

# **Aluminum electrolytic capacitors**

Single-ended capacitors

Series/Type:B41858Date:December 2019

© TDK Electronics AG 2019. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

# Single-ended capacitors

Low impedance - 105 °C

# Long-life grade capacitors

# Applications

Automotive electronics

# Features

- Low impedance at high frequency
- High reliability
- Low ESR
- High ripple current capability
- RoHS-compatible

# Construction

- Radial leads
- Charge-discharge proof, polar
- Aluminum case with PET insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent

# **Delivery mode**

Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (Protection Against Polarity Reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details.



B41858



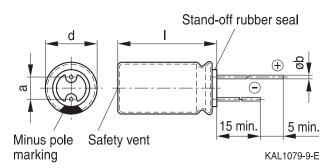
B41<u>85</u>8

Low impedance - 105  $^{\circ}$ C

# Specifications and characteristics in brief

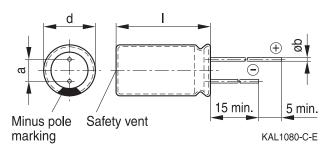
| 10 100 V DC                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| 1.15 · V <sub>R</sub>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| 22 10000 µF                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| ±20% ≙ M                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| For capacitance ł<br>1000 µF. | For capacitance higher than 1000 $\mu$ F add 0.02 for every increase of 1000 $\mu$ F.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| V <sub>R</sub> (V DC)         | V <sub>R</sub> (V DC) 10 16 25 35 50 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| tan δ (max.)                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08                                                   |  |  |
| I <sub>leak</sub> = 0.01 μA • | $\left( \frac{C_R}{\mu F} - \frac{V}{\Lambda} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left(\frac{R}{I}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| Diameter (mm)                 | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| ESL (nH) 20                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| > 3000 h for d = 8            | 3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \Delta C/C  \leq 40\%$ of initial value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| > 5000 h for d $\ge$ 1        | 0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $tan \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $an \delta \leq 3$ times initial specified limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I <sub>leak</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\leq$ initial specified limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Post te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | est requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| 3000 h for d = 8 r            | nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∆C/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≤ <b>30%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| 5000 h for $d \ge 10$         | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tan δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\leq$ 2 tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nes initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fied limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                                      |  |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I <sub>leak</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≤initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al specif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ied limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |  |
| To IEC 60068-2-6              | 6, test F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| Frequency range               | 10 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 2 kHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | displace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ement a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mplitud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e max. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l.5 mm,                                                |  |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               | clamped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aluminu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ım case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e.g. us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |  |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| To IEC 60068-1:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               | C/+105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °C/56 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ays dar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | np heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| IEC 60384-4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
| AEC-Q200 <sup>2)</sup>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |  |  |
|                               | 1.15 · V <sub>R</sub> 22 10000 μF         ±20% △ M         For capacitance h         1000 μF.         V <sub>R</sub> (V DC)         tan δ (max.)         I <sub>leak</sub> = 0.01 μA ·         Diameter (mm)         ESL (nH)         > 3000 h for d = 8         > 5000 h for d ≥ 10         3000 h for d = 8 r         5000 h for d ≥ 10         To IEC 60068-2-6         Frequency range         acceleration max         Capacitor rigidly o         standard fixture         To IEC 60068-1:         55/105/56 (-55 °         IEC 60384-4 | $1.15 \cdot V_R$ $22 \dots 10000 \ \mu F$ $\pm 20\% \triangleq M$ For capacitance higher the 1000 $\mu F$ . $V_R (V DC)$ 10 $\tan \delta (max.)$ 0.19 $I_{leak} = 0.01 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V}{\Lambda}\right)$ Diameter (mm) $8 \dots 12$ ESL (nH)20> 3000 h for d = 8 mm> 5000 h for d = 8 mm5000 h for d ≥ 10 mm3000 h for d = 8 mm5000 h for d ≥ 10 mmTo IEC 60068-2-6, test Ferequency range 10 Hzacceleration max. 20 g, dCapacitor rigidly clampedstandard fixtureTo IEC 60068-1:55/105/56 (-55 °C/+105)IEC 60384-4 | $1.15 \cdot V_R$ $22 \dots 10000 \ \mu F$ $\pm 20\% \triangleq M$ For capacitance higher than 1000 1000 $\mu F$ . $V_R (V DC)$ 10 $1000 \ \mu F$ . $V_R (V DC)$ 10 $1_{leak} = 0.01 \ \mu A \cdot \left( \frac{C_R}{\mu F} \cdot \frac{V_R}{V} \right)$ Diameter (mm) $8 \dots 12.5$ ESL (nH) $20$ > 3000 h for d = 8 mm $ \Delta C/C $ > 5000 h for d ≥ 10 mm $I_{leak}$ 3000 h for d = 8 mm $ \Delta C/C $ $5000 h for d = 8 mm$ $ \Delta C/C $ $5000 h for d = 8 mm$ $ \Delta C/C $ $1_{leak}$ Post term $3000 h for d = 8 mm$ $ \Delta C/C $ $1_{leak}$ Post term $3000 h for d = 8 mm$ $ \Delta C/C $ $1_{leak}$ Post term $3000 h for d = 10 mm$ $ \Delta C/C $ $1_{leak}$ To IEC 60068-2-6, test Fc:         Frequency range 10 Hz 2 kHz, acceleration max. 20 g, duration         Capacitor rigidly clamped by the standard fixture         To IEC 60068-1:       55/105/56 (-55 °C/+105 °C/56 d)         IEC 60384-4       IEC 60384-4 | 1.15 · V <sub>R</sub> 22 10000 μF±20% △ MFor capacitance higher than 1000 μF add $V_R$ (V DC)101625tan δ (max.)0.190.160.14I <sub>leak</sub> = 0.01 μA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ 2616Diameter (mm)8 12.516ESL (nH)2026> 3000 h for d = 8 mm ΔC/C  ≤ 40%> 5000 h for d ≥ 10 mmIleak ≤ initia3000 h for d = 8 mm ΔC/C  ≤ 40%tan δ ≤ 3 timeIleak ≤ initia3000 h for d = 8 mm ΔC/C  ≤ 30%tan δ ≤ 2 timeInitia3000 h for d = 8 mm ΔC/C  ≤ 30%tan δ ≤ 2 timeInitiaTo IEC 60068-2-6, test Fc:Frequency range 10 Hz 2 kHz, displaceacceleration max. 20 g, duration 3 × 2 h.Capacitor rigidly clamped by the aluminustandard fixtureTo IEC 60068-1:To IEC 60068-1:55/105/56 (-55 °C/+105 °C/56 days darIEC 60384-4IEC 60384-4 | 1.15 · V <sub>R</sub> 22 10000 μF±20% ≙ MFor capacitance higher than 1000 μF add 0.02 for 1000 μF.V <sub>R</sub> (V DC)10162535tan δ (max.)0.190.160.140.12I <sub>leak</sub> = 0.01 μA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ 26Requirements:> 3000 h for d = 8 mm ΔC/C  ≤ 40% of initial specific> 3000 h for d = 8 mm ΔC/C  ≤ 40% of initial specific> 5000 h for d ≥ 10 mmLan δ ≤ 3 times initial specific3000 h for d = 8 mm ΔC/C  ≤ 30% of initial specific3000 h for d = 8 mm ΔC/C  ≤ 30% of initial specificTo IEC 60068-2-6, test Fc:Frequency range 10 Hz 2 kHz, displacement at acceleration max. 20 g, duration 3 × 2 h.Capacitor rigidly clamped by the aluminum case standard fixtureTo IEC 60068-1:To IEC 60068-1:55/105/56 (-55 °C/+105 °C/56 days damp heat IEC 60384-4 | 1.15 · V <sub>R</sub> 22 10000 µF±20% $\triangleq$ MFor capacitance higher than 1000 µF add 0.02 for every1000 µF.V <sub>R</sub> (V DC)1016253550tan $\delta$ (max.)0.190.160.140.120.10I <sub>leak</sub> = 0.01 µA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ 2634Diameter (mm)8 12.51618ESL (nH)202634> 3000 h for d = 8 mm  $\Delta C/C$   ≤ 40% of initial value> 5000 h for d ≥ 10 mm10 mm11 an $\delta$ ≤ 3 times initial specified limit3000 h for d = 8 mm  $\Delta C/C$   ≤ 30% of initial value5000 h for d ≥ 10 mm10 cC/C   ≤ 30% of initial value5000 h for d ≥ 10 mm10 cC/C   ≤ 30% of initial value5000 h for d ≥ 10 mm10 cC/C   ≤ 30% of initial value5000 h for d ≥ 10 mm11 an $\delta$ ≤ 2 times initial specified limitTo IEC 60068-2-6, test Fc:Frequency range 10 Hz 2 kHz, displacement amplitudacceleration max. 20 g, duration 3 × 2 h.Capacitor rigidly clamped by the aluminum case e.g. usstandard fixtureTo IEC 60068-1:55/105/56 (-55 °C/+105 °C/56 days damp heat test)IEC 60384-4 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.


2) Refer to chapter "General technical information, 2.3 AEC-Q200 standard" for further details.



# **Dimensional drawings**


#### With stand-off rubber seal

Diameters (mm): 10, 12.5, 16, 18



With flat rubber seal

Diameter (mm): 8



#### **Dimensions and weights**

| Dimensions (mr | n)        |        | Approx. weight |      |  |
|----------------|-----------|--------|----------------|------|--|
| d +0.5         | 1         | a ±0.5 | b              | g    |  |
| 8              | 11.5 +1.5 | 3.5    | 0.60 ±0.05     | 1.0  |  |
| 10             | 12.5 +1.0 | 5.0    | 0.60 ±0.05     | 1.6  |  |
| 10             | 16 +1.0   | 5.0    | 0.60 ±0.05     | 1.9  |  |
| 10             | 20 +2.0   | 5.0    | 0.60 ±0.05     | 2.6  |  |
| 12.5           | 20 +2.0   | 5.0    | 0.60 ±0.05     | 3.6  |  |
| 12.5           | 25 +2.0   | 5.0    | 0.60 ±0.05     | 4.5  |  |
| 16             | 20 +2.0   | 7.5    | 0.80 ±0.05     | 5.5  |  |
| 16             | 25 +2.0   | 7.5    | 0.80 ±0.05     | 7.5  |  |
| 16             | 31.5 +2.0 | 7.5    | 0.80 ±0.05     | 7.8  |  |
| 16             | 35.5 +2.0 | 7.5    | 0.80 ±0.05     | 9.2  |  |
| 18             | 20 +2.0   | 7.5    | 0.80 ±0.1      | 8.0  |  |
| 18             | 25 +2.0   | 7.5    | 0.80 ±0.1      | 9.0  |  |
| 18             | 31.5 +2.0 | 7.5    | 0.80 ±0.1      | 11.0 |  |
| 18             | 35 +2.0   | 7.5    | 0.80 ±0.1      | 13.0 |  |
| 18             | 40 +2.0   | 7.5    | 0.80 ±0.1      | 16.0 |  |



Low impedance - 105  $^{\circ}$ C

# Overview of available types

Other voltage and capacitance ratings are available upon request.

| V <sub>R</sub> (V DC) | 10               | 16               | 25        | 35        |
|-----------------------|------------------|------------------|-----------|-----------|
|                       | Case dimension   | s d × l (mm)     | ·         |           |
| C <sub>R</sub> (μF)   |                  |                  |           |           |
| 100                   |                  |                  |           | 8 × 11.5  |
| 120                   |                  |                  |           | 8 × 11.5  |
| 150                   |                  |                  |           | 8 × 11.5  |
| 180                   |                  |                  | 8 × 11.5  | 10 × 12.5 |
| 220                   |                  |                  | 8 × 11.5  | 10 × 12.5 |
| 270                   |                  | 8 × 11.5         | 10 × 12.5 |           |
| 330                   | 8 × 11.5         | 8 × 11.5         | 10 × 12.5 | 10 × 16   |
| 390                   | 8 × 11.5         |                  |           |           |
| 470                   | 8 × 11.5         | 10 × 12.5        | 10 × 16   | 10 × 20   |
| 560                   | 10 × 12.5        | 10 × 16          | 10 × 16   | 10 × 20   |
| 680                   | 10 × 12.5        | 10 × 16          | 10 × 20   | 12.5 × 20 |
| 820                   | 10 × 16          | 10 × 20          | 10 × 20   |           |
| 1000                  | 10 × 16          | 10 × 20          | 12.5 × 20 | 12.5 × 25 |
|                       |                  |                  |           | 16 × 20   |
| 1200                  | 10 × 16          | 10 × 20          |           | 16 × 20   |
| 1500                  | 10 × 20          | 12.5 × 20        | 12.5 × 25 | 16 × 25   |
| 1800                  | 10 × 20          | 12.5 × 25        | 16 × 20   | 16 × 25   |
|                       |                  |                  |           | 18 × 20   |
| 2200                  | $12.5 \times 20$ | $12.5 \times 25$ | 16 × 25   | 18 × 25   |
|                       |                  |                  | 18 × 20   |           |
| 2700                  | $12.5 \times 25$ | 16 × 20          | 16 × 31.5 | 18 × 31.5 |
|                       |                  |                  | 18 × 20   |           |
| 3300                  | 12.5 × 25        | 16 × 25          | 18 × 25   | 16 × 35.5 |
|                       | 16 × 20          |                  |           | 18 × 31.5 |
| 3900                  | 16 × 20          | 16 × 31.5        | 16 × 35.5 | 18 × 35   |
|                       |                  | 18 × 20          | 18 × 31.5 |           |
| 4700                  | 18 × 20          | 18 × 25          | 18 × 31.5 | 18 × 40   |
| 5600                  |                  |                  | 18 × 35   |           |
| 6800                  | 16 × 31.5        | 18 × 31.5        | 18 × 40   |           |
| 8200                  | 18 × 31.5        | 18 × 35          |           |           |
| 0000                  | 18 × 35          | 18 × 40          |           |           |



Low impedance - 105  $^\circ\text{C}$ 

# Overview of available types

Other voltage and capacitance ratings are available upon request.

| V <sub>R</sub> (V DC) | 50                   | 63               | 100       |
|-----------------------|----------------------|------------------|-----------|
|                       | Case dimensions d    | ×I (mm)          | · · ·     |
| C <sub>R</sub> (μF)   |                      |                  |           |
| 22                    |                      |                  | 8 × 11.5  |
| 33                    |                      |                  | 10 × 16   |
| 47                    |                      |                  | 10 × 20   |
| 68                    |                      | 8 × 11.5         |           |
| 100                   | 8 × 11.5             | 10 × 12.5        | 12.5×20   |
| 120                   | 10 × 12.5            | 10 × 16          | 12.5 × 25 |
| 150                   | 10 × 12.5            | 10 × 16          |           |
| 180                   | 10 × 16              | 10 × 20          | 16 × 20   |
| 220                   | 10 × 16              | 10 × 20          | 16 × 25   |
| 270                   |                      | 12.5 × 20        | 18 × 20   |
| 330                   | 10 × 20              | 12.5 × 20        | 16 × 31.5 |
|                       |                      |                  | 18 × 25   |
| 390                   |                      | 12.5 × 25        | 18 × 31.5 |
| 470                   | 12.5 × 20            | $12.5 \times 25$ | 18 × 35   |
|                       |                      | 16 × 20          |           |
| 560                   | 12.5 × 25            |                  | 18 × 35   |
| 680                   |                      | 16 × 25          | 18 × 40   |
|                       |                      | 18 × 20          |           |
| 820                   | 16 × 20              | 16 × 31.5        |           |
|                       |                      | 18 × 25          |           |
| 1000                  | 16 × 31.5<br>18 × 20 | 16 × 31.5        |           |
| 1200                  | 18 × 20              | 18 × 31.5        |           |
| 1500                  | 18 × 25              | 18 × 35          |           |
| 1800                  | 16 × 35.5            | 18 × 40          |           |
|                       | 18 × 31.5            |                  |           |
| 2200                  | 18 × 35              |                  |           |
| 2700                  | 18 × 40              |                  |           |



Low impedance - 105  $^{\circ}$ C

B41858

#### Technical data and ordering codes

| C <sub>R</sub>                | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub> | I <sub>AC,R</sub> | Ordering code    |  |  |  |  |  |
|-------------------------------|------------------|--------------------|--------------------|------------------|-------------------|------------------|--|--|--|--|--|
| 120 Hz                        | dimensions       | 10 kHz             | 10 kHz             | 100 kHz          | 100 kHz           | (composition see |  |  |  |  |  |
| 20 °C                         | d × l            | -40 °C             | 20 °C              | 20 °C            | 105 °C            | below)           |  |  |  |  |  |
| μF                            | mm               | Ω                  | Ω                  | $\Omega$ mA      |                   |                  |  |  |  |  |  |
| $V_{\rm B} = 10 \text{ V DC}$ |                  |                    |                    |                  |                   |                  |  |  |  |  |  |
|                               | 1                | 0.105              | 0.074              | 0.040            | 400               | D440500007M***   |  |  |  |  |  |
| 330                           | 8 × 11.5         | 2.195              | 0.274              | 0.246            | 436               | B41858C3337M***  |  |  |  |  |  |
| 390                           | 8 ×11.5          | 2.195              | 0.274              | 0.246            | 436               | B41858C3397M***  |  |  |  |  |  |
| 470                           | 8 ×11.5          | 2.195              | 0.274              | 0.246            | 436               | B41858C3477M***  |  |  |  |  |  |
| 560                           | 10 × 12.5        | 1.035              | 0.129              | 0.113            | 746               | B41858C3567M***  |  |  |  |  |  |
| 680                           | 10 × 12.5        | 1.035              | 0.129              | 0.113            | 746               | B41858C3687M***  |  |  |  |  |  |
| 820                           | 10 ×16           | 0.946              | 0.118              | 0.105            | 846               | B41858C3827M***  |  |  |  |  |  |
| 1000                          | 10 ×16           | 0.946              | 0.118              | 0.105            | 846               | B41858C3108M***  |  |  |  |  |  |
| 1200                          | 10 ×16           | 0.944              | 0.118              | 0.105            | 846               | B41858C3128M***  |  |  |  |  |  |
| 1500                          | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C3158M***  |  |  |  |  |  |
| 1800                          | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C3188M***  |  |  |  |  |  |
| 2200                          | 12.5 × 20        | 0.496              | 0.062              | 0.060            | 1396              | B41858C3228M***  |  |  |  |  |  |
| 2700                          | $12.5 \times 25$ | 0.327              | 0.041              | 0.034            | 2028              | B41858C3278M***  |  |  |  |  |  |
| 3300                          | $12.5 \times 25$ | 0.327              | 0.041              | 0.034            | 2028              | B41858C3338M***  |  |  |  |  |  |
| 3300                          | 16 ×20           | 0.307              | 0.038              | 0.033            | 2146              | B41858D3338M***  |  |  |  |  |  |
| 3900                          | 16 ×20           | 0.307              | 0.038              | 0.033            | 2146              | B41858D3398M***  |  |  |  |  |  |
| 4700                          | 18 ×20           | 0.271              | 0.034              | 0.031            | 2381              | B41858C3478M***  |  |  |  |  |  |
| 6800                          | 16 × 31.5        | 0.192              | 0.024              | 0.022            | 3122              | B41858C3688M***  |  |  |  |  |  |
| 8200                          | 18 × 31.5        | 0.165              | 0.021              | 0.020            | 3539              | B41858C3828M***  |  |  |  |  |  |
| 10000                         | 18 × 35          | 0.160              | 0.020              | 0.018            | 3864              | B41858C3109M***  |  |  |  |  |  |

#### Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$ )
- 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
- 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
- 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset 8 \text{ mm}$ )
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset$  8 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
- 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)





Low impedance - 105  $^{\circ}C$ 

#### Technical data and ordering codes

| C <sub>R</sub>                | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub> | I <sub>AC,R</sub> | Ordering code    |  |  |  |  |  |
|-------------------------------|------------------|--------------------|--------------------|------------------|-------------------|------------------|--|--|--|--|--|
| 120 Hz                        | dimensions       | 10 kHz             | 10 kHz             | 100 kHz          | 100 kHz           | (composition see |  |  |  |  |  |
| 20 °C                         | d×l              | -40 °C             | 20 °C              | 20 °C            | 105 °C            | below)           |  |  |  |  |  |
| μF                            | mm               | Ω                  | Ω                  | Ω                | mA                | ,                |  |  |  |  |  |
| $V_{\rm R} = 16 \text{ V DC}$ |                  |                    |                    |                  |                   |                  |  |  |  |  |  |
| 270                           | 8 ×11.5          | 2.192              | 0.274              | 0.246            | 436               | B41858D4277M***  |  |  |  |  |  |
| 330                           | 8 ×11.5          | 2.192              | 0.274              | 0.246            | 436               | B41858D4337M***  |  |  |  |  |  |
| 470                           | 10 × 12.5        | 1.035              | 0.129              | 0.113            | 746               | B41858C4477M***  |  |  |  |  |  |
| 560                           | 10 ×16           | 0.944              | 0.118              | 0.105            | 846               | B41858C4567M***  |  |  |  |  |  |
| 680                           | 10 ×16           | 0.946              | 0.118              | 0.105            | 846               | B41858C4687M***  |  |  |  |  |  |
| 820                           | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C4827M***  |  |  |  |  |  |
| 1000                          | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C4108M***  |  |  |  |  |  |
| 1200                          | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C4128M***  |  |  |  |  |  |
| 1500                          | 12.5 × 20        | 0.496              | 0.062              | 0.060            | 1396              | B41858C4158M***  |  |  |  |  |  |
| 1800                          | $12.5 \times 25$ | 0.327              | 0.041              | 0.034            | 2028              | B41858C4188M***  |  |  |  |  |  |
| 2200                          | $12.5 \times 25$ | 0.327              | 0.041              | 0.034            | 2028              | B41858C4228M***  |  |  |  |  |  |
| 2700                          | 16 ×20           | 0.307              | 0.038              | 0.033            | 2146              | B41858C4278M***  |  |  |  |  |  |
| 3300                          | 16 ×25           | 0.251              | 0.031              | 0.029            | 2483              | B41858C4338M***  |  |  |  |  |  |
| 3900                          | 16 × 31.5        | 0.192              | 0.024              | 0.022            | 3122              | B41858D4398M***  |  |  |  |  |  |
| 3900                          | 18 ×20           | 0.271              | 0.034              | 0.031            | 2381              | B41858C4398M***  |  |  |  |  |  |
| 4700                          | 18 ×25           | 0.217              | 0.027              | 0.024            | 2941              | B41858C4478M***  |  |  |  |  |  |
| 6800                          | 18 × 31.5        | 0.165              | 0.021              | 0.020            | 3539              | B41858C4688M***  |  |  |  |  |  |
| 8200                          | 18 ×35           | 0.160              | 0.020              | 0.018            | 3864              | B41858C4828M***  |  |  |  |  |  |
| 10000                         | 18 × 40          | 0.125              | 0.016              | 0.015            | 4467              | B41858C4109M***  |  |  |  |  |  |

#### Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$ )
- 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
- 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
- 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset$  8 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
- 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)



Low impedance - 105  $^{\circ}$ C

#### Technical data and ordering codes

| C <sub>R</sub>           | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub>            | lias                         | Ordering code    |
|--------------------------|------------------|--------------------|--------------------|-----------------------------|------------------------------|------------------|
| о <sub>в</sub><br>120 Hz | dimensions       | 10 kHz             | 10 kHz             | <sup>2-max</sup><br>100 kHz | I <sub>AC,R</sub><br>100 kHz | (composition see |
|                          |                  |                    | 20 °C              |                             |                              |                  |
| 20 °C                    | d × l            | −40 °C             |                    | 20 °C                       | 105 °C                       | below)           |
| μF                       | mm               | Ω                  | Ω                  | Ω                           | mA                           |                  |
| $V_R = 25 V$             |                  |                    |                    |                             |                              |                  |
| 180                      | 8 ×11.5          | 2.192              | 0.274              | 0.246                       | 436                          | B41858D5187M***  |
| 220                      | 8 ×11.5          | 2.192              | 0.274              | 0.246                       | 436                          | B41858D5227M***  |
| 270                      | 10 × 12.5        | 1.032              | 0.129              | 0.113                       | 746                          | B41858C5277M***  |
| 330                      | 10 × 12.5        | 1.035              | 0.129              | 0.113                       | 746                          | B41858C5337M***  |
| 470                      | 10 ×16           | 0.946              | 0.118              | 0.105                       | 846                          | B41858C5477M***  |
| 560                      | 10 ×16           | 0.944              | 0.118              | 0.105                       | 846                          | B41858C5567M***  |
| 680                      | 10 ×20           | 0.584              | 0.073              | 0.062                       | 1202                         | B41858C5687M***  |
| 820                      | 10 ×20           | 0.584              | 0.073              | 0.062                       | 1202                         | B41858C5827M***  |
| 1000                     | 12.5 × 20        | 0.496              | 0.062              | 0.060                       | 1396                         | B41858C5108M***  |
| 1500                     | $12.5 \times 25$ | 0.327              | 0.041              | 0.034                       | 2028                         | B41858C5158M***  |
| 1800                     | 16 ×20           | 0.307              | 0.038              | 0.033                       | 2146                         | B41858C5188M***  |
| 2200                     | 16 ×25           | 0.251              | 0.031              | 0.029                       | 2483                         | B41858C5228M***  |
| 2200                     | 18 ×20           | 0.248              | 0.031              | 0.031                       | 2381                         | B41858E5228M***  |
| 2700                     | 16 × 31.5        | 0.192              | 0.024              | 0.022                       | 3122                         | B41858D5278M***  |
| 2700                     | 18 ×20           | 0.271              | 0.034              | 0.031                       | 2381                         | B41858C5278M***  |
| 3300                     | 18 ×25           | 0.217              | 0.027              | 0.024                       | 2941                         | B41858C5338M***  |
| 3900                     | 16 × 35.5        | 0.168              | 0.021              | 0.019                       | 3408                         | B41858D5398M***  |
| 3900                     | 18 ×31.5         | 0.165              | 0.021              | 0.020                       | 3539                         | B41858C5398M***  |
| 4700                     | 18 ×31.5         | 0.165              | 0.021              | 0.020                       | 3539                         | B41858D5478M***  |
| 5600                     | 18 ×35           | 0.160              | 0.020              | 0.018                       | 3864                         | B41858D5568M***  |
| 6800                     | 18 × 40          | 0.128              | 0.016              | 0.015                       | 4467                         | B41858C5688M***  |

#### Composition of ordering code

- \*\*\* = Version
  - 000 = for standard leads, bulk
  - 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$ )
  - 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
  - 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
  - 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
  - 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
  - 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset 8 \dots 12.5 \text{ mm}$ )
  - 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
  - 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)





Low impedance - 105  $^{\circ}C$ 

#### Technical data and ordering codes

|                | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub> | I <sub>AC,R</sub> | Ordering code    |
|----------------|------------------|--------------------|--------------------|------------------|-------------------|------------------|
| 120 Hz         | dimensions       | 10 kHz             | 10 kHz             | 100 kHz          | 100 kHz           | (composition see |
| 20 °C          | d×l              | _40 °C             | 20 °C              | 20 °C            | 105 °C            | below)           |
| μF             | mm               | Ω                  | Ω                  | Ω                | mA                | ,                |
| $V_{R} = 35 V$ | DC               |                    |                    |                  |                   |                  |
| 100            | 8 × 11.5         | 2.192              | 0.274              | 0.246            | 436               | B41858C7107M***  |
| 120            | 8 ×11.5          | 2.192              | 0.274              | 0.246            | 436               | B41858D7127M***  |
| 150            | 8 × 11.5         | 2.192              | 0.274              | 0.246            | 436               | B41858C7157M***  |
| 180            | 10 × 12.5        | 1.035              | 0.129              | 0.113            | 746               | B41858C7187M***  |
| 220            | 10 × 12.5        | 1.035              | 0.129              | 0.113            | 746               | B41858C7227M***  |
| 330            | 10 ×16           | 0.946              | 0.118              | 0.105            | 846               | B41858C7337M***  |
| 470            | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C7477M***  |
| 560            | 10 ×20           | 0.584              | 0.073              | 0.062            | 1202              | B41858C7567M***  |
| 680            | 12.5 × 20        | 0.496              | 0.062              | 0.060            | 1396              | B41858C7687M***  |
| 1000           | $12.5 \times 25$ | 0.327              | 0.041              | 0.034            | 2028              | B41858C7108M***  |
| 1000           | 16 ×20           | 0.304              | 0.038              | 0.033            | 2146              | B41858D7108M***  |
| 1200           | 16 ×20           | 0.307              | 0.038              | 0.033            | 2146              | B41858C7128M***  |
| 1500           | 16 ×25           | 0.251              | 0.031              | 0.029            | 2483              | B41858C7158M***  |
| 1800           | 16 ×25           | 0.248              | 0.031              | 0.029            | 2483              | B41858E7188M***  |
| 1800           | 18 ×20           | 0.271              | 0.034              | 0.031            | 2381              | B41858C7188M***  |
| 2200           | 18 ×25           | 0.217              | 0.027              | 0.024            | 2941              | B41858C7228M***  |
| 2700           | 18 ×31.5         | 0.165              | 0.021              | 0.020            | 3539              | B41858C7278M***  |
| 3300           | 16 × 35.5        | 0.168              | 0.021              | 0.019            | 3408              | B41858E7338M***  |
| 3300           | 18 ×31.5         | 0.165              | 0.021              | 0.020            | 3539              | B41858D7338M***  |
| 3900           | 18 ×35           | 0.160              | 0.020              | 0.018            | 3864              | B41858C7398M***  |
| 4700           | 18 × 40          | 0.125              | 0.016              | 0.015            | 4467              | B41858C7478M***  |

#### Composition of ordering code

- \*\*\* = Version
  - 000 = for standard leads, bulk
  - 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$ )
  - 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
  - 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
  - 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
  - 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
  - 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset 8 \dots 12.5 \text{ mm}$ )
  - 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
  - 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)



Low impedance - 105  $^{\circ}$ C

#### Technical data and ordering codes

| C <sub>R</sub>                | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub> | I <sub>AC,R</sub> | Ordering code    |  |  |  |  |
|-------------------------------|------------------|--------------------|--------------------|------------------|-------------------|------------------|--|--|--|--|
| 120 Hz                        | dimensions       | 10 kHz             | 10 kHz             | 100 kHz          | 100 kHz           | (composition see |  |  |  |  |
| 20 °C                         | d × I            | −40 °C             | 20 °C              | 20 °C            | 105 °C            | below)           |  |  |  |  |
| μF                            | mm               | Ω                  | Ω                  | Ω                | mA                |                  |  |  |  |  |
| $V_{\rm R} = 50 \text{ V DC}$ |                  |                    |                    |                  |                   |                  |  |  |  |  |
| 100                           | 8 × 11.5         | 5.168              | 0.646              | 0.573            | 340               | B41858C6107M***  |  |  |  |  |
| 120                           | 10 × 12.5        | 2.984              | 0.373              | 0.336            | 555               | B41858C6127M***  |  |  |  |  |
| 150                           | 10 × 12.5        | 2.984              | 0.373              | 0.336            | 555               | B41858C6157M***  |  |  |  |  |
| 180                           | 10 × 16          | 1.400              | 0.175              | 0.160            | 778               | B41858C6187M***  |  |  |  |  |
| 220                           | 10 × 16          | 1.400              | 0.175              | 0.160            | 778               | B41858C6227M***  |  |  |  |  |
| 330                           | 10 ×20           | 1.000              | 0.125              | 0.118            | 1030              | B41858C6337M***  |  |  |  |  |
| 470                           | $12.5 \times 20$ | 0.880              | 0.110              | 0.104            | 1300              | B41858C6477M***  |  |  |  |  |
| 560                           | $12.5 \times 25$ | 0.712              | 0.089              | 0.082            | 1490              | B41858C6567M***  |  |  |  |  |
| 820                           | 16 ×20           | 0.401              | 0.050              | 0.046            | 1820              | B41858D6827M***  |  |  |  |  |
| 1000                          | 16 × 31.5        | 0.260              | 0.032              | 0.030            | 2653              | B41858C6108M***  |  |  |  |  |
| 1000                          | 18 ×20           | 0.477              | 0.048              | 0.044            | 1997              | B41858D6108M***  |  |  |  |  |
| 1200                          | 18 ×20           | 0.384              | 0.048              | 0.044            | 1997              | B41858C6128M***  |  |  |  |  |
| 1500                          | 18 ×25           | 0.382              | 0.038              | 0.036            | 2417              | B41858C6158M***  |  |  |  |  |
| 1800                          | 16 × 35.5        | 0.232              | 0.029              | 0.026            | 2896              | B41858D6188M***  |  |  |  |  |
| 1800                          | 18 × 31.5        | 0.300              | 0.030              | 0.028            | 2989              | B41858C6188M***  |  |  |  |  |
| 2200                          | 18 ×35           | 0.268              | 0.027              | 0.024            | 3320              | B41858C6228M***  |  |  |  |  |
| 2700                          | 18 ×40           | 0.210              | 0.021              | 0.020            | 3871              | B41858C6278M***  |  |  |  |  |

#### Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20$  mm ...  $18 \times 40$  mm)
- 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
- 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
- 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset$  8 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
- 012 = for bent  $90^{\circ}$  leads, blister (for  $\emptyset$  16 ... 18 mm)





Low impedance - 105  $^{\circ}C$ 

#### Technical data and ordering codes

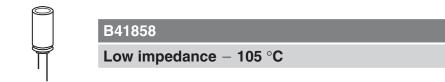
| C <sub>R</sub> | Case             | ESR <sub>max</sub> | ESR <sub>max</sub> | Z <sub>max</sub>            | luce                         | Ordering code    |
|----------------|------------------|--------------------|--------------------|-----------------------------|------------------------------|------------------|
| ок<br>120 Hz   | dimensions       | 10 kHz             | 10 kHz             | <sup>2</sup> max<br>100 kHz | I <sub>AC,R</sub><br>100 kHz | (composition see |
|                |                  |                    |                    |                             |                              | · ·              |
| 20 °C          | d × l            | −40 °C             | 20 °C              | 20 °C                       | 105 °C                       | below)           |
| μF             | mm               | Ω                  | Ω                  | Ω                           | mA                           |                  |
| $V_R = 63 V$   | DC               |                    |                    |                             |                              |                  |
| 68             | 8 × 11.5         | 4.328              | 0.541              | 0.488                       | 310                          | B41858G8686M***  |
| 100            | 10 × 12.5        | 4.616              | 0.577              | 0.500                       | 354                          | B41858G8107M***  |
| 120            | 10 ×16           | 3.075              | 0.308              | 0.279                       | 519                          | B41858G8127M***  |
| 150            | 10 ×16           | 2.464              | 0.308              | 0.279                       | 519                          | B41858G8157M***  |
| 180            | 10 ×20           | 1.986              | 0.199              | 0.180                       | 705                          | B41858G8187M***  |
| 220            | 10 ×20           | 1.592              | 0.199              | 0.180                       | 705                          | B41858G8227M***  |
| 270            | 12.5 × 20        | 1.688              | 0.169              | 0.153                       | 876                          | B41858G8277M***  |
| 330            | $12.5 \times 20$ | 1.688              | 0.169              | 0.153                       | 876                          | B41858G8337M***  |
| 390            | $12.5 \times 25$ | 1.236              | 0.124              | 0.112                       | 1118                         | B41858G8397M***  |
| 470            | $12.5 \times 25$ | 0.992              | 0.124              | 0.112                       | 1118                         | B41858G8477M***  |
| 470            | 16 ×20           | 1.037              | 0.104              | 0.094                       | 1272                         | B41858H8477M***  |
| 680            | 16 ×25           | 0.772              | 0.077              | 0.070                       | 1600                         | B41858G8687M***  |
| 680            | 18 ×20           | 0.960              | 0.096              | 0.087                       | 1427                         | B41858H8687M***  |
| 820            | 16 × 31.5        | 0.541              | 0.054              | 0.049                       | 2092                         | B41858G8827M***  |
| 820            | 18 ×25           | 0.761              | 0.076              | 0.069                       | 1735                         | B41858H8827M***  |
| 1000           | 16 ×31.5         | 0.540              | 0.054              | 0.049                       | 2092                         | B41858G8108M***  |
| 1200           | 18 ×31.5         | 0.518              | 0.052              | 0.047                       | 2294                         | B41858G8128M***  |
| 1500           | 18 ×35           | 0.441              | 0.044              | 0.040                       | 2592                         | B41858G8158M***  |
| 1800           | 18 × 40          | 0.375              | 0.038              | 0.034                       | 2967                         | B41858G8188M***  |

#### Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for  $d \times I = 10 \times 20 \text{ mm} \dots 18 \times 40 \text{ mm}$ )
- 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
- 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
- 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset$  8 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
- 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)



Low impedance - 105  $^{\circ}$ C


#### Technical data and ordering codes

| C <sub>R</sub>            | Case             | ESR <sub>max</sub> | <b>ESR</b> <sub>max</sub> | Z <sub>max</sub> | I <sub>AC,R</sub> | Ordering code    |  |  |  |  |
|---------------------------|------------------|--------------------|---------------------------|------------------|-------------------|------------------|--|--|--|--|
| 120 Hz                    | dimensions       | 10 kHz             | 10 kHz                    | 100 kHz          | 100 kHz           | (composition see |  |  |  |  |
| 20 °C                     | d×I              | −40 °C             | 20 °C 20 °C               |                  | 105 °C            | below)           |  |  |  |  |
| μF                        | mm               | Ω                  | Ω                         | Ω                | mA                |                  |  |  |  |  |
| V <sub>R</sub> = 100 V DC |                  |                    |                           |                  |                   |                  |  |  |  |  |
| 22                        | 8 × 11.5         | 12.219             | 1.222                     | 1.114            | 205               | B41858C9226M***  |  |  |  |  |
| 33                        | 10 × 16          | 6.542              | 0.654                     | 0.589            | 357               | B41858C9336M***  |  |  |  |  |
| 47                        | 10 ×20           | 3.688              | 0.461                     | 0.423            | 460               | B41858C9476M***  |  |  |  |  |
| 100                       | $12.5 \times 20$ | 3.048              | 0.305                     | 0.281            | 647               | B41858C9107M***  |  |  |  |  |
| 120                       | $12.5 \times 25$ | 2.038              | 0.204                     | 0.188            | 864               | B41858C9127M***  |  |  |  |  |
| 180                       | 16 ×20           | 1.313              | 0.131                     | 0.122            | 1119              | B41858D9187M***  |  |  |  |  |
| 220                       | 16 ×25           | 0.985              | 0.099                     | 0.091            | 1402              | B41858C9227M***  |  |  |  |  |
| 270                       | 18 ×20           | 1.260              | 0.126                     | 0.119            | 1220              | B41858D9277M***  |  |  |  |  |
| 330                       | 16 × 31.5        | 0.973              | 0.097                     | 0.090            | 1546              | B41858C9337M***  |  |  |  |  |
| 330                       | 18 ×25           | 1.008              | 0.101                     | 0.095            | 1477              | B41858D9337M***  |  |  |  |  |
| 390                       | 18 × 31.5        | 0.720              | 0.072                     | 0.068            | 1907              | B41858C9397M***  |  |  |  |  |
| 470                       | 18 ×35           | 0.679              | 0.068                     | 0.063            | 2061              | B41858C9477M***  |  |  |  |  |
| 560                       | 18 ×35           | 0.679              | 0.068                     | 0.063            | 2061              | B41858C9567M***  |  |  |  |  |
| 680                       | 18 × 40          | 0.438              | 0.044                     | 0.042            | 2683              | B41858C9687M***  |  |  |  |  |

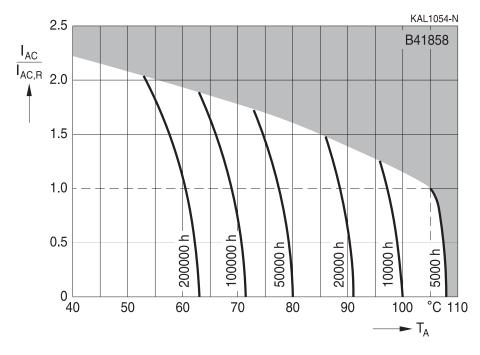
#### Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for d × l = 10 × 20 mm ... 18 × 40 mm)
- 002 = for cut leads, bulk (for  $\emptyset$  10 ... 18 mm)
- 003 = for crimped leads, blister (for  $\emptyset$  16 ... 18 mm)
- 004 = for J leads, blister (for  $\emptyset$  10 ... 18 mm, excluding d × l = 18 × 40 mm)
- 006 = for taped leads, Ammo pack, lead spacing F = 3.5 mm (for  $\emptyset$  8 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for  $\emptyset$  8 ... 12.5 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d  $\times$  l = 16  $\times$  20 ... 16  $\times$  31.5 mm and 18  $\times$  20 ... 18  $\times$  31.5 mm)
- 012 = for bent 90° leads, blister (for  $\emptyset$  16 ... 18 mm)





#### Useful life<sup>1)</sup>

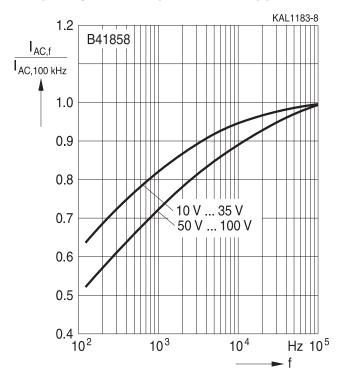

depending on ambient temperature  $T_A$  under ripple current operating conditions

d = 8 mmKAL1053-F 2.5 B41858 I<sub>AC</sub> I<sub>AC,R</sub> 2.0 1.5 1.0 100000 h 0.5 200000 } 50000 h 20000 h 10000 h \_ 3000 0 ∟ 40 70 °C 110 50 60 80 90 100 ► T<sub>A</sub>

### Useful life<sup>1)</sup>

depending on ambient temperature T<sub>A</sub> under ripple current operating conditions

 $d \ge 10 \text{ mm}$ 




1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.





Low impedance  $-105 \ ^{\circ}C$ 

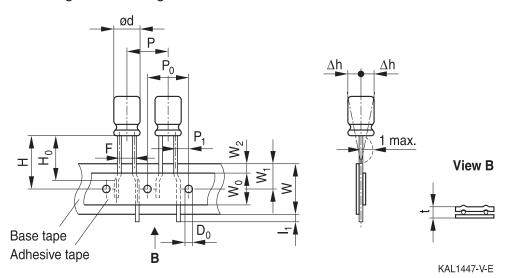


Frequency factor of permissible ripple current  $I_{AC}$  versus frequency f





# Taping


Single-ended capacitors are available taped in Ammo pack from diameter 8 to 18 mm as follows:

Lead spacing F = 3.5 mm ( $\emptyset$  d = 8 mm) Lead spacing F = 5.0 mm ( $\emptyset$  d = 8 ... 12.5 mm) Lead spacing F = 7.5 mm ( $\emptyset$  d = 16 ... 18 mm).

The dimensions for F,  $P_1$  and 1 max. are specified with reference to the center of the terminal wires.

### Lead spacing 3.5 mm ( $\emptyset$ d = 8 mm)

Last 3 digits of ordering code: 006

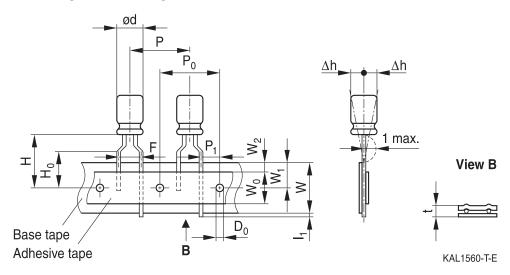


#### **Dimensions in mm**

| $\varnothing$ d | F    | Н    | W    | W <sub>o</sub> | $W_1$ | W <sub>2</sub> | Р    | P <sub>0</sub> | P <sub>1</sub> | I <sub>1</sub> | t    | $\Delta h$ | D <sub>0</sub> |
|-----------------|------|------|------|----------------|-------|----------------|------|----------------|----------------|----------------|------|------------|----------------|
| 8               | 3.5  | 18.5 | 18.0 | 9.5            | 9.0   | 3.0            | 12.7 | 12.7           | 4.6            | 1.0            | 0.7  | 1.0        | 4.0            |
| Toler-<br>ance  | +0.8 | ±1 0 | ±0 5 | min            | ±0 5  | mov            | ±1 0 | ±0.2           | ±0.6           | mov            | +0.2 | mov        | +0.2           |
| ance            | -0.2 | ±1.0 | ±0.5 |                | ±0.5  | max.           | ±1.0 | ±0.5           | ±0.0           | max.           | ±0.2 | max.       | 10.2           |

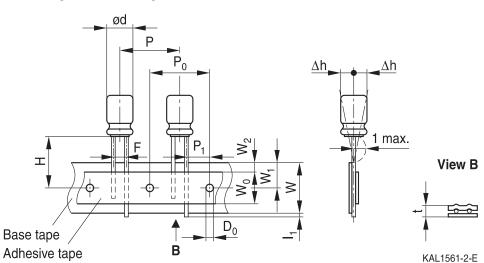
Leads can also run straight through the taping area.






Low impedance - 105  $^{\circ}C$ 

B41858

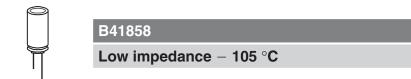

# Lead spacing 5.0 mm ( $\emptyset$ d = 8 mm)

Last 3 digits of ordering code: 008



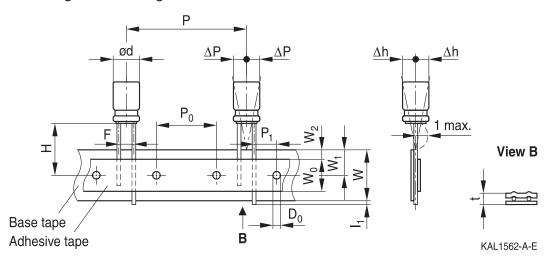
#### Lead spacing 5.0 mm ( $\emptyset$ d = 10 ... 12.5 mm)

Last 3 digits of ordering code: 008




#### **Dimensions in mm**

| Ød             | F            | Н     | W    | $W_0$ | $W_1$ | $W_2$ | H <sub>o</sub> | Р    | P <sub>0</sub> | P <sub>1</sub> | l <sub>1</sub> | t            | Δh   | D <sub>0</sub> |
|----------------|--------------|-------|------|-------|-------|-------|----------------|------|----------------|----------------|----------------|--------------|------|----------------|
| 8              |              | 20.0  |      | 9.5   |       |       | 16.0           | 12.7 | 12.7           | 3.85           |                |              |      |                |
| 10             | 5.0          | 19.0  | 18.0 | 9.5   | 9.0   | 1.5   | _              | 12.7 | 12.7           | 3.85           | 1.0            | 0.6          | 1.0  | 4.0            |
| 12.5           |              | 19.0  |      | 11.5  |       |       | _              | 15.0 | 15.0           | 5.0            |                |              |      |                |
| Toler-<br>ance | +0.8<br>-0.2 | ±0.75 | ±0.5 | min.  | ±0.5  | max.  | ±0.5           | ±1.0 | ±0.2           | ±0.5           | max.           | +0.3<br>-0.2 | max. | ±0.2           |


Taping is available up to dimensions  $d \times I = 12.5 \times 25$  mm.





# Lead spacing 7.5 mm ( $\emptyset$ d = 16 ...18 mm)

Last 3 digits of ordering code: 009



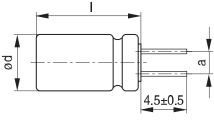
#### **Dimensions in mm**

| $\varnothing$ d | F    | Н             | W    | W <sub>o</sub> | W <sub>1</sub> | <b>W</b> <sub>2</sub> | Р    | P <sub>0</sub> | P <sub>1</sub> | <b>I</b> <sub>1</sub> | t    | $\Delta P$ | $\Delta h$ | D <sub>0</sub> |
|-----------------|------|---------------|------|----------------|----------------|-----------------------|------|----------------|----------------|-----------------------|------|------------|------------|----------------|
| 16              | 7.5  | 105           | 18.0 | 12.5           | 0.0            | 15                    | 20.0 | 15.0           | 3.75           | 10                    | 0.7  | 0          | 0          | 4.0            |
| 18              | 7.5  | 10.5          | 10.0 | 12.5           | 9.0            | 1.5                   | 30.0 | 15.0           | 3.75           | 1.0                   | 0.7  | 0          | 0          | 4.0            |
| Toler-          | ±0.8 | -0.5          | +0 5 | min.           | +0.5           | max.                  | +1 0 | +0.2           | +0 5           | may                   | +0.2 | +1 0       | +1 0       | +0.2           |
| ance            | ±0.0 | -0.5<br>+0.75 | ±0.5 | 111111.        | 10.5           | max.                  | 1.0  | ±0.2           | 10.5           | max.                  | ±0.2 | ±1.0       | ±1.0       | ±0.2           |

Taping is available up to dimensions  $d \times I = 16 \times 31.5$  mm and  $18 \times 31.5$  mm.

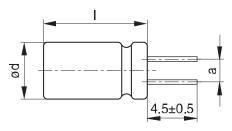


Low impedance - 105 °C


#### Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

#### Cut leads


Last 3 digits of ordering code: 002

### With stand-off rubber seal



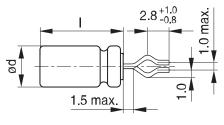
KAL1085-I

#### With flat rubber seal

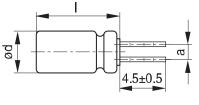


KAL1086-R

| Case size         | Dimensions (mm) |
|-------------------|-----------------|
| $d \times I$ (mm) | a ±0.5          |
| 10 × 12.5         | 5.0             |
| 10 × 16           | 5.0             |
| 10 × 20           | 5.0             |
| 12.5 × 20         | 5.0             |
| 12.5 × 25         | 5.0             |
| 16×20             | 7.5             |
| 16 × 25           | 7.5             |
| 16 × 31.5         | 7.5             |
| 16 × 35.5         | 7.5             |
| 16 × 40           | 7.5             |
| 18×20             | 7.5             |
| 18 × 25           | 7.5             |
| 18 × 31.5         | 7.5             |
| 18 × 35           | 7.5             |
| 18 × 40           | 7.5             |
|                   | -               |

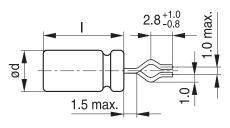




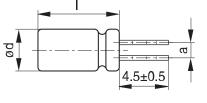


### **Kinked leads**

Last 3 digits of ordering code: 001

#### With stand-off rubber seal






KAL1083-2

#### With flat rubber seal



KAL1082-T



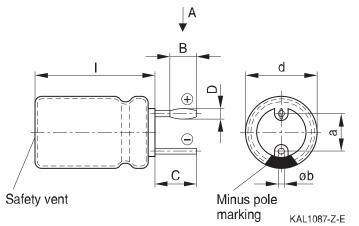
KAL1084-A

| Case size         | Dimensions (mm) |
|-------------------|-----------------|
| $d \times I$ (mm) | a ±0.5          |
| 10 × 20           | 5.0             |
| 12.5 × 20         | 5.0             |
| 12.5 × 25         | 5.0             |
| 16 × 20           | 7.5             |
| 16 × 25           | 7.5             |
| 16 × 31.5         | 7.5             |
| 16 	imes 35.5     | 7.5             |
| 18 × 20           | 7.5             |
| 18 × 25           | 7.5             |
| 18 × 31.5         | 7.5             |
| 18 × 35           | 7.5             |
| 18 × 40           | 7.5             |
|                   | ·               |



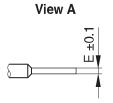


Low impedance - 105 °C


PAPR leads (Protection Against Polarity Reversal)

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm. There are three configurations available: Crimped leads, J leads, bent 90° leads.

#### **Crimped leads**


Last 3 digits of ordering code: 003

#### With stand-off rubber seal



The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

#### Suggestion for PCB hole diameter



Suggestion for PCB hole diameter, wire Ø0.8 mm

| Case size        | Dimensio | Dimensions (mm) |        |        |        |           |  |
|------------------|----------|-----------------|--------|--------|--------|-----------|--|
| d $	imes$ l (mm) | B ±0.2   | C ±0.5          | D ±0.1 | E ±0.1 | a ±0.5 | Øb        |  |
| 16×20            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.05 |  |
| 16×25            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.05 |  |
| 16×31.5          | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.05 |  |
| 16×35.5          | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.05 |  |
| 18×20            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.1  |  |
| 18×25            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.1  |  |
| 18×31.5          | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.1  |  |
| 18×35            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.1  |  |
| 18×40            | 1.5      | 3.0             | 1.3    | 0.3    | 7.5    | 0.8 ±0.1  |  |

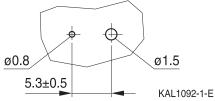
KAL1089-G-E



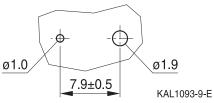


#### J leads

Last 3 digits of ordering code: 004




The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.


KAL1091-S-E

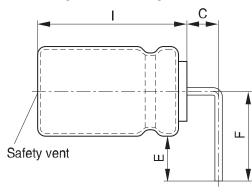
#### Suggestion for PCB hole diameter

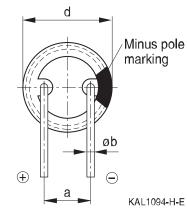
Suggestion for PCB hole diameter, wire ø0.6 mm



Suggestion for PCB hole diameter, wire ø0.8 mm




| Case size         | Dimensions (mm) |        |        |        |           |  |  |
|-------------------|-----------------|--------|--------|--------|-----------|--|--|
| $d \times I (mm)$ | C ±0.5          | E ±0.5 | J ±0.2 | a ±0.5 | Øb        |  |  |
| 10×12.5           | 3.2             | 0.7    | 1.2    | 5.0    | 0.6 ±0.05 |  |  |
| 10 × 16           | 3.2             | 0.7    | 1.2    | 5.0    | 0.6 ±0.05 |  |  |
| 10×20             | 3.2             | 0.7    | 1.2    | 5.0    | 0.6 ±0.05 |  |  |
| $12.5 \times 20$  | 3.2             | 0.7    | 1.2    | 5.0    | 0.6 ±0.05 |  |  |
| $12.5 \times 25$  | 3.2             | 0.7    | 1.2    | 5.0    | 0.6 ±0.05 |  |  |
| 16×20             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.05 |  |  |
| 16×25             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.05 |  |  |
| 16×31.5           | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.05 |  |  |
| 16 	imes 35.5     | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.05 |  |  |
| 16×40             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.05 |  |  |
| 18×20             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.1  |  |  |
| 18×25             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.1  |  |  |
| 18×31.5           | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.1  |  |  |
| 18×35             | 3.5             | 0.7    | 1.6    | 7.5    | 0.8 ±0.1  |  |  |




Low impedance – 105 °C

# Bent 90° leads for horizontal mounting pinning

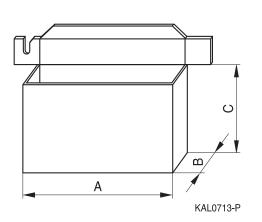
Last 3 digits of ordering code: 012





The series B41897 and B41898 have no sleeve nor minus pole marking, the positive pole is marked on the aluminum case side instead.

| Case size         | Dimensions (mm) |        |        |        |           |  |
|-------------------|-----------------|--------|--------|--------|-----------|--|
| $d \times I$ (mm) | C ±0.5          | E ±0.5 | F ±0.5 | a ±0.5 | Øb        |  |
| 16×20             | 4.0             | 4.0    | 12.0   | 7.5    | 0.8 ±0.05 |  |
| 16×25             | 4.0             | 4.0    | 12.0   | 7.5    | 0.8 ±0.05 |  |
| 16 × 31.5         | 4.0             | 4.0    | 12.0   | 7.5    | 0.8 ±0.05 |  |
| 16 	imes 35.5     | 4.0             | 4.0    | 12.0   | 7.5    | 0.8 ±0.05 |  |
| $16 \times 40$    | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.05 |  |
| 18×20             | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.1  |  |
| 18×25             | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.1  |  |
| 18×31.5           | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.1  |  |
| 18 × 35           | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.1  |  |
| 18 × 40           | 4.0             | 4.0    | 13.0   | 7.5    | 0.8 ±0.1  |  |


Bent leads for diameter 12.5 mm available upon request.





# Packing units and box dimensions

# Ammo pack



| Case size $d \times I$ | Dimens           | Dimensions (mm)  |                  |      |  |  |
|------------------------|------------------|------------------|------------------|------|--|--|
| mm                     | A <sub>max</sub> | B <sub>max</sub> | C <sub>max</sub> | pcs. |  |  |
| 8×11.5                 | 345              | 60               | 240              | 1000 |  |  |
| 10 	imes 12.5          | 345              | 60               | 280              | 750  |  |  |
| 10×16                  | 345              | 65               | 200              | 500  |  |  |
| 10×20                  | 345              | 65               | 200              | 500  |  |  |
| $12.5 \times 20$       | 345              | 65               | 260              | 500  |  |  |
| $12.5 \times 25$       | 345              | 70               | 260              | 500  |  |  |
| 16×20                  | 325              | 65               | 285              | 300  |  |  |
| 16 × 25                | 325              | 65               | 285              | 300  |  |  |
| 16×31.5                | 325              | 80               | 275              | 300  |  |  |
| 18×20                  | 325              | 65               | 285              | 250  |  |  |
| 18×25                  | 325              | 65               | 285              | 250  |  |  |
| 18×31.5                | 325              | 80               | 275              | 250  |  |  |



Low impedance - 105  $^\circ\text{C}$ 

# Overview of packing units and code numbers

|                  |       |       |           |        |        |        |         | PAPR     |          |
|------------------|-------|-------|-----------|--------|--------|--------|---------|----------|----------|
| Case size        | Stan- | Taped | l,        |        | Kinked | Cut    | Crimped | J leads, | Bent 90° |
| d 	imes I        | dard, | Ammo  | Ammo pack |        |        | leads, | leads,  | blister  | leads,   |
|                  | bulk  |       |           |        |        | bulk   | blister |          | blister  |
| mm               | pcs.  | pcs.  |           |        | pcs.   | pcs.   | pcs.    | pcs.     | pcs.     |
| 8 × 11.5         | 1000  | 1000  |           |        | _      | _      | _       | _        |          |
| $10 \times 12.5$ | 1000  | 750   |           |        | _      | 1000   | _       | 900      |          |
| 10×16            | 1000  | 500   |           |        | -      | 1000   | _       | 675      |          |
| 10×20            | 500   | 500   |           |        | 500    | 500    | _       | 500      |          |
| 12.5 × 20        | 350   | 500   |           |        | 350    | 350    | _       | 300      | 1)       |
| 12.5 × 25        | 250   | 500   | 500       |        |        | 500    | _       | 225      | 1)       |
| 16×20            | 250   | 300   |           |        | 200    | 200    | 200     | 200      | 420      |
| 16×25            | 250   | 300   | 300       |        |        | 200    | 216     | 216      | 216      |
| 16×31.5          | 200   | 300   | 300       |        |        | 250    | 180     | 180      | 180      |
| 16 	imes 35.5    | 100   | -     |           |        | 100    | 100    | 150     | 150      | 150      |
| 16×40            | 125   | -     |           |        | 100    | 100    | 72      | 72       | 72       |
| 18×20            | 175   | 250   |           |        | 175    | 175    | 200     | 200      | 420      |
| 18×25            | 150   | 250   |           |        | 150    | 150    | 200     | 200      | 200      |
| 18×31.5          | 100   | 250   |           |        | 100    | 100    | 150     | 150      | 150      |
| 18×35            | 100   | _     |           |        | 100    | 100    | 150     | 150      | 150      |
| 18×40            | 125   | _     |           |        | 100    | 100    | 72      | _        | 72       |
| The last three   | 000   | Code  | F (mm)    | d (mm) | 001    | 002    | 003     | 004      | 012      |
| digits of the    |       | 006   | 3.5       | 8      |        |        |         |          |          |
| complete         |       | 008   | 5         | 812.5  |        |        |         |          |          |
| ordering code    |       | 009   | 7.5       | 1618   |        |        |         |          |          |
| state the lead   |       |       |           |        |        |        |         |          |          |
| configuration    |       |       |           |        |        |        |         |          |          |



B41858 Low impedance – 105 °C

#### Cautions and warnings

#### Personal safety

The electrolytes used have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC). Furthermore, some of the high-voltage electrolytes used are self-extinguishing.

As far as possible, we do not use any dangerous chemicals or compounds to produce operating electrolytes, although in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. We do, however, restrict the amount of dangerous materials used in our products to an absolute minimum.

Materials and chemicals used in our aluminum electrolytic capacitors are continuously adapted in compliance with the TDK Electronics Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on our website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.



Low impedance - 105 °C

# **Product safety**

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of seperate file chapter "General technical information".

| Торіс                                                          | Safety information                                                                                                                                                                                                                                                                                                                                                                                                   | Reference<br>chapter "General<br>technical information"                                                          |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Polarity                                                       | Make sure that polar capacitors are connected with the right polarity.                                                                                                                                                                                                                                                                                                                                               | 1<br>"Basic construction of<br>aluminum electrolytic<br>capacitors"                                              |
| Reverse voltage                                                | Voltages of opposite polarity should be prevented by connecting a diode.                                                                                                                                                                                                                                                                                                                                             | 3.1.6<br>"Reverse voltage"                                                                                       |
| Mounting<br>position of screw-<br>terminal capacitors          | Screw terminal capacitors must not be mounted<br>with terminals facing down unless otherwise<br>specified.                                                                                                                                                                                                                                                                                                           | 11.1.<br>"Mounting positions of<br>capacitors with screw<br>terminals"                                           |
| Robustness of terminals                                        | The following maximum tightening torques must<br>not be exceeded when connecting screw<br>terminals:<br>M5: 2.5 Nm<br>M6: 4.0 Nm                                                                                                                                                                                                                                                                                     | 11.3<br>"Mounting torques"                                                                                       |
| Mounting of<br>single-ended<br>capacitors                      | The internal structure of single-ended capacitors<br>might be damaged if excessive force is applied to<br>the lead wires.<br>Avoid any compressive, tensile or flexural stress.<br>Do not move the capacitor after soldering to PC<br>board.<br>Do not pick up the PC board by the soldered<br>capacitor.<br>Do not insert the capacitor on the PC board with a<br>hole space different to the lead space specified. | 11.4<br>"Mounting<br>considerations for<br>single-ended capacitors"                                              |
| Soldering                                                      | Do not exceed the specified time or temperature limits during soldering.                                                                                                                                                                                                                                                                                                                                             | 11.5<br>"Soldering"                                                                                              |
| Soldering,<br>cleaning agents<br>Upper category<br>temperature | Do not allow halogenated hydrocarbons to come<br>into contact with aluminum electrolytic capacitors.<br>Do not exceed the upper category temperature.                                                                                                                                                                                                                                                                | <ul><li>11.6</li><li>"Cleaning agents"</li><li>7.2</li><li>"Maximum permissible operating temperature"</li></ul> |
| Passive<br>flammability                                        | Avoid external energy, e.g. fire.                                                                                                                                                                                                                                                                                                                                                                                    | 8.1<br>"Passive flammability"                                                                                    |





Low impedance - 105  $^{\circ}C$ 

| Торіс                                          | Safety information                                                                                                                                                                                                                                          | Reference<br>chapter "General<br>technical information"   |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Active<br>flammability                         | Avoid overload of the capacitors.                                                                                                                                                                                                                           | 8.2<br>"Active flammability"                              |
| Maintenance                                    | Make periodic inspections of the capacitors.<br>Before the inspection, make sure that the power<br>supply is turned off and carefully discharge the<br>capacitors.<br>Do not apply excessive mechanical stress to the<br>capacitor terminals when mounting. | 10<br>"Maintenance"                                       |
| Storage                                        | Do not store capacitors at high temperatures or<br>high humidity. Capacitors should be stored at<br>+5 to +35 °C and a relative humidity of $\leq$ 75%.                                                                                                     | 7.3<br>"Shelf life and storage<br>conditions"             |
|                                                |                                                                                                                                                                                                                                                             | Reference<br>chapter "Capacitors with<br>screw terminals" |
| Breakdown strength<br>of insulating<br>sleeves | Do not damage the insulating sleeve, especially when ring clips are used for mounting.                                                                                                                                                                      | "Screw terminals –<br>accessories"                        |

#### Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under

www.tdk-electronics.tdk.com/orderingcodes.



B41858

Low impedance - 105  $^\circ\text{C}$ 

# Symbols and terms

| Symbol                  | English                                                   | German                                                    |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| С                       | Capacitance                                               | Kapazität                                                 |
| C <sub>R</sub>          | Rated capacitance                                         | Nennkapazität                                             |
| Cs                      | Series capacitance                                        | Serienkapazität                                           |
| C <sub>S,T</sub>        | Series capacitance at temperature T                       | Serienkapazität bei Temperatur T                          |
| C <sub>f</sub>          | Capacitance at frequency f                                | Kapazität bei Frequenz f                                  |
| d                       | Case diameter, nominal dimension                          | Gehäusedurchmesser, Nennmaß                               |
| d <sub>max</sub>        | Maximum case diameter                                     | Maximaler Gehäusedurchmesser                              |
| ESL                     | Self-inductance                                           | Eigeninduktivität                                         |
| ESR                     | Equivalent series resistance                              | Ersatzserienwiderstand                                    |
| ESR <sub>f</sub>        | Equivalent series resistance at<br>frequency f            | Ersatzserienwiderstand bei Frequenz f                     |
| $ESR_{T}$               | Equivalent series resistance at temperature T             | Ersatzserienwiderstand bei Temperatur T                   |
| f                       | Frequency                                                 | Frequenz                                                  |
| I                       | Current                                                   | Strom                                                     |
| I <sub>AC</sub>         | Alternating current (ripple current)                      | Wechselstrom                                              |
| I <sub>AC,RMS</sub>     | Root-mean-square value of alternating current             | Wechselstrom, Effektivwert                                |
| I <sub>AC,f</sub>       | Ripple current at frequency f                             | Wechselstrom bei Frequenz f                               |
| I <sub>AC,max</sub>     | Maximum permissible ripple current                        | Maximal zulässiger Wechselstrom                           |
| I <sub>AC,R</sub>       | Rated ripple current                                      | Nennwechselstrom                                          |
| I <sub>leak</sub>       | Leakage current                                           | Reststrom                                                 |
| I <sub>leak,op</sub>    | Operating leakage current                                 | Betriebsreststrom                                         |
| I                       | Case length, nominal dimension                            | Gehäuselänge, Nennmaß                                     |
| I <sub>max</sub>        | Maximum case length (without terminals and mounting stud) | Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen) |
| R                       | Resistance                                                | Widerstand                                                |
| <b>R</b> <sub>ins</sub> | Insulation resistance                                     | Isolationswiderstand                                      |
| $R_{symm}$              | Balancing resistance                                      | Symmetrierwiderstand                                      |
| Т                       | Temperature                                               | Temperatur                                                |
| $\Delta T$              | Temperature difference                                    | Temperaturdifferenz                                       |
| T <sub>A</sub>          | Ambient temperature                                       | Umgebungstemperatur                                       |
| T <sub>c</sub>          | Case temperature                                          | Gehäusetemperatur                                         |
| Τ <sub>B</sub>          | Capacitor base temperature                                | Temperatur des Gehäusebodens                              |
| t                       | Time                                                      | Zeit                                                      |
| $\Delta t$              | Period                                                    | Zeitraum                                                  |
| t <sub>b</sub>          | Service life (operating hours)                            | Brauchbarkeitsdauer (Betriebszeit)                        |





Low impedance - 105  $^\circ\text{C}$ 

| Symbol          | English                                 | German                               |
|-----------------|-----------------------------------------|--------------------------------------|
| V               | Voltage                                 | Spannung                             |
| V <sub>F</sub>  | Forming voltage                         | Formierspannung                      |
| V <sub>op</sub> | Operating voltage                       | Betriebsspannung                     |
| V <sub>R</sub>  | Rated voltage, DC voltage               | Nennspannung, Gleichspannung         |
| Vs              | Surge voltage                           | Spitzenspannung                      |
| X <sub>c</sub>  | Capacitive reactance                    | Kapazitiver Blindwiderstand          |
| XL              | Inductive reactance                     | Induktiver Blindwiderstand           |
| Z               | Impedance                               | Scheinwiderstand                     |
| Ζ <sub>τ</sub>  | Impedance at temperature T              | Scheinwiderstand bei Temperatur T    |
| tan δ           | Dissipation factor                      | Verlustfaktor                        |
| λ               | Failure rate                            | Ausfallrate                          |
| ε <sub>0</sub>  | Absolute permittivity                   | Elektrische Feldkonstante            |
| ε <sub>r</sub>  | Relative permittivity                   | Dielektrizitätszahl                  |
| ω               | Angular velocity; $2 \cdot \pi \cdot f$ | Kreisfrequenz; $2 \cdot \pi \cdot f$ |

# Note

All dimensions are given in mm.



The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.



#### Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below :

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D110T LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331025KT ELH2DM471P30KT