          |
| 6.2                     | -                           | —      | _      | 6800000 | _        |          |
| 6.8                     | _                           | _      | 400000 | 6200000 | _        |          |
| 8.2                     | -                           | —      | _      | 5400000 | _        |          |
| 10                      | -                           | —      | 400000 | 5000000 | _        |          |
| 12                      | -                           | —      | _      | 4600000 | _        |          |
| 15                      | -                           | 200000 | 400000 | _       | _        |          |
| 22                      | 150000                      | 200000 | 400000 | _       | _        |          |
| 33                      | 150000                      | 200000 | _      | _       | _        |          |
| 47                      | 150000                      | 200000 | _      |         |          |          |
| 56                      | _                           | 200000 | _      |         | _        |          |
| 68                      | 150000                      | _      | _      | _       | _        |          |
| 100                     | 150000                      | _      | _      | —       | _        |          |





High V AC, high temperature (wound)

#### k<sub>0</sub> values


| Lead spacing            | 15 mm                     |        |        |         |         |          |          |          |
|-------------------------|---------------------------|--------|--------|---------|---------|----------|----------|----------|
| Туре                    | B32672                    | L      |        |         |         |          |          |          |
| V <sub>RMS</sub> (V AC) | 160                       | 200    | 250    |         | 500     | 600      | 700      | 900      |
| V <sub>R</sub> (V DC)   | 250                       | 450    | 630    | 1000    | 1300    | 1600     | 2000     | 2000     |
| C <sub>R</sub> (nF)     | $k_0$ in V <sup>2</sup> / | us     |        |         |         |          |          |          |
| 1.0                     | _                         | _      | _      | —       | -       | _        | 20300000 | 3000000  |
| 1.2                     | _                         | _      | _      | —       | _       | _        | 19600000 | 29400000 |
| 1.5                     | _                         | _      | _      | —       | _       | _        | 19200000 | 28000000 |
| 2.2                     | _                         | _      | _      | —       | _       | _        | 18600000 | 27500000 |
| 2.7                     | _                         | _      | _      | —       | _       | _        | 18200000 | 27300000 |
| 3.3                     | -                         | —      | —      | —       | -       | —        | 18000000 | 27000000 |
| 3.9                     | -                         | —      | —      | —       | -       | —        | 16800000 | 25200000 |
| 4.7                     | -                         | —      | —      | —       | -       | —        | 15800000 | 23500000 |
| 5.6                     | -                         | —      | —      | —       | -       | —        | 13100000 | 19500000 |
| 6.2                     | -                         | —      | —      | —       | -       | 11520000 | 12700000 | 19000000 |
| 6.8                     | -                         | —      | —      | —       | 3000000 | 11200000 | 12300000 | 18400000 |
| 8.2                     | _                         | _      | _      | —       | _       | 9920000  | 11800000 | _        |
| 10                      | _                         | _      | _      | 1000000 | 3000000 | 8960000  | 11100000 | _        |
| 12                      | -                         | —      | —      | —       | -       | 8320000  | 10600000 | _        |
| 15                      | -                         | _      | —      | 1000000 | -       | 7360000  | 10400000 | _        |
| 22                      | -                         | —      | —      | 1000000 | 3000000 | 6400000  | 9300000  | _        |
| 33                      | -                         | _      | 500000 | 1000000 | 3000000 | 5440000  | 9000000  | _        |
| 47                      | -                         | _      | 500000 | 1000000 | 3000000 | 4480000  | —        | _        |
| 56                      | -                         | _      | -      | —       | _       | —        | —        | _        |
| 68                      | _                         | 120000 | 500000 | 1000000 | 3000000 | _        | _        | _        |
| 100                     | -                         | 120000 | 500000 | 1000000 | -       | —        | —        | _        |
| 150                     | 100000                    | 120000 | 500000 | 1000000 | -       | —        | —        | _        |
| 220                     | 100000                    | 120000 | 500000 | —       | -       | —        | —        | _        |
| 330                     | 100000                    | 120000 | —      | —       | -       | —        | —        | _        |
| 390                     | _                         | _      | 500000 | —       | -       | —        | _        | _        |
| 470                     | 100000                    | 120000 | _      | —       | _       | _        | _        | _        |
| 680                     | 100000                    |        |        |         |         | -        |          | _        |
| 1000                    | 100000                    |        |        | —       | _       | _        | _        |          |

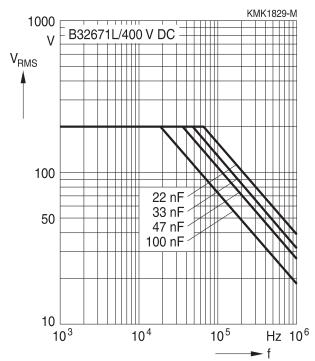




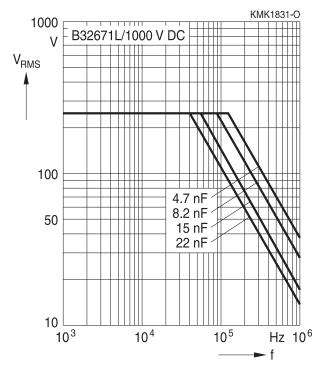
High V AC, high temperature (wound)

Impedance Z versus frequency f (typical values)

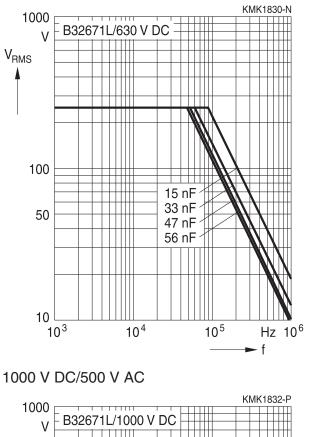


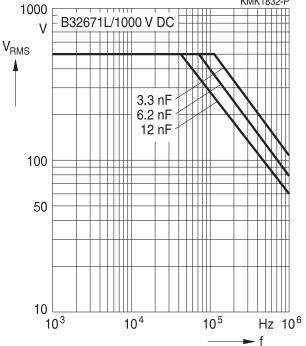






Permissible AC voltage V<sub>RMS</sub> versus frequency f (for sinusoidal waveforms  $T_A \le 100$  °C) For  $T_A > 100$  °C, please use derating factor  $F_T$ .

#### Lead spacing 10 mm


#### 400 V DC/200 V AC




1000 V DC/250 V AC



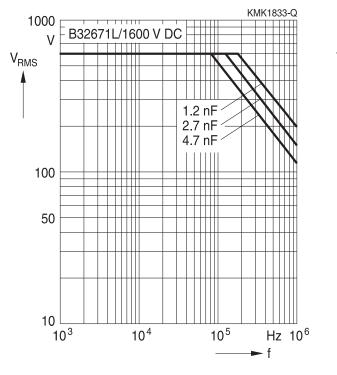
630 V DC/250 V AC





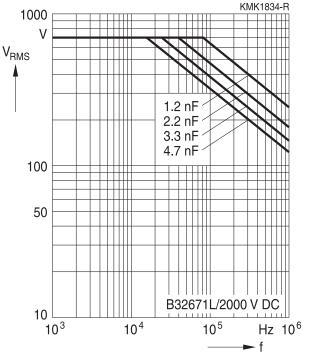
Please read *Cautions and warnings* and *Important notes* at the end of this document.




B32671L



Permissible AC voltage V<sub>RMS</sub> versus frequency f (for sinusoidal waveforms  $T_A \le 100 \text{ °C}$ ) For  $T_A > 100 \text{ °C}$ , please use derating factor  $F_T$ .


#### Lead spacing 10 mm

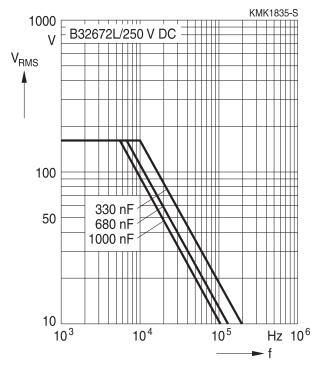
#### 1600 V DC/600 V AC

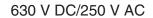


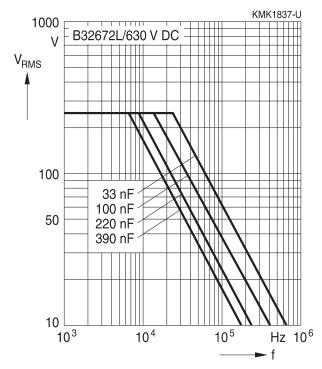
2000 V DC/700 V AC

High V AC, high temperature (wound)

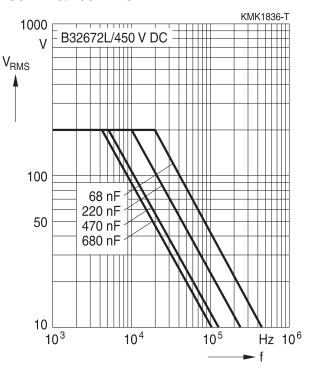




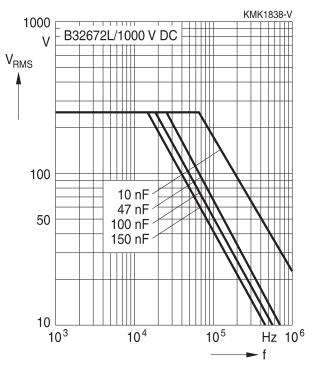





Permissible AC voltage V<sub>RMS</sub> versus frequency f (for sinusoidal waveforms T<sub>A</sub>  $\leq$ 100 °C) For T<sub>A</sub> >100 °C, please use derating factor F<sub>T</sub>.

#### Lead spacing 15 mm


#### 250 V DC/160 V AC







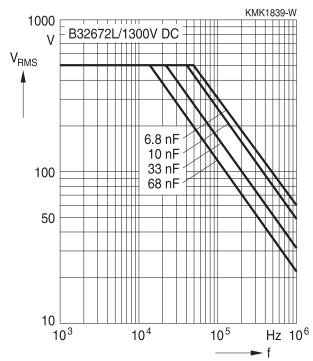

450 V DC/200 V AC



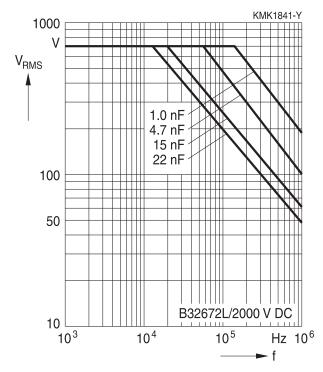




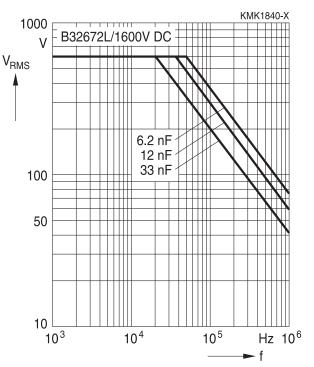




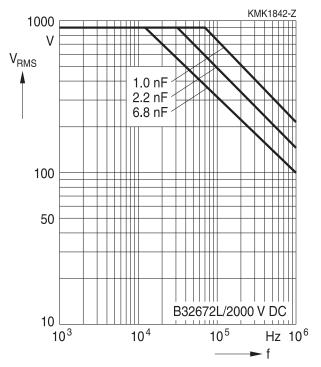

High V AC, high temperature (wound)


Permissible AC voltage V<sub>RMS</sub> versus frequency f (for sinusoidal waveforms T<sub>A</sub>  $\leq$ 100 °C) For T<sub>A</sub> >100 °C, please use derating factor F<sub>T</sub>.

#### Lead spacing 15 mm


#### 1300 V DC/500 V AC




#### 2000 V DC/700 V AC



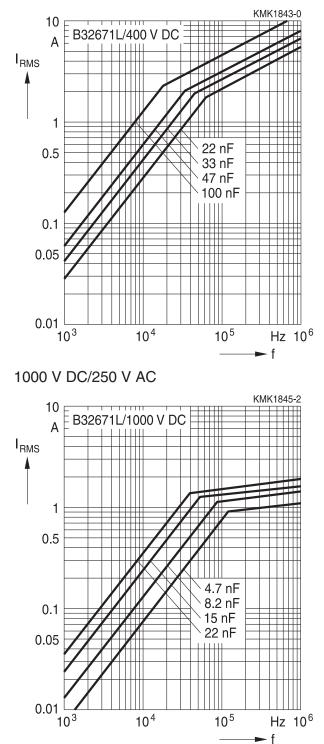
1600 V DC/600 V AC



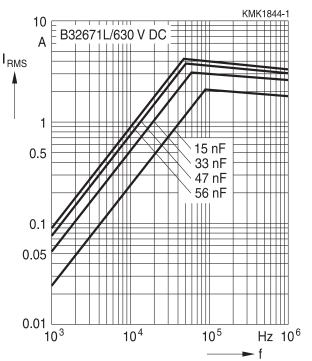




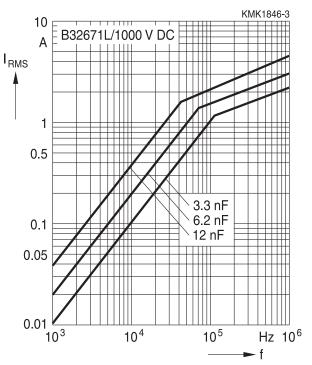
Please read *Cautions and warnings* and *Important notes* at the end of this document.





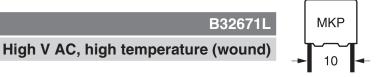


# Permissible current $I_{RMS}$ versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor $F_T$ .

#### Lead spacing 10 mm


#### 400 V DC/200 V AC



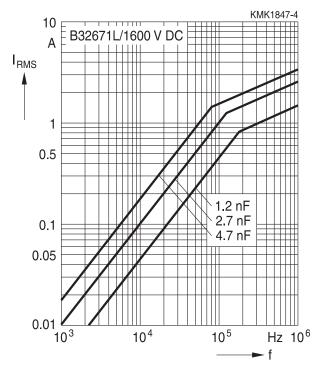
630 V DC/250 V AC



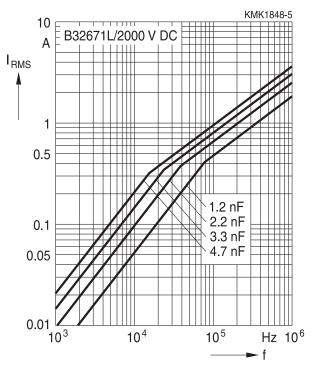





Please read *Cautions and warnings* and *Important notes* at the end of this document.







Permissible current I<sub>RMS</sub> versus frequency f (for sinusoidal waveforms  $T_A \le 100$  °C) For  $T_A > 100$  °C, please use derating factor  $F_T$ .

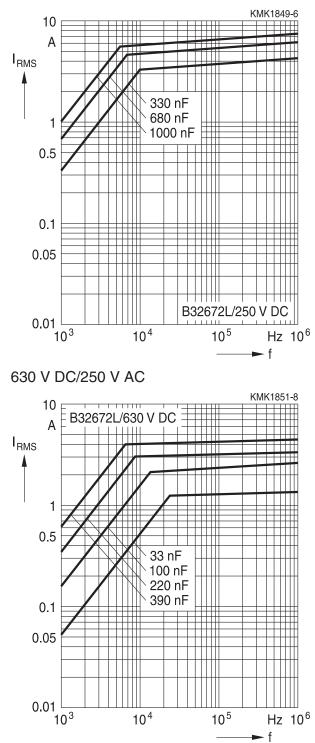
#### Lead spacing 10 mm

#### 1600 V DC/600 V AC

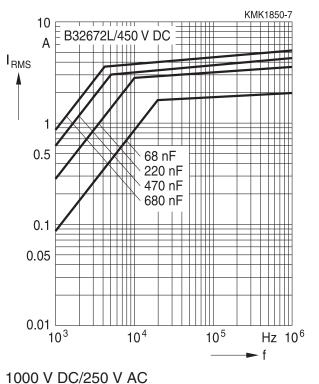


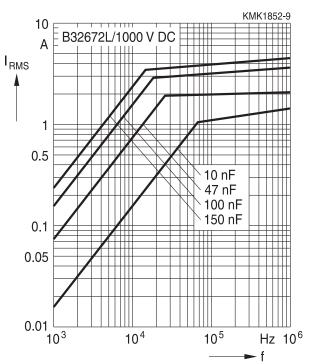
2000 V DC/700 V AC









## Permissible current $I_{RMS}$ versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please use derating factor $F_T$ .


#### Lead spacing 15 mm

250 V DC/160 V AC

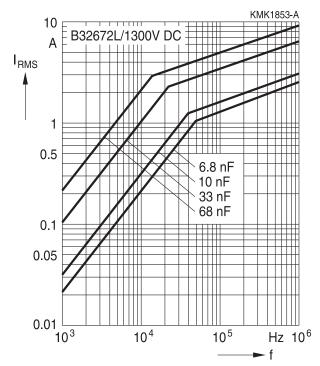


450 V DC/200 V AC

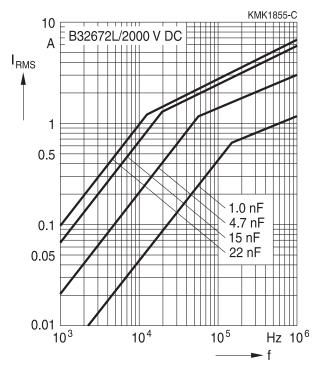




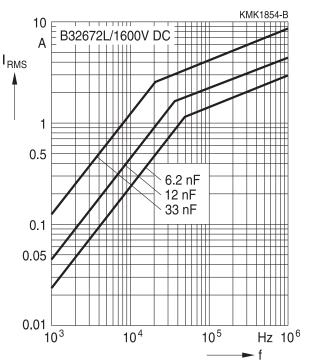


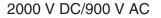


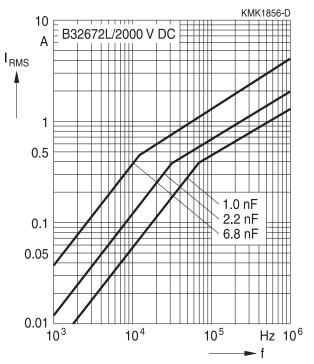

High V AC, high temperature (wound)


Permissible current  $I_{RMS}$  versus frequency f (for sinusoidal waveforms  $T_A \le 100$  °C) For  $T_A > 100$  °C, please use derating factor  $F_T$ .

#### Lead spacing 15 mm

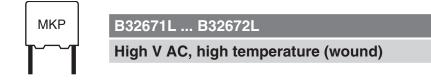

#### 1300 V DC/500 V AC





#### 2000 V DC/700 V AC



#### 1600 V DC/600 V AC

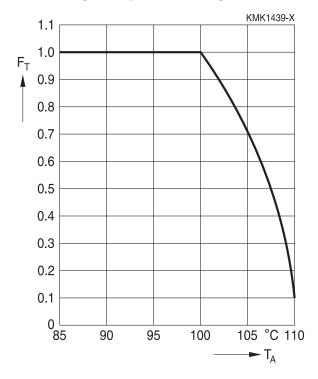







Please read *Cautions and warnings* and *Important notes* at the end of this document.



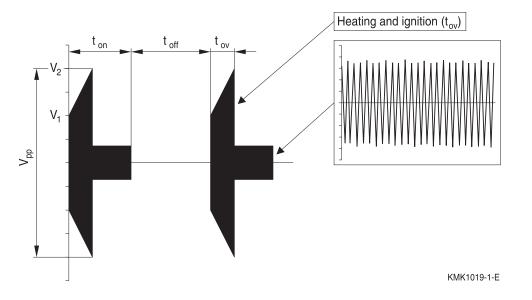



# Maximum AC voltage ( $V_{RMS}$ ), current ( $I_{RMS}$ ) vs. frequency and temperature for $T_A > 100 \ ^{\circ}C$

The graphs described in the previous section for the permissible AC voltage (V<sub>RMS</sub>) or current (I<sub>RMS</sub>) vs. frequency are given for a maximum ambient temperature  $T_A \leq 100 \text{ }^{\circ}\text{C}$ . In case of higher ambient temperatures (T<sub>A</sub>), the self-heating ( $\Delta$ T) of the component must be reduced to avoid that temperature of the component (T<sub>op</sub>= T<sub>A</sub> +  $\Delta$ T) reaches values above maximum operating temperature. The factor F<sub>T</sub> shall be applied in the following way:

 $I_{RMS} (T_A) = I_{RMS,T_A \le 100 °C} \cdot F_T(T_A)$  $V_{RMS} (T_A) = V_{RMS,T_A \le 100 °C} \cdot F_T(T_A)$ 

And  $F_{T}$  is given by the following curve:








# Operation at overvoltages during heating and ignition of lamps ( $T_A \leq 40$ °C)

In lighting applications, the capacitors can be subjected to overvoltages during the heating and ignition periods. An overvoltage occurs when the operation voltage exceeds the permissible AC voltage at the resonant frequency  $f_r$ .



For a repetitive application of on/off switching pulses (as for example in the life tests applied by electronic ballast manufacturers), limits have to be imposed on the time periods under overvoltage and on the duty cycle, in order to keep the capacitance value within the required margins:

- The overvoltage time t<sub>ov</sub> should be less than 1 sec.
- The K<sub>0</sub> calculated in the overvoltage period (see general technical information) shall be lower than the maximum K<sub>0</sub> provided.
- The maximum duty cycle of the overvoltage is given by

$$\frac{t_{OV}}{t_{on} + t_{off}} \le \left(\frac{V_{RMS}}{V_{RMS,OV}}\right)^2 \cdot 0.5$$

where  $V_{RMS,ov}$  is the RMS voltage during period  $t_{ov}$ 

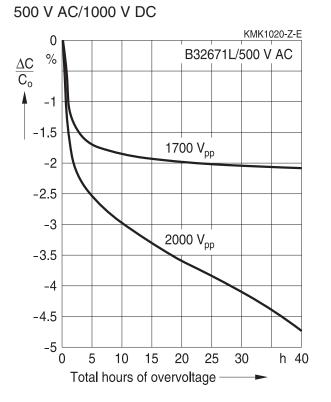
$$V_{\rm rms,OV} = \sqrt{\frac{V_1^2 + V_1 \cdot V_2 + V_2^2}{6}}$$

and  $V_{RMS}$  is the permissible AC voltage for continuous operation at the resonant frequency  $f_r$  (given by the "permissible AC voltage versus frequency f" graphics in the previous pages).

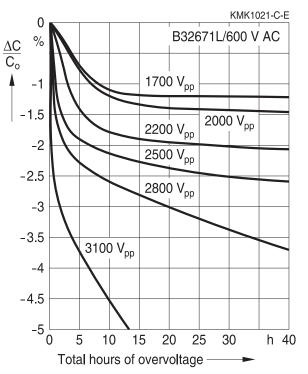

The drift of capacitance depends on the V<sub>pp</sub> attained, and the total time under overvoltage, which is calculated in hours as follows:

(N<sub>i</sub> · t<sub>ov</sub>) / 3600

where  $N_i$  is the number of overvoltage impulses and  $t_{ov}$  is expressed in seconds.


The maximum drift of capacitance as a function of both parameters is provided graphically in the following pages.





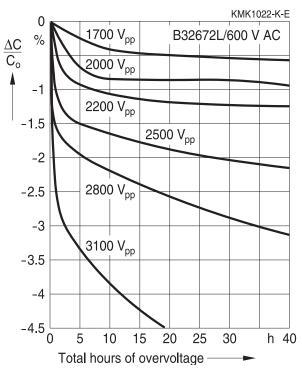

# Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage

# Lead spacing 10 mm



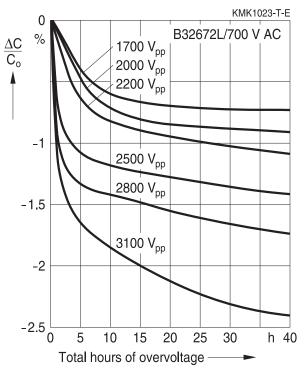
600 V AC/1600 V DC






MKP → 15 ◄-

Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage


# Lead spacing 15 mm

600 V AC/1600 V DC



# 700 V AC/2000 V DC

High V AC, high temperature (wound)







High V AC, high temperature (wound)

# **Testing and Standards**

| Test                                              | Reference                                | Conditions of test                                                                                                                   |                                     | Performance requirements                                                                                                  |
|---------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Electrical<br>Parameters                          | IEC 60384-16                             | Voltage proof, 1.6 $V_R$ , 1 minute<br>Insulation resistance, $R_{INS}$<br>Capacitance, C<br>Dissipation factor, tan $\delta$        |                                     | Within specified limits                                                                                                   |
| Robustness<br>of termina-<br>tions                | IEC 60068-2-21                           | Tensile strength (te<br>Wire diameter<br>$0.5 < d1 \le 0.8 mm$                                                                       | st Ua1)<br>Tensile<br>force<br>10 N | Capacitance and tan $\delta$ within specified limits                                                                      |
| Resistance to soldering heat                      | IEC 60068-2-20,<br>test Tb,<br>method 1A |                                                                                                                                      |                                     | $\Delta C/C_0 \le 2\%$<br>$ \Delta \tan \delta  \le 0.002$                                                                |
| Rapid<br>change of<br>temperature                 | IEC 60384-16                             | $T_A$ = lower category<br>$T_B$ = upper category<br>Five cycles, duratio                                                             | / temperature                       |                                                                                                                           |
| Vibration                                         | IEC 60384-16                             | Test Fc: vibration si<br>Displacement: 0.75<br>Accleration: 98 m/si<br>Frequency: 10 Hz<br>Test duration: 3 orth<br>2 hours each axe | mm<br>2<br>500 Hz                   | No visible damage                                                                                                         |
| Bump                                              | IEC 60384-16                             | Test Eb: Total 400<br>390 m/s <sup>2</sup> mounted o<br>6 ms duration                                                                | •                                   | No visible damage<br>$ \Delta C/C_0  \le 2\%$<br>$ \Delta \tan \delta  \le 0.002$<br>$R_{INS} \ge 50\%$ of initial limit  |
| Climatic<br>sequence                              | IEC 60384-16                             | Dry heat Tb / 16 h.<br>Damp heat cyclic, 1<br>+55 °C / 24h / 95%<br>Cold Ta / 2h<br>Damp heat cyclic, 5<br>+55 °C / 24h / 95%        | 100% RH                             | No visible damage $ \Delta C/C_0  \le 3\%$<br>$ \Delta \tan \delta  \le 0.001$<br>$R_{INS} \ge 50\%$ of initial limit     |
| Damp Heat<br>Steady State                         | IEC 60384-16                             | Test Ca<br>40 °C / 93% RH / 56 days                                                                                                  |                                     | No visible damage<br>$ \Delta C/C_0  \le 3\%$<br>$ \Delta \tan \delta  \le 0.001$<br>$R_{INS} \ge 50\%$ of initial limit  |
| High<br>temperature<br>high humidity<br>with load |                                          | 60 °C / 95% RH / 10<br>with V <sub>R,DC</sub>                                                                                        | 000 hours                           | No visible damage<br>$ \Delta C/C_0  \le 10\%$<br>$ \Delta \tan \delta  \le 0.002$<br>$R_{INS} \ge 50\%$ of initial limit |



MKP

High V AC, high temperature (wound)

B32671L ... B32672L

| Test      | Reference   | Conditions of test                       | Performance requirements            |
|-----------|-------------|------------------------------------------|-------------------------------------|
| Endurance | IEC60384-16 | 85 °C/ 1.25 V <sub>B</sub> / 2000 hours  | No visible damage                   |
|           |             |                                          | $ \Delta C/C_0  \le 5\%$            |
|           |             |                                          | $ \Delta \tan \delta  \le 0.002$    |
|           |             |                                          | $R_{INS} \ge 50\%$ of initial limit |
| Endurance | IEC60384-16 | 110 °C/ 1.25 V <sub>c</sub> / 2000 hours | No visible damage                   |
|           |             |                                          | $ \Delta C/C_0  \le 10\%$           |
|           |             |                                          | $ \Delta \tan \delta  \le 0.002$    |
|           |             |                                          | $R_{INS} \ge 50\%$ of initial limit |

#### **Mounting guidelines**

#### 1 Soldering

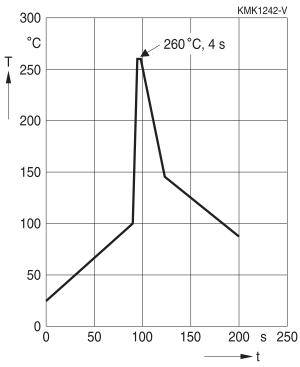
#### 1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

| Solder bath temperature | 235 ±5 °C                                                             |
|-------------------------|-----------------------------------------------------------------------|
| Soldering time          | 2.0 ±0.5 s                                                            |
| Immersion depth         | 2.0 + 0/-0.5 mm from capacitor body or seating plane                  |
| Evaluation criteria:    |                                                                       |
| Visual inspection       | Wetting of wire surface by new solder $\geq$ 90%, free-flowing solder |






High V AC, high temperature (wound)

# 1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

| Serie      | S                                                                                          | Solder bath temperature | Soldering time                                                                                                      |
|------------|--------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|
| MKT        | boxed (except $2.5 \times 6.5 \times 7.2$ mm)<br>coated<br>uncoated (lead spacing > 10 mm) | 260 ±5 °C               | 10 ±1 s                                                                                                             |
| MFP<br>MKP | (lead spacing > 7.5 mm)                                                                    |                         |                                                                                                                     |
| MKT        |                                                                                            | -                       | 5 ±1 s                                                                                                              |
| MKP<br>MKT | (lead spacing $\leq$ 7.5 mm)<br>uncoated (lead spacing $\leq$ 10 mm)<br>insulated (B32559) |                         | < 4 s<br>recommended soldering<br>profile for MKT uncoated<br>(lead spacing $\leq$ 10 mm) and<br>insulated (B32559) |



| Immersion depth                                      | 2.0 +0/ $-0.5$ mm from capacitor body or seating plane                                    |
|------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Shield                                               | Heat-absorbing board, (1.5 $\pm 0.5$ ) mm thick, between capacitor body and liquid solder |
| Evaluation criteria:                                 |                                                                                           |
| Visual inspection                                    | No visible damage                                                                         |
| $\Delta C/C_0$                                       | 2% for MKT/MKP/MFP<br>5% for EMI suppression capacitors                                   |
| tan $\delta$ As specified in sectional specification |                                                                                           |

Please read *Cautions and warnings* and *Important notes* at the end of this document.

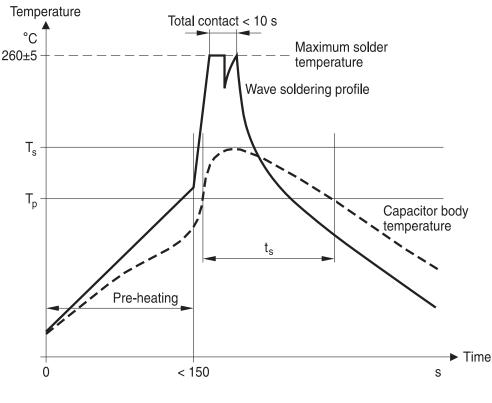


MKP

B32671L ... B32672L

High V AC, high temperature (wound)

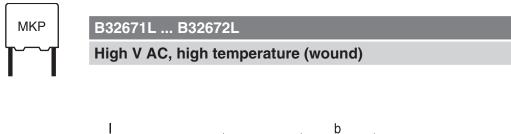
#### 1.3 General notes on soldering


Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature  $T_{max}$ . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
  - diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

#### **EPCOS** recommendations


As a reference, the recommended wave soldering profile for our film capacitors is as follows:




 $T_s$ : Capacitor body maximum temperature at wave soldering  $T_p$ : Capacitor body maximum temperature at pre-heating

KMK1745-A-E







Body temperature should follow the description below:

- MKP capacitor During pre-heating: T<sub>p</sub> ≤ 110 °C During soldering: T<sub>s</sub> ≤ 120 °C, t<sub>s</sub> ≤ 45 s
- MKT capacitor During pre-heating:  $T_p \le 125 \text{ °C}$ During soldering:  $T_s \le 160 \text{ °C}$ ,  $t_s \le 45 \text{ s}$

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T<sub>s</sub>) must be  $\leq$  120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be <  $360 \degree C$  and the soldering contact time should be no longer than 3 seconds.

For uncoated MKT capacitors with lead spacings  $\leq$  10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to EPCOS Film Capacitor Data Book in case more details are needed.



MKP

#### High V AC, high temperature (wound)

#### **Cautions and warnings**

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

| Торіс         | Safety information                                          | Reference chapter    |
|---------------|-------------------------------------------------------------|----------------------|
|               |                                                             | "General technical   |
|               |                                                             | information"         |
| Storage       | Make sure that capacitors are stored within the specified   | 4.5                  |
| conditions    | range of time, temperature and humidity conditions.         | "Storage conditions" |
| Flammability  | Avoid external energy, such as fire or electricity (passive | 5.3                  |
|               | flammability), avoid overload of the capacitors (active     | "Flammability"       |
|               | flammability) and consider the flammability of materials.   |                      |
| Resistance to | Do not exceed the tested ability to withstand vibration.    | 5.2                  |
| vibration     | The capacitors are tested to IEC 60068-2-6.                 | "Resistance to       |
|               | EPCOS offers film capacitors specially designed for         | vibration"           |
|               | operation under more severe vibration regimes such as       |                      |
|               | those found in automotive applications. Consult our         |                      |
|               | catalog "Film Capacitors for Automotive Electronics".       |                      |

| Торіс                                                   | Safety information                                                                                                                                                                                                         | Reference chapter<br>"Mounting guidelines"               |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Soldering                                               | Do not exceed the specified time or temperature limits during soldering.                                                                                                                                                   | 1 "Soldering"                                            |
| Cleaning                                                | Use only suitable solvents for cleaning capacitors.                                                                                                                                                                        | 2 "Cleaning"                                             |
| Embedding of<br>capacitors in<br>finished<br>assemblies | When embedding finished circuit assemblies in plastic<br>resins, chemical and thermal influences must be taken<br>into account.<br>Caution: Consult us first, if you also wish to embed other<br>uncoated component types! | 3 "Embedding of<br>capacitors in finished<br>assemblies" |





High V AC, high temperature (wound)

# Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. **The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products**. Detailed information can be found on the Internet under <u>www.epcos.com/orderingcodes</u>.



MKP

High V AC, high temperature (wound)

# Symbols and terms

| Symbol                | English                                     | German                                        |
|-----------------------|---------------------------------------------|-----------------------------------------------|
| α                     | Heat transfer coefficient                   | Wärmeübergangszahl                            |
| $\alpha_{c}$          | Temperature coefficient of capacitance      | Temperaturkoeffizient der Kapazität           |
| Α                     | Capacitor surface area                      | Kondensatoroberfläche                         |
| βc                    | Humidity coefficient of capacitance         | Feuchtekoeffizient der Kapazität              |
| С                     | Capacitance                                 | Kapazität                                     |
| C <sub>R</sub>        | Rated capacitance                           | Nennkapazität                                 |
| $\Delta C$            | Absolute capacitance change                 | Absolute Kapazitätsänderung                   |
| $\Delta C/C$          | Relative capacitance change (relative       | Relative Kapazitätsänderung (relative         |
|                       | deviation of actual value)                  | Abweichung vom Ist-Wert)                      |
| $\Delta C/C_R$        | Capacitance tolerance (relative deviation   |                                               |
|                       | from rated capacitance)                     | vom Nennwert)                                 |
| dt                    | Time differential                           | Differentielle Zeit                           |
| $\Delta t$            | Time interval                               | Zeitintervall                                 |
| $\Delta T$            | Absolute temperature change                 | Absolute Temperaturänderung                   |
|                       | (self-heating)                              | (Selbsterwärmung)                             |
| $\Delta tan \delta$   | Absolute change of dissipation factor       | Absolute Änderung des Verlustfaktors          |
| $\Delta V$            | Absolute voltage change                     | Absolute Spannungsänderung                    |
| dV/dt                 | Time differential of voltage function (rate | Differentielle Spannungsänderung              |
|                       | of voltage rise)                            | (Spannungsflankensteilheit)                   |
| $\Delta V / \Delta t$ | Voltage change per time interval            | Spannungsänderung pro Zeitintervall           |
| E                     | Activation energy for diffusion             | Aktivierungsenergie zur Diffusion             |
| ESL                   | Self-inductance                             | Eigeninduktivität                             |
| ESR                   | Equivalent series resistance                | Ersatz-Serienwiderstand                       |
| f                     | Frequency                                   | Frequenz                                      |
| f <sub>1</sub>        | Frequency limit for reducing permissible    | Grenzfrequenz für thermisch bedingte          |
|                       | AC voltage due to thermal limits            | Reduzierung der zulässigen                    |
| _                     |                                             | Wechselspannung                               |
| f <sub>2</sub>        | Frequency limit for reducing permissible    | Grenzfrequenz für strombedingte               |
|                       | AC voltage due to current limit             | Reduzierung der zulässigen                    |
| 1                     |                                             | Wechselspannung                               |
| f <sub>r</sub>        | Resonant frequency                          | Resonanzfrequenz                              |
| F <sub>D</sub>        | Thermal acceleration factor for diffusion   | Therm. Beschleunigungsfaktor zur<br>Diffusion |
| F <sub>T</sub>        | Derating factor                             | Deratingfaktor                                |
| i                     | Current (peak)                              | Stromspitze                                   |
| I <sub>C</sub>        | Category current (max. continuous           | Kategoriestrom (max. Dauerstrom)              |
|                       | current)                                    |                                               |



МКР

B32671L ... B32672L

High V AC, high temperature (wound)

| Symbol                  | English                                                  | German                                         |
|-------------------------|----------------------------------------------------------|------------------------------------------------|
| I <sub>RMS</sub>        | (Sinusoidal) alternating current, root-mean-square value | (Sinusförmiger) Wechselstrom                   |
| i <sub>z</sub>          | Capacitance drift                                        | Inkonstanz der Kapazität                       |
| k <sub>o</sub>          | Pulse characteristic                                     | Impulskennwert                                 |
| L <sub>s</sub>          | Series inductance                                        | Serieninduktivität                             |
| λ                       | Failure rate                                             | Ausfallrate                                    |
| λο                      | Constant failure rate during useful                      | Konstante Ausfallrate in der                   |
| •0                      | service life                                             | Nutzungsphase                                  |
| $\lambda_{\text{test}}$ | Failure rate, determined by tests                        | Experimentell ermittelte Ausfallrate           |
| P <sub>diss</sub>       | Dissipated power                                         | Abgegebene Verlustleistung                     |
| P <sub>gen</sub>        | Generated power                                          | Erzeugte Verlustleistung                       |
| Q                       | Heat energy                                              | Wärmeenergie                                   |
| ρ                       | Density of water vapor in air                            | Dichte von Wasserdampf in Luft                 |
| R                       | Universal molar constant for gases                       | Allg. Molarkonstante für Gas                   |
| R                       | Ohmic resistance of discharge circuit                    | Ohmscher Widerstand des                        |
|                         |                                                          | Entladekreises                                 |
| R <sub>i</sub>          | Internal resistance                                      | Innenwiderstand                                |
| R <sub>ins</sub>        | Insulation resistance                                    | Isolationswiderstand                           |
| R <sub>P</sub>          | Parallel resistance                                      | Parallelwiderstand                             |
| R <sub>s</sub>          | Series resistance                                        | Serienwiderstand                               |
| S                       | severity (humidity test)                                 | Schärfegrad (Feuchtetest)                      |
| t                       | Time                                                     | Zeit                                           |
| Т                       | Temperature                                              | Temperatur                                     |
| τ                       | Time constant                                            | Zeitkonstante                                  |
| tan δ                   | Dissipation factor                                       | Verlustfaktor                                  |
| tan $\delta_{D}$        | Dielectric component of dissipation factor               | Dielektrischer Anteil des Verlustfaktors       |
| tan δ <sub>P</sub>      | Parallel component of dissipation factor                 | Parallelanteil des Verlfustfaktors             |
| tan δ <sub>s</sub>      | Series component of dissipation factor                   | Serienanteil des Verlustfaktors                |
| T <sub>A</sub>          | Temperature of the air surrounding the component         | Temperatur der Luft, die das Bauteil<br>umgibt |
| T <sub>max</sub>        | Upper category temperature                               | Obere Kategorietemperatur                      |
| T <sub>min</sub>        | Lower category temperature                               | Untere Kategorietemperatur                     |
| t <sub>oL</sub>         | Operating life at operating temperature                  | Betriebszeit bei Betriebstemperatur und        |
|                         | and voltage                                              | -spannung                                      |
| T <sub>op</sub>         | Operating temperature                                    | Beriebstemperatur                              |
| T <sub>R</sub>          | Rated temperature                                        | Nenntemperatur                                 |
| T <sub>ref</sub>        | Reference temperature                                    | Referenztemperatur                             |
| t <sub>SL</sub>         | Reference service life                                   | Referenz-Lebensdauer                           |



MKP

B32671L ... B32672L

# High V AC, high temperature (wound)

| <b>C</b> ,                     |                             |  |  |
|--------------------------------|-----------------------------|--|--|
| English                        | German                      |  |  |
| AC voltage                     | Wechselspannung             |  |  |
| Category voltage               | Kategoriespannung           |  |  |
| Category AC voltage            | (Sinusförmige)              |  |  |
|                                | Kategorie-Wechselspannung   |  |  |
| Corona-discharge onset voltage | Teilentlade-Einsatzspannung |  |  |
| Charging voltage               | Ladespannung                |  |  |
| DC voltage                     | Gleichspannung              |  |  |
| Fly-back capacitor voltage     | Spannung (Flyback)          |  |  |
| Input voltage                  | Eingangsspannung            |  |  |
| Output voltage                 | Ausgangssspannung           |  |  |
| Operating voltage              | Betriebsspannung            |  |  |
| Peak pulse voltage             | Impuls-Spitzenspannung      |  |  |
| Peak-to-peak voltage Impedance | Spannungshub                |  |  |
| Rated voltage                  | Nennspannung                |  |  |

| V <sub>CD</sub>  | Corona-discharge onset voltage                           | Teilentlade-Einsatzspannung             |
|------------------|----------------------------------------------------------|-----------------------------------------|
| $V_{ch}$         | Charging voltage                                         | Ladespannung                            |
| V <sub>DC</sub>  | DC voltage                                               | Gleichspannung                          |
| V <sub>FB</sub>  | Fly-back capacitor voltage                               | Spannung (Flyback)                      |
| V <sub>i</sub>   | Input voltage                                            | Eingangsspannung                        |
| V <sub>o</sub>   | Output voltage                                           | Ausgangssspannung                       |
| V <sub>op</sub>  | Operating voltage                                        | Betriebsspannung                        |
| V <sub>p</sub>   | Peak pulse voltage                                       | Impuls-Spitzenspannung                  |
| V <sub>pp</sub>  | Peak-to-peak voltage Impedance                           | Spannungshub                            |
| V <sub>R</sub>   | Rated voltage                                            | Nennspannung                            |
| Ŷ <sub>R</sub>   | Amplitude of rated AC voltage                            | Amplitude der Nenn-Wechselspannung      |
| V <sub>RMS</sub> | (Sinusoidal) alternating voltage, root-mean-square value | (Sinusförmige) Wechselspannung          |
| V <sub>SC</sub>  | S-correction voltage                                     | Spannung bei Anwendung "S-correction"   |
| $V_{sn}$         | Snubber capacitor voltage                                | Spannung bei Anwendung<br>"Beschaltung" |
| Z                | Impedance                                                | Scheinwiderstand                        |
| e                | Lead spacing                                             | Rastermaß                               |

Symbol

 $V_{AC}$ 

 $V_{\text{C}}$ 

 $V_{C,RMS}$ 



The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).



Important notes

7. The trade names EPCOS, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Film Capacitors category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below :

 F339X134748MIP2T0
 F450KG153J250ALH0J
 750-1018
 FKP1-1500160010P15
 FKP1R031007D00JYSD
 FKP1R031507E00JYSD

 FKP1U024707E00KYSD
 82DC4100CK60J
 82EC1100DQ50K
 PFR5101J100J11L16.5TA18
 PME261JB5220KR19T0
 A451GK223M040A

 A561ED221M450A
 QXJ2E474KTPT
 QXL2B333KTPT
 R49AN347000A1K
 EEC2G505HQA406
 B25668A6676A375
 B25673A4282E140

 BFC233868148
 BFC2370GC222
 C3B2AD44400B20K
 C4ASWBU3220A3EK
 CB027C0473J-- CB177I0184J-- CB182K0184J-- 23PW210

 950CQW5H-F
 SBDC3470AA10J
 SCD105K122A3-22
 2N3155
 A571EH331M450A
 FKP1-2202KV5P15
 FKS3-680040010P10

 QXL2E473KTPT
 445450-1
 B25669A3996J375
 46KI322000M1M
 46KR415050M1K
 4BSNBX4100ZBFJ
 MKP383510063JKP2T0

 MKPY2-.02230020P15
 MKT 1813-368-015
 4055292001
 46KN410000N1K
 EEC2E106HQA405
 EEC2G205HQA402
 EEC2G805HQA415

 P409CP224M250AH470
 82EC2150DQ50K
 A6KN410000N1K
 EEC2E106HQA405
 EEC2G205HQA402
 EEC2G805HQA415