

Switching spark gap

SSG with lead wires

Series/Type: FS08X-1GH

 Ordering code:
 B88069X0340xxxx a)

 Version/Date:
 Issue 08 / 2006-08-30

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Switching spark gap

SSG with lead wires

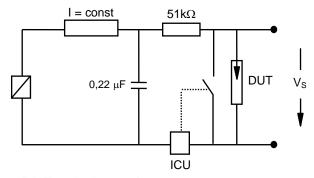
B88069X0340xxxx a)
FS08X-1GH

Features	Applications
 Extremely long life time 	Ignition of HID lamps
 Stable performance over life 	
 Insensitive performance against variations in temperature 	
 Very low switching losses 	
 Very short breakdown time 	
 High reliability by robust design 	
 RoHS compatibility 	

Electrical specifications

Nominal breakdown voltage V _N	800	V
Initial values ²⁾ Static breakdown voltage V _S ¹⁾ First ignition value V _{S, FTE} after 24 hours in darkness Following ignition values V _{S, FIV}	≤ 950 704 896	V
Electrical life time $^{3)}$ Breakdown voltage V_B up to 100 000 Ignitions First ignition value $V_{B,FTE}$ after 24 hours in darkness Ignition time t_I at V_0 during life Following ignition values $V_{B,FIV}$ at 50 000 Ignitions Following ignition values $V_{B,FIV}$	≤ 1000 ≤ 60 704 920 680 920	V ms V V
Switching operations in total at – 40; +150 °C, each at + 25; +125 °C, each	100 000 10 000 40 000	Ignitions Ignitions Ignitions
Test circuit parameters Open circuit voltage V ₀ Loading resistance R Discharge capacitance C Inductance L Discharge peak current I _P	1000 56 114 0.13 ~ 660	V kΩ nF μH A
General technical data Insulation resistance at 100 V Early ignition values between 530 680 V Breakdown time Maximum loading current Weight	> 100 ≤ 1 ≤ 50 50 ~ 2	MΩ % ns mA g
Marking, blue positive	EPCOS 800 WWY O 800 - Nominal voltage WW - Calendar week of production Y - Year of production O - Non radioactive	

KB AB E / KB AB PM Issue 08 / 2006-08-30


SSG with lead wires

FS08X-1GH

- 1) At delivery AQL 0,65 level II, DIN ISO 2859
- ²⁾ Page 2, Fig. 1 and 2
- 3) Page 2, Fig. 3 and 4

Figures

Fig. 1: QC- test circuit (100% outgoing inspection)

DUT device under test

ICU ignition control unit (sensitivity 10 ... 30 μ A) Discharge current 10 – 20 mA

Fig. 3: QC- test circuit (sampling inspection at 25 °C)

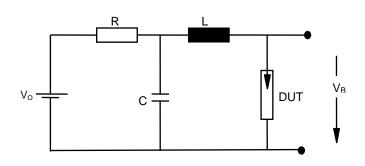


Fig. 2: Explanation of measurands

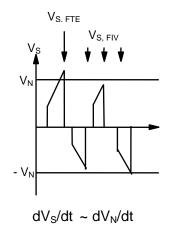
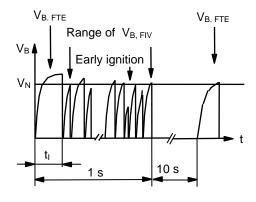
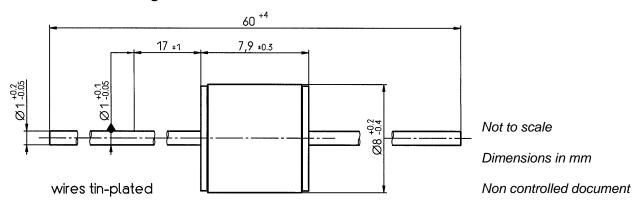



Fig. 4: Explanation of measurands

KB AB E / KB AB PM Issue 08 / 2006-08-30

a) xxxx = T502 (taped and reeled with 500 pcs.)
 = T103 (taped and reeled with 1000 pcs.)



Switching spark gap

SSG with lead wires

B88069X0340xxxx a)
FS08X-1GH

Dimensional Drawing

Cautions and warnings

- Switching spark gaps may be used only within their specified values.
- Damaged switching spark gaps must not be re-used.

KB AB E / KB AB PM Issue 08 / 2006-08-30

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, Baoke, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gas Discharge Tubes - GDTs / Gas Plasma Arrestors category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below:

M51-A90X PMT1023004 PMT1040004 CG2800 GTCR37-231M-R10 WPGT-2N145B6L WPGT-2N230B6L WPGT-2N470B6L WPGT-2RM230A6L WPGT-2RM350A6L WPGT-2RM70A6L WPGT-2RM90A6L WPGT-2S145 WPGT-2S350 WPGT-2S470 WPGT-3R350CF WPGT-3R350G1 WPGT-3R75G1 WPGT-3R470G1 WPGT-3R250C WPGT-3R230G1 WPGT-2S230 WPGT-2RM145A6L WPGT-2R1000B8L WPGT-2N70B6L WPGT-2N350B6L WPGT-2N230B6L1 CG2145 T61-C350X 9071.99.0547 (73_Z-0-0-547) B88069X6940B152 RF1219-000 A9L16618 RF2339-000 9071.99.0052(73_Z-0-0-52) 9071.99.0054 CG32.7L CG6400SM CG6470SM CG7250MS CG7400MS SPBT12-280/1 SPCT2-280/3 SPCT2-280/4 T2 20KA 4P 2003-09-SM-RPLF 2026-07-A1 2026-25-C3 2039-80-BLF