Clock OSC

SG-210SCBA

Product name SG-210SCBA 24.576000 MHz L Conforms to AEC-Q200

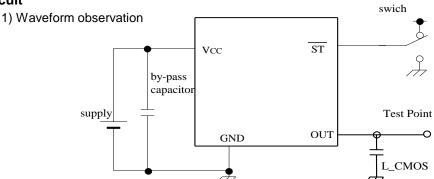
Product Number / Ordering code X1G004591A052xx

Please refer to the 8.Packing information about xx (last 2 digits)

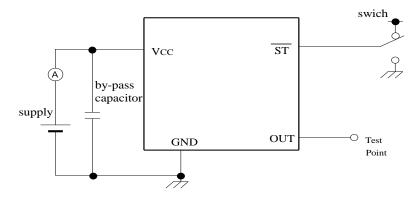
Output waveform CMOS

Pb free / Complies with EU RoHS directive

Reference weight Typ. 15 mg

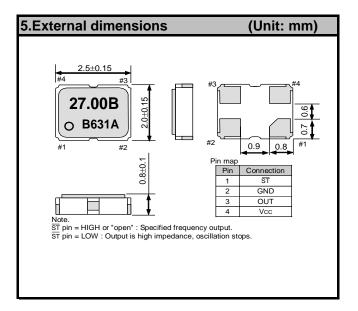

1.Absolute maximum ratings	;					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Maximum supply voltage	Vcc-GND	-0.3	,	+5	V	-
Storage temperature	T_stg	-40	-	+125	°С	Storage as single product
Input voltage	Vin	-0.3	-	Vcc+0.3	V	ST terminal

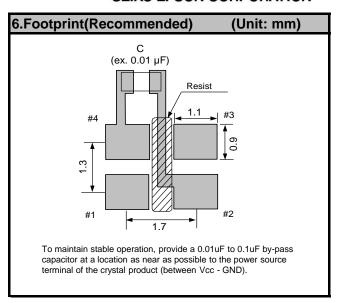
2.Specifications(charac	teristics)					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Output frequency	f0		24.576000		MHz	
Supply voltage	Vcc	2.7	3.3	3.6	V	-
Operating temperature	T_use	-40	-	+85	۰C	-
Frequency tolerance	f_tol	-50	-	50	x10 ⁻⁶	T_use
Current consumption	Icc	-	-	3	mA	No load condition
Stand-by current	I_std	-	-	1.0	μΑ	ST = GND
Symmetry	SYM	45	-	55	%	50% Vcc Level L_CMOS=<15pF
Output voltage	V _{OH}	0.9Vcc	-	-		IOH=-1mA
	V_{OL}	-	-	0.1Vcc		IOL=1mA
Output load condition	L_CMOS	-	-	15	pF	CMOS Load
Input voltage	V_{IH}	0.8Vcc	-	-		ST terminal
	V_{IL}	-	-	0.2Vcc		ST terminal
Rise time	t _r	-	-	3	ns	0.2Vcc to 0.8Vcc Level, L_CMOS=15pF
Fall time	tf	-	-	3	ns	0.2Vcc to 0.8Vcc Level, L_CMOS=15pF
Start-up time	t_str	-	-	3	ms	t = 0 at 0.9Vcc
Jitter	t _{DJ}	-	0	-	ps	Deterministic Jitter Vcc=3.3
	t _{RJ}	-	2.3	-	ps	Random Jitter Vcc=3.3V
	t _{RMS}	-	2.2	-	ps	δ(RMS of total distribution) Vcc=3.3V
	t _{p-p}	-	19	•	ps	Peak to Peak Vcc=3.3V
	t _{acc}	-	2.7	-	ps	Accumulated Jitter(δ) n=2 to 50000 cycles
Phase jitter	t _{PJ}	-	0.3	-	ps	Off set Frequency: 12kHz to 20MHz Vcc=3.3V
Phase noise	L(f)	-	-	-	dBc/Hz	-
		-	-100	-	dBc/Hz	Off set 10Hz Vcc=3.3V
		-	-129	-	dBc/Hz	Off set 100Hz Vcc=3.3V
		-	-144	-	dBc/Hz	Off set 1kHz Vcc=3.3V
		-	-153	-	dBc/Hz	Off set 10kHz Vcc=3.3V
		-	-159	-	dBc/Hz	Off set 100kHz Vcc=3.3V
		-	-163	_	dBc/Hz	Off set 1MHz Vcc=3.3V
Frequency aging	f_age	-3	-	3	x10 ⁻⁶	@+25°C first year
		-	-	-		-

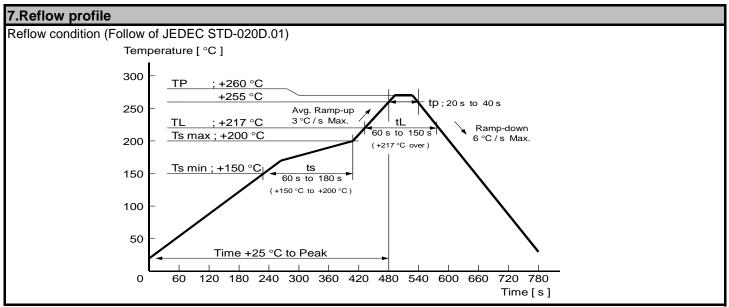

3.Timing chart

VCC 80 % VCC 20 % VCC GND tr tf SEIKO EPSON CORPORATION SEIKO EPSON CORPORATION

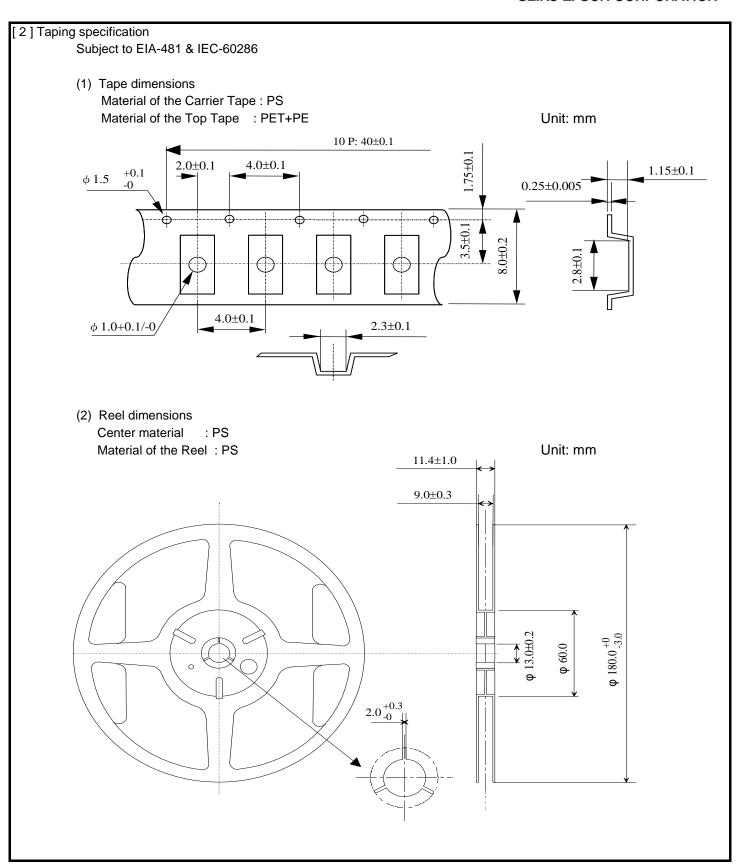
4.Test circuit




2) Current consumption



*Current consumption under the disable function should be = GND.


- 3) Condition
- (1) Oscilloscope
- · Band width should be minimum 5 times higher (wider) than measurement frequency.
- · Probe earth should be placed closely from test point and lead length should be as short as possible
- * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) L_CMOS also includes probe capacitance.
- (3) By-pass capacitor (0.01 μ F to 0.1 μ F) is placed closely between VCC and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
- · Start up time (0 %VCC to 90 %VCC) of power source should be more than 150 µs.
- · Impedance of power supply should be as lowest as possible.

1 lProduc	t number l	ast 2 digits code(xx) description		The recommended code is "00"
		591A052xx		
	Code	Condition	Code	Condition
	01	Any Q'ty vinyl bag(Tape cut)	14	1000pcs / Reel
	11	Any Q'ty / Reel	15	2000pcs / Reel
	12	250pcs / Reel	00	3000pcs / Reel

9.Notice

- · This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information about applied data, circuitry, software, usage, etc. written in this material is intended for reference only.
 - Seiko Epson does not assume any liability for the occurrence of customer damage or infringing on any patent or copyright of a third party.
 - This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that
 - would not make the products available to any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific applications that require
 - extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.
 - / Space equipment (artificial satellites, rockets, etc.)
 - / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
 - / Medical instruments to sustain life
 - / Submarine transmitters
 - / Power stations and related
 - / Fire work equipment and security equipment
 - / Traffic control equipment
 - / And others requiring equivalent reliability.

10.Contact us

http://www5.epsondevice.com/en/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard Clock Oscillators category:

Click to view products by Epson manufacturer:

Other Similar products are found below:

601252 F335-25 F535L-33.333 F535L-50 ASV-20.000MHZ-LR-T MXO45HS-2C-66.6666MHZ NBXDBB017LN1TAG SiT1602BI-22-33E-50.000000E SiT8209AI-32-33E-125.000000 SIT8918AA-11-33S-50.000000G SM4420TEV-40.0M-T1K F335-24 F335-40 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 PE7744DW-100.0M ASF1-3.686MHZ-N-K-S ASV-4.000MHZ-LCS-T XLH735025.000JU4I8 XLP725125.000JU6I8 XO57CTECNA3M6864 ECS-2100A-147.4 601251 EP16E7E2H26.000MTR SiT8503AI-18-33E-0.200000X SIT8918AA-11-33S-16.000000G SIT9122AI2C233E300.000000X XO37CTECNA20M XO3003 9120AC-2D2-33E212.500000 9102AI-243N25E100.00000 8208AC-82-18E-25.00000 ASDK2-32.768KHZ-LR-T3 8008AI-72-XXE-24.545454E 8004AC-13-33E-133.33000X AS-4.9152-16-SMD-TR ASFL1-48.000MHZ-LC-T 632L3I004M00000 SIT8920AM-31-33E-25.0000 DSC1028DI2-019.2000 9121AC-2C3-25E100.00000 9102AI-233N33E100.00000X 9102AI-233N25E200.00000 9102AI-232H25S125.00000 9102AI-133N25E200.00000 9102AC-283N25E200.00000