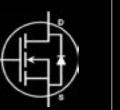
EPC2018


Halogen-Free

EPC2018 – Enhancement Mode Power Transistor

 V_{DSS} , 150 V $R_{\text{DS(ON)}}$, 25 m Ω I_{D} , 12 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(ON)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
V _{DS}	Drain-to-Source Voltage	150	V		
	Continuous ($T_A = 25^{\circ}C, \theta_{JA} = 17$)	12	٨		
I _D	Pulsed (25°C, Tpulse = 300 μs)	Α			
V	Gate-to-Source Voltage	6	V		
V _{GS}	Gate-to-Source Voltage	-5	V		
T,	Operating Temperature -40 to 125		°C		
T _{STG}	Storage Temperature	-40 to 150	ر 		

EFFICIENT POWER CONVERSION

EPC2018 eGaN® FETs are supplied only in passivated die form with solder bars

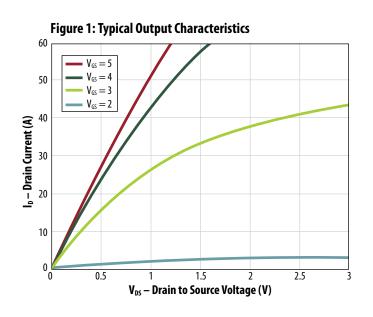
Applications

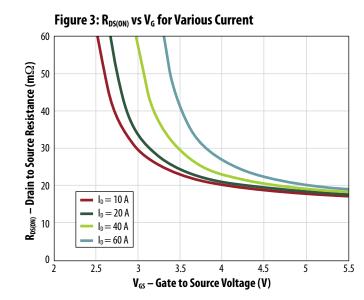
RoHS Pa

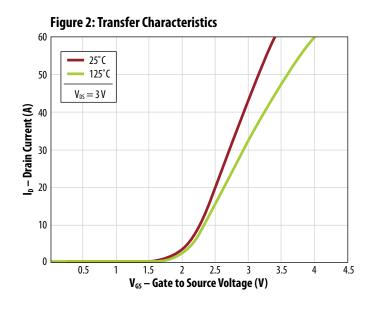
- High Speed DC-DC conversion
- Class D Audio
- Hard Switched and High Frequency Circuits

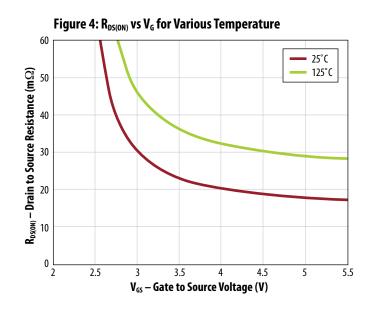
Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- Ultra small footprint


PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT		
Static Characte	Static Characteristics ($T_J = 25^{\circ}C$ unless otherwise stated)							
BV _{DSS}	Drain-to-Source Voltage	$V_{GS}=0~V,~I_{D}=200~\mu A$	150			V		
I _{DSS}	Drain Source Leakage	$V_{DS} = 120 V, V_{GS} = 0 V$		50	150	μA		
1	Gate-Source Forward Leakage	$V_{GS} = 5 V$		1	3	mA		
I _{GSS}	Gate-Source Reverse Leakage	$V_{GS} = -5 V$		0.2	1			
$V_{\text{GS(TH)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.7	1.4	2.5	V		
R _{DS(ON)}	Drain-Source On Resistance	$V_{GS} = 5 V, I_{D} = 6 A$		18	25	mΩ		
Source-Drain C	haracteristics (T _J = 25°C unless otherw	vise stated)						
M		$I_{s} = 0.5 \text{ A}, V_{GS} = 0 \text{ V}, \text{T} = 25^{\circ}\text{C}$		1.8				
V _{SD}	Source-Drain Forward Voltage	$I_{s} = 0.5 \text{ A}, V_{Gs} = 0 \text{ V}, \text{T} = 125^{\circ}\text{C}$		1.8				


Thermal Characteristics				
		ТҮР		
R _{eJC}	Thermal Resistance, Junction to Case	2.4	°C/W	
R _{ejb}	Thermal Resistance, Junction to Board	16	°C/W	
R _{0JA}	Thermal Resistance, Junction to Ambient (Note 1)	56	°C/W	


Note 1: R_{JJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.


PARAMETER		TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT	
Dynamic Chara	Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
C _{ISS}	Input Capacitance			480	540		
C _{oss}	Output Capacitance	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		270	350	pF	
C _{RSS}	Reverse Transfer Capacitance			9.2	12	-	
Q_G	Total Gate Charge (V_{GS} = 5 V)			5	7.5		
\mathbf{Q}_{GD}	Gate to Drain Charge	$V_{\text{DS}} = 100 \text{ V}, I_{\text{D}} = 12 \text{ A}$		1.7	2.6		
Q_{GS}	Gate to Source Charge			1.3	2	nC	
Q _{oss}	Output Charge	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		40	50		
Q_{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate shorted to source.

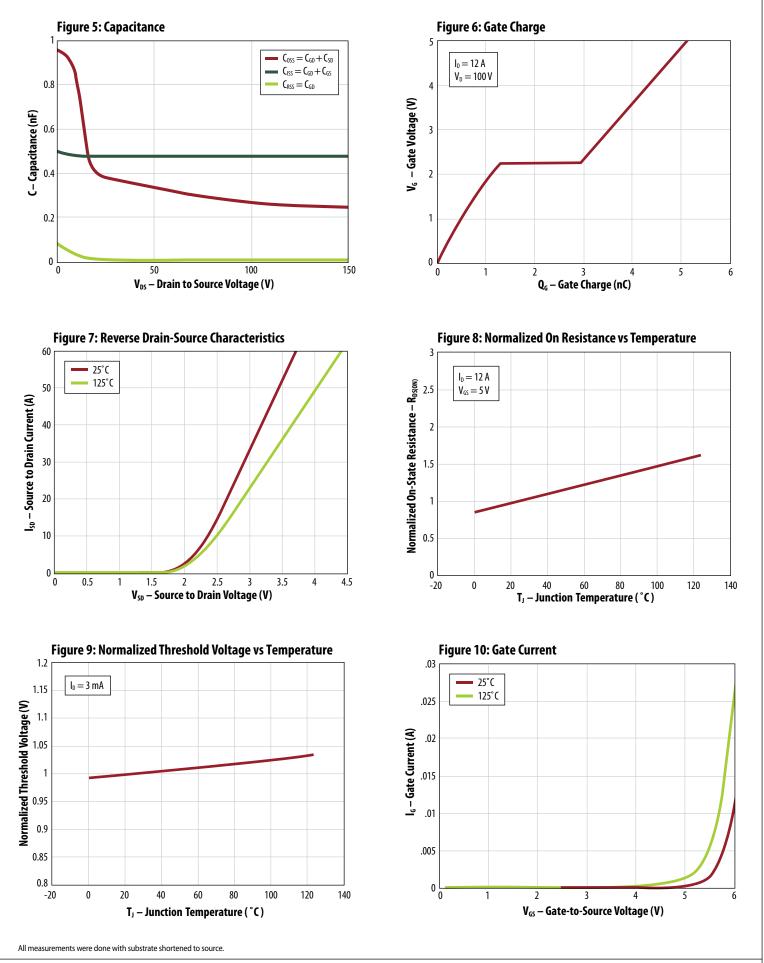


Figure 11: Transient Thermal Response Curves

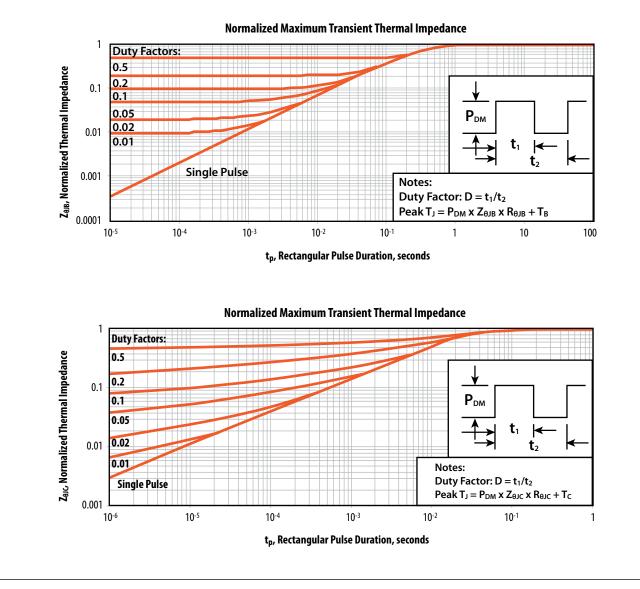
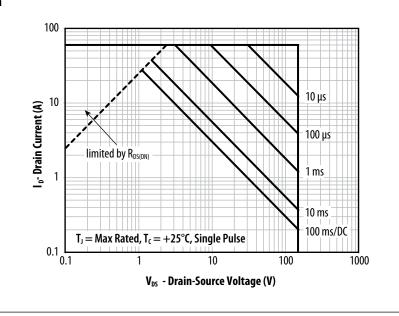
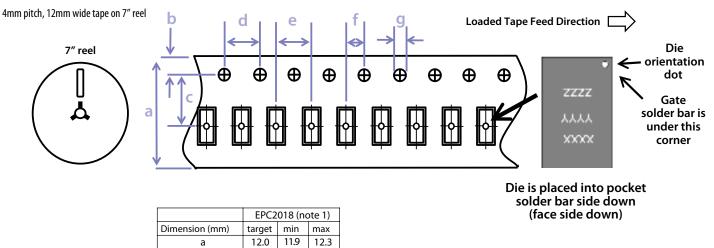
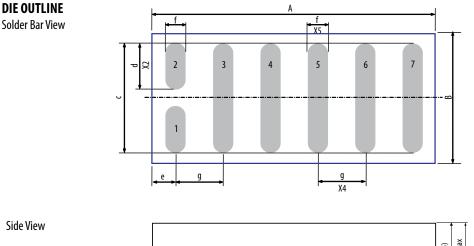




Figure 12: Safe Operating Area

EPC2018


TAPE AND REEL CONFIGURATION

Note 1: MSL1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

	2018				
Die orientation dot Gate Pad solder bar	YYYY ZZZZ	Part Number	Part # Marking Line 1	Laser Markings Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
is under this corner \longrightarrow	•	EPC2018	2018	YYYY	ZZZZ

b

c (note 2)

d

e

g

f (note 2)

1.75

5.50

4.00

4.00

2.00

1.5

1.65

5.45

3.90

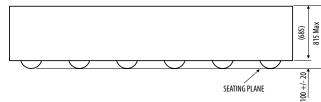
3.90

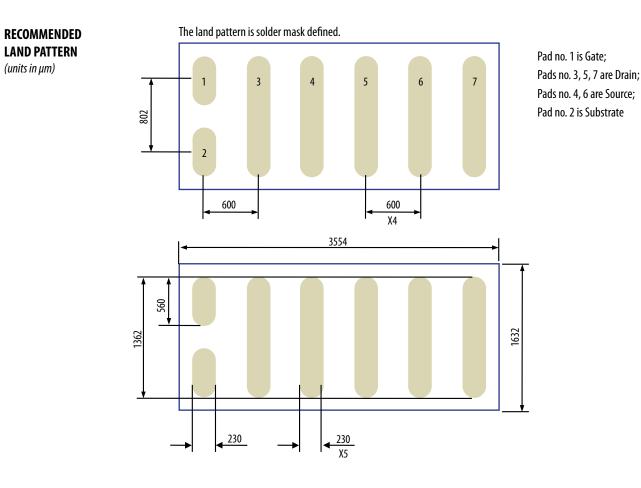
1.95

1.5

1.85

5.55


4.10


4.10

2.05

1.6

DIM	MICROMETERS					
DIM	MIN	Nominal	MAX			
Α	3524	3554	3584			
В	1602	1632	1662			
C	1379	1382	1385			
d	577	580	583			
e	262	277	292			
f	245	250	255			
g	600	600	600			

Additional assembly resources available at epc-co.com/AssemblyBasics

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN[®] is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398

Information subject to change without notice. Revised August, 2013

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for epcos manufacturer:

Other Similar products are found below :

 B82432X001
 B82731H2501A30
 B25673A4302A080
 B32529C0104K000
 B43501B3337M7
 B44066R6012E230
 B57235S0100M

 B57236S0200M
 B57236S0259M
 B57237S0100M
 B57237S0109M
 B57237S0229M
 B57237S0259M
 B57237S0330M
 B72520T0250K062

 B82422A1102K100
 B82422A1333K100
 B82422A1472K100
 B82721A2202N001
 B84142A50R
 B84143B600S20
 B84144A0120R000

 B84144A90R120
 B84243A8008W
 B88069X0270S102
 BR6000-R6
 B25631A1506K200
 B32656S0105K561
 B32656T684K

 B32686A7104K
 B32913A5154M
 B41550E7229Q000
 B43252A5476M
 B57237S0150M
 B57237S0479M
 B57237S0509M

 B59955C0120A070
 B59995C0120A070
 B64290A0045X038
 B72240B321K1
 B72530T0400K062
 B72530T250K62
 B82422A1473K100

 B84144A50R
 B32332I6755J080
 B32521C1105J
 B32673P6474K000
 B43504B2108M000
 B43508A9827M