Table 1: Performance Summary (TA = Z5°C)							
STINU	XAM	qγT	NIW	CONDITIONS	RARAMETER	SAMBOL	
٨	77		8		Bus Input Voltage Range	NIΛ	
٨		۲.۱			Switch Node Output Voltage	TuoV	
A	*0Z				Switch Node Output Current	TUO	
KHZ		1000			Switching frequency	ws J	
%		2.68		TUOI A OI = VIV SI	Peak Efficiency		
%		1 .38		$_{TUO}I A 0S = _{VN}V SI$	Full Load Efficiency		
%		£.£8		$_{\text{TUO}}I \text{ A 02} = _{\text{VI}}V \text{ 42}$	Full Load Efficiency		

There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the datasheet available from EPC at www.epc-co.com and www. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.

fully closed loop buck converter.

The EPC9101 demonstration board is 3" square and contains a

εσαλ ακίνεκ τοgether.

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LM5113. The EPC9101 board is not intended as a reference design, but to showcase

DESCRIPTION WWW.epc-co.com

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OLT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on V_{IN}).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (\geq 500MHz) probe and high bandwidth scope (\geq 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

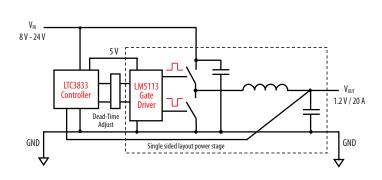


Figure 1: Block Diagram of EPC9101 Demonstration Board

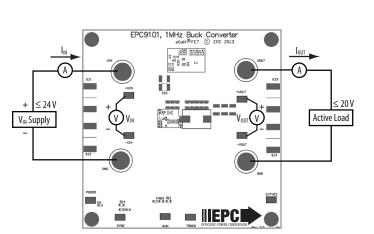


Figure 2: Proper Connection and Measurement Setup

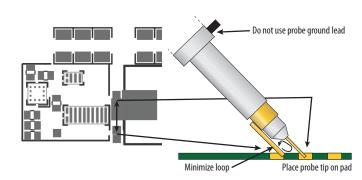


Figure 3: Proper Measurement of Switch Node or Gate Voltage

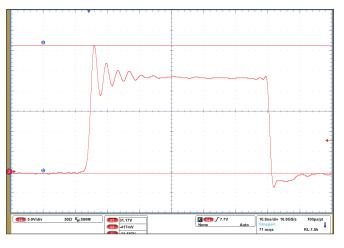
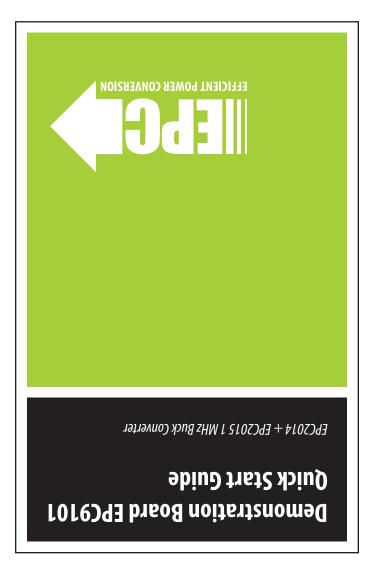


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter

STINU	XAM	qyT	NIW	CONDITIONS	RAPARAMETER	SKMBOL
٨	77		8		Bus Input Voltage Range	Λ ^{IN}
٨		۲.1			Switch Node Output Voltage	TUOV
A	*0Z				Switch Node Output Current	TUO
ΣΗΆ		1000			Switching frequency	wsf
%		2.68		TUOI A OI = VIV SI	Реак Еfficiency	
%		1 .38		$_{TUO}I A 0S = _{VN}V SI$	Full Load Efficiency	
%		£.E8		TU0 I A 02 = 10 4 1	Full Load Efficiency	

There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the data-sheet available from EPC at www.epc-co.com and www.Tl.com. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.


The EPC9101 demonstration board is 3" square and contains a fully closed loop buck converter. The power stage is a single sided design and is contained within 20mm x 11mm area and includes driver, eGaN FETs, bus capacitors and output inductor.

eGaN driver together.

Table 1: Performance Summary (TA = 25° C)

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LM5113. The EPC9101 board is not intended as a reference design, but to showcase the performance that can be achieved using the eGaN FETs and the performance that can be achieved using the eGaN FETs and

DESCRIPTION WWW.epc-co.com

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OUT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on $V_{\rm IN}$).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (≥ 500MHz) probe and high bandwidth scope (≥ 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

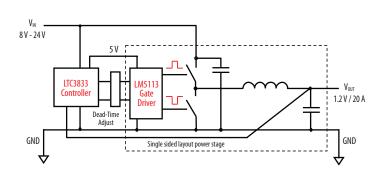


Figure 1: Block Diagram of EPC9101 Demonstration Board

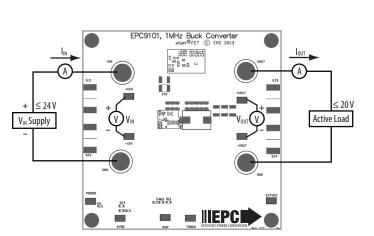


Figure 2: Proper Connection and Measurement Setup

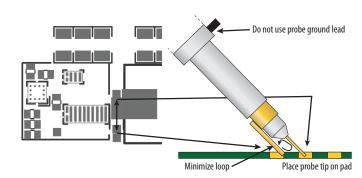


Figure 3: Proper Measurement of Switch Node or Gate Voltage

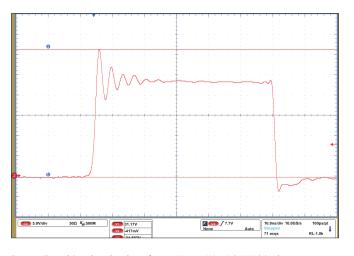


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter $\frac{1}{2}$

Table 1: Performance Summary (TA = Z5°C)							
STINU	XAM	qγT	NIW	CONDITIONS	RARAMETER	SAMBOL	
٨	77		8		Bus Input Voltage Range	NIΛ	
٨		۲.۱			Switch Node Output Voltage	TuoV	
A	*0Z				Switch Node Output Current	TUO	
KHZ		1000			Switching frequency	ws J	
%		2.68		TUOI A OI = VIV SI	Peak Efficiency		
%		1 .38		$_{TUO}I A 0S = _{VN}V SI$	Full Load Efficiency		
%		£.£8		$_{\text{TUO}}I \text{ A 02} = _{\text{VI}}V \text{ 42}$	Full Load Efficiency		

There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the datasheet available from EPC at www.epc-co.com and www. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.

fully closed loop buck converter.

The EPC9101 demonstration board is 3" square and contains a

εσαλ ακίνεκ τοgether.

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LM5113. The EPC9101 board is not intended as a reference design, but to showcase

DESCRIPTION WWW.epc-co.com

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OLT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on V_{IN}).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (\geq 500MHz) probe and high bandwidth scope (\geq 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

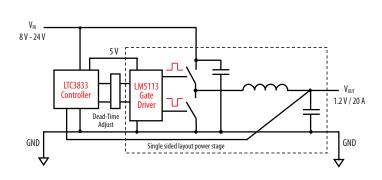


Figure 1: Block Diagram of EPC9101 Demonstration Board

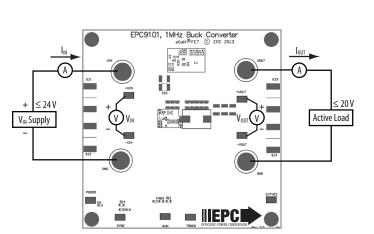


Figure 2: Proper Connection and Measurement Setup

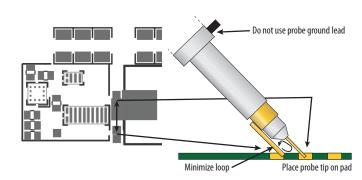


Figure 3: Proper Measurement of Switch Node or Gate Voltage

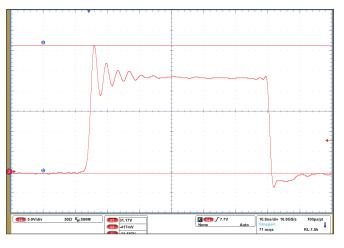


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter

Table 1: Performance Summary (TA = Z5°C)							
STINU	XAM	qyT	NIW	CONDITIONS	RARAMETER	SAMBOL	
٨	77		8		Bus Input Voltage Range	NIΛ	
٨		۲.۱			Switch Node Output Voltage	TuoV	
A	*0Z				Switch Node Output Current	TUO	
KHZ		1000			Switching frequency	ws J	
%		2.68		TUOI A OI = VIV SI	Peak Efficiency		
%		1 .38		$_{TUO}I A 0S = _{VN}V SI$	Full Load Efficiency		
%		£.£8		$_{\text{TUO}}I \text{ A 02} = _{\text{VI}}V \text{ 42}$	Full Load Efficiency		

There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the datasheet available from EPC at www.epc-co.com and www. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.

fully closed loop buck converter.

The EPC9101 demonstration board is 3" square and contains a

εσαλ ακίνεκ τοgether.

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LM5113. The EPC9101 board is not intended as a reference design, but to showcase

DESCRIPTION WWW.epc-co.com

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OLT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on V_{IN}).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (\geq 500MHz) probe and high bandwidth scope (\geq 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

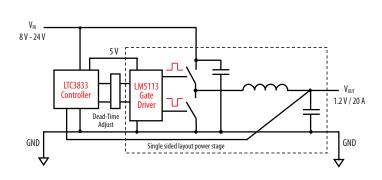


Figure 1: Block Diagram of EPC9101 Demonstration Board

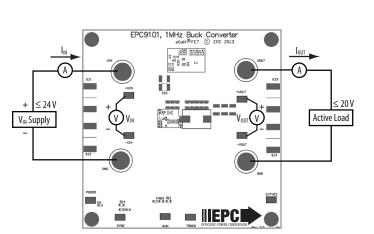


Figure 2: Proper Connection and Measurement Setup

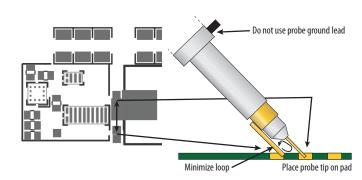


Figure 3: Proper Measurement of Switch Node or Gate Voltage

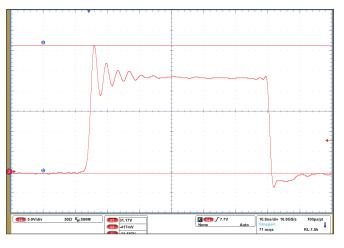


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter

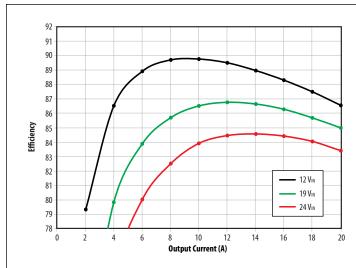
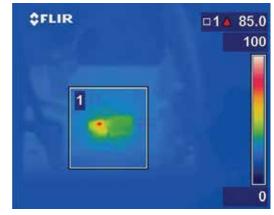
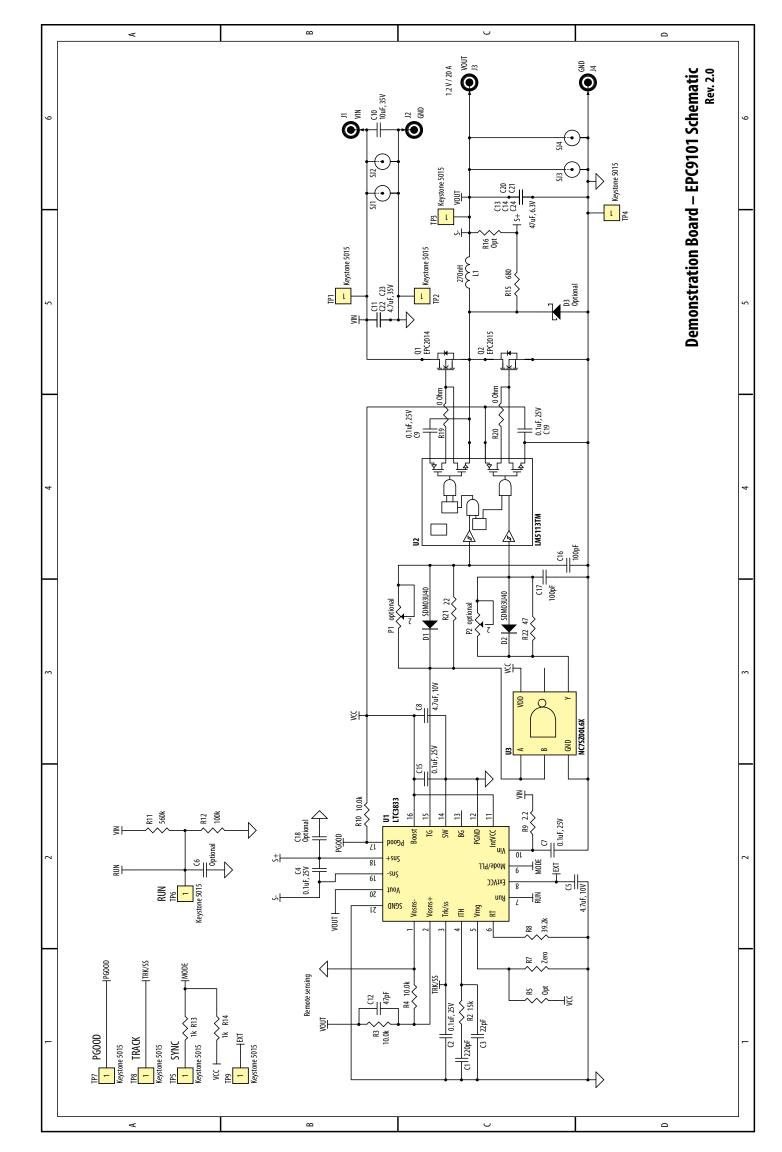


Figure 5: Typical efficiency curves for 24 V, 19 V and 12 V input including controller and LDO losses


THERMAL CONSIDERATIONS

The EPC9101 demonstration board thermal images for steady state full load operation are shown in Figure 6. The EPC9101 is intended for bench evaluation with low ambient temperature and forced air cooling for higher currents. Care must be taken to not exceed the absolute maximum die temperature of 125°C and stay within the constraints of the other components within the circuit.

NOTE. The EPC9101 demonstration board does not have any current or thermal protection on board


12 Vin, 20 Aout, 200LFM

24 Vin, 20 Aout, 200LFM

Figure 6: Thermal images of EPC9101 under full load conditions

Table 2	: Bill of N	Material		
ltem	Qty	Reference	Part Description	Manufacturer / Part #
1	1	C1	Capacitor, 220pF, 5%, 50V, NP0	Murata, GRM1885C1H221JA01D
2	1	СЗ	Capacitor, 22pF, 5%, 50V, NP0	Murata, GRM1885C1H220JA01D
3	6	C2, C4, C7, C9, C15, C19	Capacitor, 0.1uF, 10%, 25V, X5R	TDK, C1005X5R1E104K
4	2	C5, C8	Capacitor, 4.7uF, 10%, 10V, X5R	TDK, C1608X5R1A475K
5	1	C10	Capacitor, 10uF, 20%, 35V, X5R	Taiyo Yuden, GMK325BJ106KN
6	2	C11, C22, C23	Capacitor, 4.7uF, 10%, 35V, X7R	TDK, C2012X6S1V475K125AB
7	5	C13, C14, C20, C21, C24	Capacitor, 47uF, 20%, 10V, X5R	TDK, C2012X5R1A476M
8	2	C16, C17	Capacitor, 100pF, 5%, 50V, NP0	Kemet, C0402C101K5GACTU
9	3	D1, D2, D4	Schottky Diode, 30V	Diodes Inc., SDM03U40-7
10	4	J1, J2, J3, J4	Banana Jack	Keystone, 575-4
11	1	L1	Inductor, 270nH	Coilcraft, SLC1175-271ME
12	1	Q1	eGaN® FET	EPC, EPC2014
13	1	Q2	eGaN® FET	EPC, EPC2015
14	1	R2	Resistor, 15.0K, 1%, 1/8W	Stackpole, RMCF0603FT15K0
15	3	R3, R4, R10	Resistor, 10.0K, 1%, 1/10W	Stackpole, RMCF0603FT10K0
16	3	R7, R19, R20	Resistor, 0 Ohm, 1/16W	Stackpole, RMCF0402ZT0R00
17	1	R8	Resistor, 39.2K, 1%, 1/8W	Stackpole, RMCF0603FT39K2
18	1	R9	Resistor, 2.2 Ohm, 5%, 1/16W	Yageo, RC0402FR-072R2L
19	1	R11	Resistor, 560K, 1%, 1/8W	Stackpole, RMCF0603FT560K
20	1	R12	Resistor, 100K, 1%, 1/8W	Stackpole, RMCF0603FT100K
21	2	R13, R14	Resistor, 1.00K, 5%, 1/10W	Rohm, MCR03EZPJ102
22	1	R15	Resistor, 680 Ohm, 5%, 1/8W	Stackpole, RMCF0603FT680R
23	1	R21	Resistor, 22 Ohm, 5%, 1/8W	Stackpole, RMCF0603JT22R0
24	1	R22	Resistor, 47 Ohm, 5%, 1/8W	Stackpole, RMCF0603JT47R0
25	9	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9	Measurement Point	Keystone Elect, 5015
26	1	U1	I.C., Buck Regulator	Linear Technology, LTC3833EUDC#PBF
27	1	U2	I.C., Gate driver	Texas Instruments, LM5113
28	1	U3	I.C., Logic	Fairchild, NC7SZ00L6X
29	4		Nylon Stand-offs	Keystone, 8834
30	0	R5, R16	Optional Resistors	
31	0	C6, C12, C18	Optional Capacitors	
32	0	D3	Optional Diode	
33	0	P1, P2	Potentiometer, 500 Ohm, 0.25W	Murata, PV37Y501C01B00
34	0	SJ1, SJ2, SJ3, SJ4	Optional SMA Connectors	

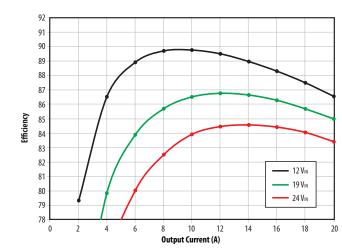


Figure 5: Typical efficiency curves for 24 V, 19 V and 12 V input including controller and LDO losses

THERMAL CONSIDERATIONS

The EPC9101 demonstration board thermal images for steady state full load operation are shown in Figure 6. The EPC9101 is intended for bench evaluation with low ambient temperature and forced air cooling for higher currents. Care must be taken to not exceed the absolute maximum die temperature of 125°C and stay within the constraints of the other components within the circuit.

NOTE. The EPC9101 demonstration board does not have any current or thermal protection on board.

12 VIN, 20 AOUT, 200LFM

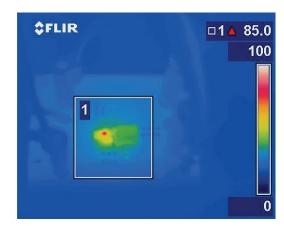
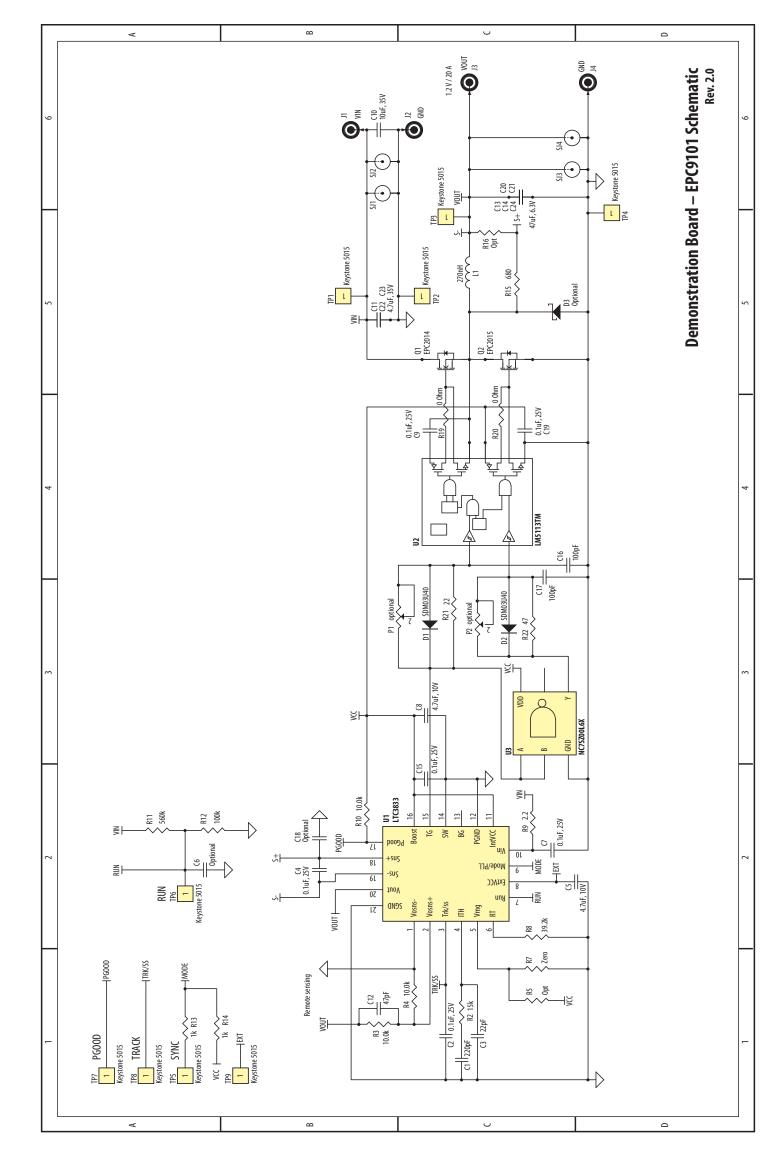
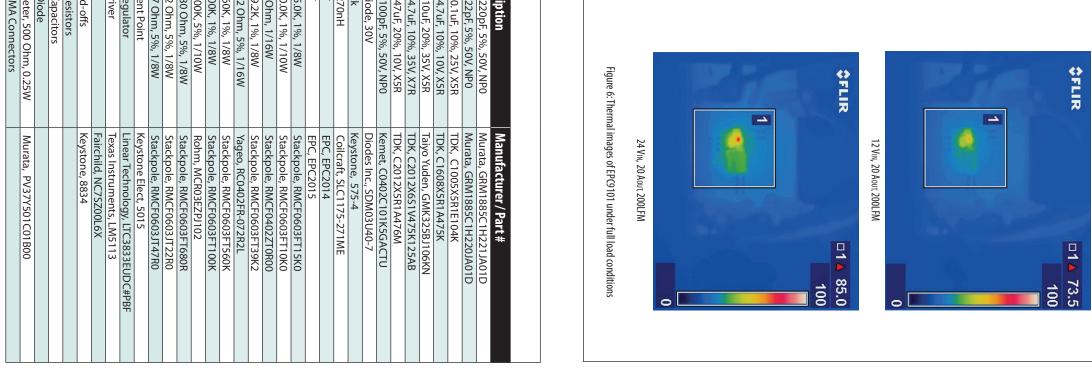
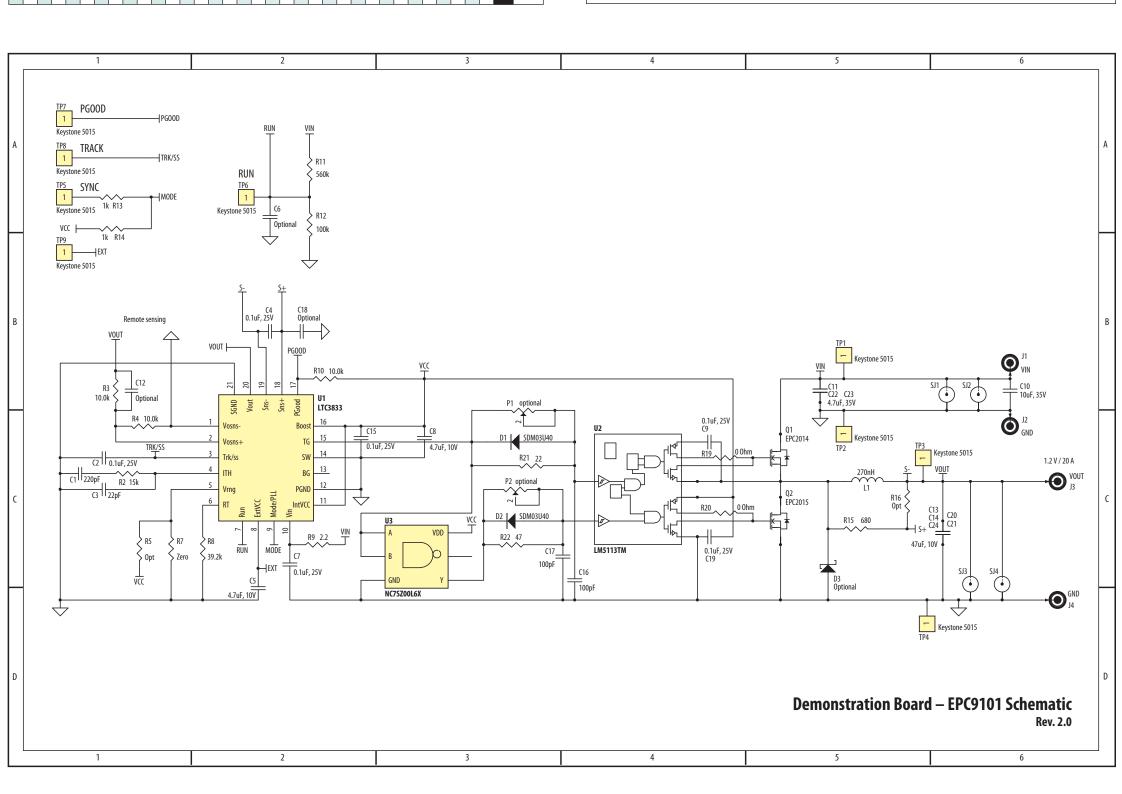





Figure 6: Thermal images of EPC9101 under full load conditions

Table 2: Bill of Material Qty Reference **Part Description** Manufacturer / Part # ltem Capacitor, 220pF, 5%, 50V, NP0 Murata, GRM1885C1H221JA01D C1 Capacitor, 22pF, 5%, 50V, NP0 Murata, GRM1885C1H220JA01D C2, C4, C7, C9, C15, C19 TDK, C1005X5R1E104K 3 Capacitor, 0.1uF, 10%, 25V, X5R TDK, C1608X5R1A475K 4 C5, C8 Capacitor, 4.7uF, 10%, 10V, X5R Taiyo Yuden, GMK325BJ106KN C10 Capacitor, 10uF, 20%, 35V, X5R C11, C22, C23 Capacitor, 4.7uF, 10%, 35V, X7R TDK, C2012X6S1V475K125AB 6 C13, C14, C20, C21, C24 Capacitor, 47uF, 20%, 10V, X5R TDK, C2012X5R1A476M 7 5 Kemet, C0402C101K5GACTU 8 C16, C17 Capacitor, 100pF, 5%, 50V, NP0 D1, D2, D4 Schottky Diode, 30V Diodes Inc., SDM03U40-7 10 J1, J2, J3, J4 4 Banana Jack Keystone, 575-4 11 L1 Inductor, 270nH Coilcraft, SLC1175-271ME 12 eGaN® FET EPC, EPC2014 Q1 13 Q2 eGaN® FET EPC, EPC2015 Resistor, 15.0K, 1%, 1/8W Stackpole, RMCF0603FT15K0 14 R2 R3, R4, R10 15 Resistor, 10.0K, 1%, 1/10W Stackpole, RMCF0603FT10K0 16 R7, R19, R20 Resistor, 0 Ohm, 1/16W Stackpole, RMCF0402ZT0R00 Resistor, 39.2K, 1%, 1/8W 17 Stackpole, RMCF0603FT39K2 R8 18 R9 Resistor, 2.2 Ohm, 5%, 1/16W Yageo, RC0402FR-072R2L 19 R11 Resistor, 560K, 1%, 1/8W Stackpole, RMCF0603FT560K 20 R12 Resistor, 100K, 1%, 1/8W Stackpole, RMCF0603FT100K 21 R13, R14 Resistor, 1.00K, 5%, 1/10W Rohm, MCR03EZPJ102 2 Resistor, 680 Ohm, 5%, 1/8W Stackpole, RMCF0603FT680R 22 R15 23 R21 Resistor, 22 Ohm, 5%, 1/8W Stackpole, RMCF0603JT22R0 24 Resistor, 47 Ohm, 5%, 1/8W Stackpole, RMCF0603JT47R0 R22 25 TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9 Measurement Point Keystone Elect, 5015 26 I.C., Buck Regulator Linear Technology, LTC3833EUDC#PBF U1 27 U2 I.C., Gate driver Texas Instruments, LM5113 I.C., Logic 28 U3 Fairchild, NC7SZ00L6X Nvlon Stand-offs 29 Keystone, 8834 4 R5, R16 30 **Optional Resistors** 31 C6, C12, C18 0 **Optional Capacitors** 32 D3 Optional Diode 0 33 0 P1, P2 Potentiometer, 500 Ohm, 0.25W Murata, PV37Y501C01B00 SJ1, SJ2, SJ3, SJ4 34 0 **Optional SMA Connectors**

Table 1: Performance Summary (TA = Z5°C)							
STINU	XAM	qyT	NIW	CONDITIONS	RARAMETER	SAMBOL	
٨	77		8		Bus Input Voltage Range	NIΛ	
٨		۲.۱			Switch Node Output Voltage	TuoV	
A	*0Z				Switch Node Output Current	TUO	
KHZ		1000			Switching frequency	ws J	
%		2.68		TUOI A OI = VIV SI	Peak Efficiency		
%		1 .38		$_{TUO}I A 0S = _{VN}V SI$	Full Load Efficiency		
%		£.£8		$_{\text{TUO}}I \text{ A 02} = _{\text{VI}}V \text{ 42}$	Full Load Efficiency		

There are also various probe points to facilitate simple waveform measurement and efficiency calculation. A complete block diagram of the circuit is given in Figure 1. For more information on the EPC2014/5 eGaN FETs or LM5113 driver, please refer to the datasheet available from EPC at www.epc-co.com and www. These datasheets, as well that of the LT3833 controller should be read in conjunction with this quick start guide.

fully closed loop buck converter.

The EPC9101 demonstration board is 3" square and contains a

εσαλ ακίνεκ τοgether.

The EPC9101 demonstration board is a 1.2 V output, 1 MHz buck converter with an 20 A maximum output current and 8 V to 24 V input voltage range. The demonstration board features the EPC2014 and EPC2015 enhancement mode (eGaN®) field effect transistors (FETs), as well as the first eGaN FET specific integrated circuit driver – the Texas Instruments LM5113. The EPC9101 board is not intended as a reference design, but to showcase

DESCRIPTION WWW.epc-co.com

Quick Start Procedure

Demonstration board EPC9101 is easy to set up to evaluate the performance of the EPC2014 and EPC2015 *eGaN* FETs and LM5113 driver. Refer to Figure 2 for proper connect and measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply bus between V_{IN} and GND banana jacks as shown.
- 2. With power off, connect the active (constant current) load as desired between V_{OLT} and GND banana jacks as shown.
- 3. Turn on the supply voltage to the required value (do not exceed the absolute maximum voltage of 24 V on V_{IN}).
- 4. Measure the output voltage to make sure the board is fully functional and operating no-load.
- 5. Turn on active load to the desired load current while staying below the maximum current (20 A)
- 6. Once operational, adjust the bus voltage and load current within the allowed operating range and observe the output switching behavior, efficiency and other parameters.
- 7. For shutdown, please follow steps in reverse.

NOTE. When measuring the high frequency content switch node of gate voltage, care must be taken to avoid long ground leads. Measure these by placing the oscilloscope probe tip on the top pad of D3 and grounding the probe directly across D3 on the bottom pad provided for switch node and using the bottom pad of R20 and the GND pad below it for gate voltage. See Figure 3 for proper scope probe technique. Measuring the switch node with a high bandwidth (\geq 500MHz) probe and high bandwidth scope (\geq 1GHz) is recommended.

NOTE. The dead-times for both the leading and trailing edges have been set for optimum full load efficiency. Adjustment is not recommended, but can be done at own risk by replacing R21 and R22 with potentiometers P1 and P2. This should be done while monitoring both the input current and switch-node voltage to determine the effect of these adjustments. Under no circumstance should the input pins to the LM5113 be probed during operation as the added probe capacitance will change the device timing.

CIRCUIT PERFORMANCE

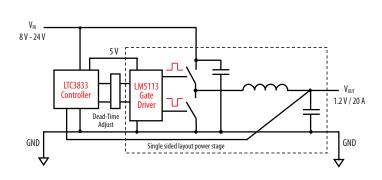


Figure 1: Block Diagram of EPC9101 Demonstration Board

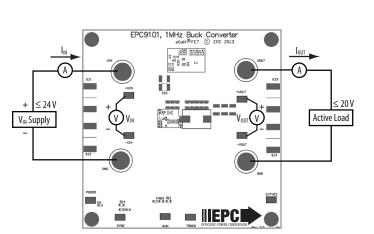


Figure 2: Proper Connection and Measurement Setup

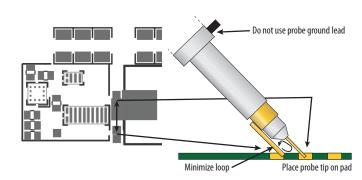


Figure 3: Proper Measurement of Switch Node or Gate Voltage

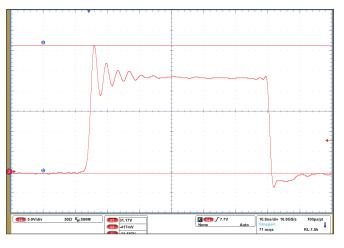


Figure 4: Typical Switch node voltage for a 24 V to 1.2 V/20 A (1 MHz) Buck converter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for epcos manufacturer:

Other Similar products are found below:

B82432X001 B82731H2501A30 B25673A4302A080 B32529C0104K000 B43501B3337M7 B44066R6012E230 B57235S0100M
B57236S0200M B57236S0259M B57237S0100M B57237S0109M B57237S0229M B57237S0259M B57237S0330M B72520T0250K062
B82422A1102K100 B82422A1333K100 B82422A1472K100 B82721A2202N001 B84142A50R B84143B600S20 B84144A0120R000
B84144A90R120 B84243A8008W B88069X0270S102 BR6000-R6 B25631A1506K200 B32656S0105K561 B32656T684K
B32686A7104K B32913A5154M B41550E7229Q000 B43252A5476M B57236S0509M B57237S0150M B57237S0479M B57237S0509M
B59955C0120A070 B59995C0120A070 B64290A0045X038 B72240B321K1 B72530T0400K062 B72530T250K62 B82422A1473K100
B84144A50R B323332I6755J080 B32521C1105J B32673P6474K000 B43504B2108M000 B43508A9827M